JPS6142783B2 - - Google Patents

Info

Publication number
JPS6142783B2
JPS6142783B2 JP57079507A JP7950782A JPS6142783B2 JP S6142783 B2 JPS6142783 B2 JP S6142783B2 JP 57079507 A JP57079507 A JP 57079507A JP 7950782 A JP7950782 A JP 7950782A JP S6142783 B2 JPS6142783 B2 JP S6142783B2
Authority
JP
Japan
Prior art keywords
film
stainless steel
less
content
rust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57079507A
Other languages
Japanese (ja)
Other versions
JPS58197282A (en
Inventor
Tomoyoshi Murata
Tooru Ito
Hiroyasu Komata
Kenichi Takimoto
Takashi Kobayashi
Masao Yabumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7950782A priority Critical patent/JPS58197282A/en
Publication of JPS58197282A publication Critical patent/JPS58197282A/en
Publication of JPS6142783B2 publication Critical patent/JPS6142783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐銹性ステンレス鋼およびその製造方
法に関するものである。 従来よりステンレス鋼は耐食性構造材料として
使用されてきた。しかし最近になつて、さらにそ
の表面の美麗さから建築物の外板や屋根材など、
いわゆるエクステリアに用いられることが多くな
つたきた。このような時、常に表面を洗浄される
ものならともかくいつたん建造したらそのままに
される場所も少なくない。このような箇所では長
期使用の間に表面にいわゆる赤い点さびを生じ、
これにより本来望まれるステンレス鋼表面特有の
美麗さが失なわれてしまう。とくに日本は周囲を
海に囲まれており、潮風の影響をうけることが多
くこの点から赤いさびが非常に出易すい環境であ
る。早いものでは数ケ月で赤錆が多量に発生する
ものさえある。 近年、このような点から表面の美麗さをいつま
でも保ち、長期間にわたつての表面品質保護が望
まれている。このことはとりもなおさずステンレ
ス鋼表面の耐食性そのものをさらに大きく向上さ
せることである。 我々は種々研究を重ねた結果、非晶質シリカを
主成分とするステンレス鋼表面皮膜が良い耐銹
性、耐食性をもつことをつきとめた。 以下本発明の皮膜の成分について詳細を述べ
る。 本発明によれば、シリカ分を30原子%以上含む
酸化物皮膜をステンレス鋼表面に形成させること
が可能であるが、従来からもいわゆる光輝焼鈍処
理がステンレス鋼板などにおいて行なわれてい
た。しかしながら、このような通常の処理は露点
が−40℃近辺よりも高く、本発明のごときシリカ
の多い皮膜は得られておらず、シリカ分はせいぜ
い15〜25原子%であり、しかもその皮膜は結晶質
であり、非晶質ではない。 このようなものではクロム、マンガン、鉄など
の酸化物が多量に共存し、これらがいわゆる
FeO・Cr2OCなどの結晶性酸化物を生成するから
である。結晶性酸化物は本来脆くその皮膜中に多
くの欠陥を有することになり、これにより素地の
ステンレス鋼との間で電池を形成し、さびを誘発
することになる。 ところが、Si分30原子%以上の皮膜を形成させ
るとその皮膜は主にSiO2を主体とした非晶質膜
となり、前述のような欠陥をもたずしかも素材の
曲げ加工などにも追随できる加工性の良好な皮膜
となることがわかつた。この時、皮膜中の残余の
構成物はクロム、マンガン、鉄などの金属の酸化
物及びBなど無機の酸化物よりなる。したがつて
本発明皮膜ではSi分を原子%で少なくとも30%以
上含むことが必要である。とくにSi分を35%以上
含むと上記の非晶質化及びダクタイル化の傾向は
著しくなり、さらに欠陥のない高耐食性の皮膜が
得られる。 但し、このような皮膜中の原子%を算出する
際、C(炭素)分は、表面汚れの影響もあるので
全量から排除されるものとする。 次にその厚さについてのべると、前述のごとく
加工の影響を考えると、薄ければ薄いほど良い。
それは薄い膜など曲げ加工などの際にその素材表
面の伸びなどに対して追随できるからである。実
験によれば1.0μ以上の厚さの皮膜をもつもので
は90゜曲げ加工では簡単にクラツクを生じてしま
う。したがつて、1.0μ以下が望ましい。しかし
ながら、余りに薄すぎると、ところどころに穴な
どの欠陥をもつ皮膜となり、これは前述の耐銹性
の観点から望ましくない。皮膜の厚さは少なくと
も0.001μ以上が望ましい。最も良い皮膜は0.002
〜0.05μ厚のものである。 前記の皮膜を形成させるステンレス鋼素材とし
てはフエライト系ステンレス鋼でもオーステナイ
ト系ステンレス鋼でもよく、とくに素材中のNi
分やMo分などの効果はほとんどみられない。し
かしながらSi分は良好な耐食性皮膜を形成させる
ために素材のステンレス鋼中に少なくとも0.5重
量%以上含むことが必要である。また素材中Cr
は10重量%以上のものならばどのようなものでも
良いが、余りに多すぎると製造過程において皮膜
中に多く入りすぎ、いわゆる結晶性酸化物を形成
させ易くなり悪影響をもたらす。この点から30重
量%以下が望ましい。とくに14〜20重量%が製造
の点から形成させ易い。 本発明の耐銹性の良好な皮膜を形成させるため
には、Si0.5重量%以上を含むステンレス鋼を露
点を−50℃以下に制御した水素ガス中もしくは水
素とアルゴンもしくは窒素との混合ガス中で800
℃〜1100℃で処理することが必要である。 以下これらの条件について詳細に説明すると、
露点が高いと素材中のクロム、マンガン、鉄など
が容易に酸化され、ステンレス鋼表面にそれらを
多く含んだ結晶性酸化物皮膜を形成させてしま
う。この点から−50℃以下であることが必要であ
る。このような条件では主に酸化はSi分について
のみ進む。同様の観点から雰囲気は純水素ガスで
あれば充分に露点を低く保ちうるので望ましい
が、実際上純水素は工業的な使用に際して高価と
なる。そこで50%以下のアルゴンガスにより希釈
して用いても露点を所定の値より低く保ちうるな
らば、かまわない。また窒素により希釈しても同
様にかまわない。しかし窒素は幾分かの表面窒化
を伴なうので25%以下に抑えた方が望ましい。温
度は短時間にこれらの表面皮膜を形成させられれ
ばどのような温度でも良いが、実際上800℃以下
では当該処理が長時間を要し、好ましくない。ま
たあまりに高温にすると皮膜の形成は容易になる
ものの、フエライト系ステンレス鋼などでは素材
そのものの金属結晶の再結晶が進みすぎ、大きな
結晶となり、リジング性など加工性の点で大きな
支障をきたす。この点から1100℃以下が望まし
い。 以上のような方法によればステンレス鋼表面に
Si分を30原子%以上含む非晶質のシリカを主体と
した高耐銹性の皮膜を形成することができる。 以下本発明の実施例について説明する。 実験の結果を第1表に示す。
The present invention relates to a rust-resistant stainless steel and a method for manufacturing the same. Stainless steel has traditionally been used as a corrosion-resistant structural material. However, recently, due to its beautiful surface, it has been used as a material for building exterior panels and roofing materials.
It is increasingly being used for so-called exteriors. At times like this, even if the surface is constantly cleaned, there are many places that are left as they are once built. During long-term use, so-called red spot rust may develop on the surface of such areas.
As a result, the originally desired beauty unique to the stainless steel surface is lost. In particular, Japan is surrounded by the ocean and is often affected by sea breezes, making it an environment where red rust is very easy to form. In some cases, a large amount of red rust develops within a few months. In recent years, from this point of view, it has been desired to maintain the beauty of the surface forever and protect the surface quality over a long period of time. This significantly improves the corrosion resistance of the stainless steel surface itself. As a result of various studies, we have found that a stainless steel surface film containing amorphous silica as its main component has good rust and corrosion resistance. The components of the film of the present invention will be described in detail below. According to the present invention, it is possible to form an oxide film containing 30 atomic % or more of silica on the surface of stainless steel, but so-called bright annealing treatment has conventionally been performed on stainless steel plates and the like. However, such a normal treatment has a dew point higher than around -40℃, and a film with a high silica content as in the present invention cannot be obtained.The silica content is at most 15 to 25 at%, and the film is Crystalline, not amorphous. In such materials, large amounts of oxides such as chromium, manganese, and iron coexist, and these are called
This is because crystalline oxides such as FeO and Cr 2 OC are produced. Crystalline oxides are inherently brittle and have many defects in their coatings, which can form batteries with the base stainless steel and induce rust. However, when a film with a Si content of 30 atomic percent or more is formed, the film becomes an amorphous film mainly composed of SiO 2 , which does not have the defects mentioned above and can also be processed by bending the material. It was found that the film had good workability. At this time, the remaining constituents in the film are oxides of metals such as chromium, manganese, and iron, and inorganic oxides such as B. Therefore, it is necessary for the film of the present invention to contain at least 30% Si in terms of atomic %. In particular, when the Si content is 35% or more, the above-mentioned tendency to become amorphous and ductile becomes significant, and a highly corrosion-resistant film without defects can be obtained. However, when calculating the atomic % in such a film, the C (carbon) component is excluded from the total amount because it is also affected by surface contamination. Next, regarding its thickness, considering the influence of processing as mentioned above, the thinner it is, the better.
This is because it can follow the elongation of the material surface during bending of thin films. Experiments have shown that products with a film thickness of 1.0μ or more easily crack when bent at 90°. Therefore, it is desirable that the thickness be 1.0μ or less. However, if it is too thin, the film will have defects such as holes here and there, which is undesirable from the viewpoint of rust resistance. The thickness of the film is preferably at least 0.001μ. The best film is 0.002
~0.05μ thick. The stainless steel material on which the film is formed may be ferritic stainless steel or austenitic stainless steel.
There are almost no effects such as minute and Mo minute. However, in order to form a good corrosion-resistant film, it is necessary to contain at least 0.5% by weight of Si in the stainless steel material. In addition, Cr in the material
Any amount of 10% by weight or more may be used, but if it is too large, too much will enter the film during the manufacturing process, making it easier to form so-called crystalline oxides, resulting in adverse effects. From this point of view, the content is preferably 30% by weight or less. In particular, 14 to 20% by weight is easy to form from the viewpoint of manufacturing. In order to form a film with good rust resistance according to the present invention, stainless steel containing 0.5% by weight or more of Si must be placed in hydrogen gas with a dew point controlled to below -50°C or in a mixture of hydrogen and argon or nitrogen. 800 inside
It is necessary to process at temperatures between 1100 °C and 1100 °C. Below, we will explain these conditions in detail.
When the dew point is high, chromium, manganese, iron, etc. in the material are easily oxidized, forming a crystalline oxide film containing a large amount of them on the stainless steel surface. From this point of view, it is necessary that the temperature be -50°C or lower. Under these conditions, oxidation mainly proceeds only for the Si content. From a similar point of view, it is desirable to use pure hydrogen as the atmosphere because the dew point can be kept sufficiently low; however, pure hydrogen is actually expensive for industrial use. Therefore, it may be used diluted with 50% or less argon gas as long as the dew point can be kept lower than a predetermined value. Further, it may be diluted with nitrogen as well. However, since nitrogen causes some surface nitridation, it is preferable to suppress it to 25% or less. Any temperature may be used as long as the surface film can be formed in a short period of time, but temperatures of 800° C. or lower are actually undesirable because the treatment takes a long time. Also, if the temperature is too high, it will be easier to form a film, but in the case of ferritic stainless steel, etc., the metal crystals of the material itself will recrystallize too much, forming large crystals, which will cause major problems in terms of processability such as ridging properties. From this point of view, a temperature of 1100°C or less is desirable. According to the above method, the stainless steel surface
It is possible to form a highly rust-resistant film based on amorphous silica containing 30 atomic percent or more of Si. Examples of the present invention will be described below. The results of the experiment are shown in Table 1.

【表】【table】

【表】 これらの実験結果からSi分を原子%で30%以上
(但しC分を除く)含み、他は金属及び無機の酸
化物よりなる非晶質シリカを主成分とする皮膜を
1.0μ以下の厚さになるように表面に形成させた
ステンレス鋼では、その耐銹性はきわめてすぐれ
ていることがわかる。反対に結晶化して皮膜では
良い耐銹性が得られていない。ちなみに第1表中
試験番号5,7,9の場合の表面皮膜電子回折図
を第1図a,b,cに示す。aは試験番号5の試
料表面の電子回折図であり、結晶質を示す明確な
環がみられる。bは同様に試験番号7のものであ
り、環がぼやけてきており一部非晶化しているこ
とを示す。Cは同様に試験番号9のものであり、
環はみられず全くのハローを示し、非晶質である
ことを示す。
[Table] From these experimental results, it was found that a film containing at least 30% Si content (excluding C content) and whose main component was amorphous silica made of metal and inorganic oxides.
It can be seen that stainless steel whose surface is formed to a thickness of 1.0μ or less has extremely excellent rust resistance. On the other hand, it crystallizes and the film does not provide good rust resistance. Incidentally, the surface film electron diffraction diagrams for test numbers 5, 7, and 9 in Table 1 are shown in FIG. 1 a, b, and c. Figure a is an electron diffraction diagram of the sample surface of Test No. 5, in which a clear ring indicating crystallinity can be seen. Similarly, b is for test number 7, indicating that the ring has become blurred and is partially amorphous. C is also from test number 9,
No rings were observed and a complete halo was observed, indicating that it was amorphous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は種々の処理によつて得られたステンレ
ス鋼表面皮膜の電子回折写真であり、aは試験番
号5、bは試験番号7、cは試験番号9の場合の
電子回折写真図である。
Figure 1 is an electron diffraction photograph of stainless steel surface coatings obtained by various treatments, where a is an electron diffraction photograph for test number 5, b is test number 7, and c is an electron diffraction photograph for test number 9. .

Claims (1)

【特許請求の範囲】 1 Si分を原子%で30%以上(但しC分を除く)
含み、他は金属及び無機の酸化物よりなる非晶質
シリカを主成分とする0.001μ以上1.0μ以下の厚
さの皮膜を表面に形成させてなることを特徴とす
る耐銹性ステンレス鋼。 2 Si0.5%(重量%)以上を含むステンレス鋼
を、露点−50℃以下に制御した水素ガス中もしく
は水素ガスと50%以下のアルゴンガスもしくは水
素ガスと25%以下の窒素ガスとの混合ガス中で
800℃〜1100℃で処理することによつて、Si分を
原子%で30%以上(但しC分を除く)含み、他は
金属及び無機の酸化物よりなる非晶質シリカを主
成分とする0.001μ以上1.0μ以下の厚さの皮膜を
表面に形成させることを特徴とする耐銹性ステン
レス鋼の製造方法。
[Claims] 1 Si content in atomic % of 30% or more (excluding C content)
A rust-resistant stainless steel characterized by forming on its surface a film with a thickness of 0.001μ or more and 1.0μ or less, the main component of which is amorphous silica, which contains metal and inorganic oxides. 2 Stainless steel containing 0.5% (wt%) or more of Si in hydrogen gas with a dew point controlled to -50°C or less, or in a mixture of hydrogen gas and 50% or less argon gas, or hydrogen gas and 25% or less nitrogen gas in gas
By processing at 800°C to 1100°C, it contains at least 30% Si content (excluding C content) in terms of atomic percent, and the rest is mainly composed of amorphous silica made of metal and inorganic oxides. A method for producing rust-resistant stainless steel, characterized by forming a film on the surface with a thickness of 0.001μ or more and 1.0μ or less.
JP7950782A 1982-05-12 1982-05-12 Rust-resistant stainless steel and its production Granted JPS58197282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7950782A JPS58197282A (en) 1982-05-12 1982-05-12 Rust-resistant stainless steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7950782A JPS58197282A (en) 1982-05-12 1982-05-12 Rust-resistant stainless steel and its production

Publications (2)

Publication Number Publication Date
JPS58197282A JPS58197282A (en) 1983-11-16
JPS6142783B2 true JPS6142783B2 (en) 1986-09-24

Family

ID=13691853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7950782A Granted JPS58197282A (en) 1982-05-12 1982-05-12 Rust-resistant stainless steel and its production

Country Status (1)

Country Link
JP (1) JPS58197282A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759993A (en) * 1985-04-25 1988-07-26 Ovonic Synthetic Materials Co., Inc. Plasma chemical vapor deposition SiO2-x coated articles and plasma assisted chemical vapor deposition method of applying the coating
JPS62109928A (en) * 1985-11-07 1987-05-21 Nippon Steel Corp Low oxidation annealing method for corrosion resistant steel sheet containing chromium
JPS6372868A (en) * 1986-09-16 1988-04-02 Nippon Steel Corp External building material having superior corrosion and weather resistance
JPS63235461A (en) * 1987-03-23 1988-09-30 Nisshin Steel Co Ltd Manufacture of ba-finished stainless steel plate excellent in weatherability
US6068712A (en) * 1998-01-08 2000-05-30 Kawasaki Steel Corporation Steel products having superior weathering, method of producing the steel products, and method of forming weathering protective rust on steel product surfaces
JP2014198874A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 Steel material excellent in corrosion resistance and magnetic properties and method of producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126624A (en) * 1978-03-09 1979-10-02 Nisshin Steel Co Ltd Bright annealing of stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126624A (en) * 1978-03-09 1979-10-02 Nisshin Steel Co Ltd Bright annealing of stainless steel

Also Published As

Publication number Publication date
JPS58197282A (en) 1983-11-16

Similar Documents

Publication Publication Date Title
RU2686125C1 (en) Sheet of electrical steel with oriented structure and method for production thereof
US4652428A (en) Corrosion resistant alloy
CA2723522C (en) Ni-cr alloy material
JP4558109B2 (en) Method for producing silicon-chromium oriented silicon steel
JPS6142783B2 (en)
US3963532A (en) Fe, Cr ferritic alloys containing Al and Nb
US4168184A (en) Method of making surface layers with improved corrosion properties on articles of iron-chromium alloys, and a surface layer made by the method
US4793873A (en) Manufacture of ductile high-permeability grain-oriented silicon steel
EP0036726A1 (en) Method of producing silicon-iron sheet material with annealing atmospheres of nitrogen and hydrogen
JPS60230962A (en) Ferritic stainless steel material having superior corrosion resistance
JPH1150202A (en) Ferritic stainless steel bright annealed material excellent in rust resistance and its production
JP3135958B2 (en) Annealing method for hot rolled Cr-based stainless steel strip
US5011548A (en) Composition for deboronizing grain-oriented silicon steel
JP2801833B2 (en) Fe-Cr alloy with excellent workability and pitting resistance
JPS6239233B2 (en)
JP3838858B2 (en) Fe-Ni alloy plate having excellent weather resistance and method for producing the same
JP4648797B2 (en) Method for producing grain-oriented electrical steel sheet with excellent coating adhesion
JPH01176094A (en) Production of high chromium/ferritic stainless steel excellent in moldability and corrosion resistance
JPH06116652A (en) Production of fe-cr-al steel sheet excellent in oxidation resistance
JP3237921B2 (en) Solid wire for gas shielded arc welding and method of manufacturing the same
JPS62280341A (en) Highly corrosion resistant cobalt-based stainless alloy
JPH029670B2 (en)
JPH0625778A (en) Titanium alloy excellent in corrosion resistance nonoxidizing acid and workability
JPH0565600A (en) Ferritic stainless steel for porcelain enameling and pretreatment to porcelain enameling
JPH11310856A (en) Austenitic stainless steel material excellent in machinability and antibacterial characteristic, and its manufacture