JP4648797B2 - Method for producing grain-oriented electrical steel sheet with excellent coating adhesion - Google Patents

Method for producing grain-oriented electrical steel sheet with excellent coating adhesion Download PDF

Info

Publication number
JP4648797B2
JP4648797B2 JP2005235821A JP2005235821A JP4648797B2 JP 4648797 B2 JP4648797 B2 JP 4648797B2 JP 2005235821 A JP2005235821 A JP 2005235821A JP 2005235821 A JP2005235821 A JP 2005235821A JP 4648797 B2 JP4648797 B2 JP 4648797B2
Authority
JP
Japan
Prior art keywords
steel
annealing
steel sheet
oriented electrical
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005235821A
Other languages
Japanese (ja)
Other versions
JP2007051316A (en
Inventor
穂高 本間
祐治 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005235821A priority Critical patent/JP4648797B2/en
Publication of JP2007051316A publication Critical patent/JP2007051316A/en
Application granted granted Critical
Publication of JP4648797B2 publication Critical patent/JP4648797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は変圧器、回転機、リアクトル等の鉄心材料として、工業的に最も一般的に用いられる軟磁性材料である方向性電磁鋼板に関し、特にその製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet, which is a soft magnetic material that is most commonly used industrially as an iron core material for transformers, rotating machines, reactors, and the like, and particularly relates to a manufacturing method thereof.

方向性電磁鋼板は、物理学で用いられるミラー指数で<100>と表現される、結晶の格子を基準にした際の最も容易に磁化される方位を、各結晶粒毎に比較的揃えられており、従って多結晶鋼板でありながら単結晶鋼板であるかのごとく特定方向への磁化特性が優れた、工業製品として望ましい材料である。方向性電磁鋼板は、一般に二次再結晶と呼ばれる現象を活用して結晶の磁化容易軸を特定方向に揃えるのであるが、工業技術として公に開示された例は、P.N.Gossによる特許文献1、田口と坂倉の特許文献2、今井と斎藤の特許文献3等である。これらの技術に依れば、二次再結晶はSiを多く含んだ鋼に、インヒビターと通称される第二分散相としてMnS他、種々の化合物を析出させ、冷間圧延と焼鈍を組み合わせることで二次再結晶を発現させている。   The grain-oriented electrical steel sheet is expressed by the Miller index used in physics as <100>, and the most easily magnetized orientation based on the crystal lattice is relatively aligned for each crystal grain. Therefore, it is a material desirable as an industrial product having excellent magnetization characteristics in a specific direction as if it were a single-crystal steel plate even though it is a polycrystalline steel plate. A grain-oriented electrical steel sheet utilizes a phenomenon generally called secondary recrystallization to align the easy axis of crystal in a specific direction. N. Patent Document 1 by Goss, Patent Document 2 by Taguchi and Sakakura, Patent Document 3 by Imai and Saito, and the like. According to these techniques, secondary recrystallization is performed by combining cold rolling and annealing by precipitating MnS and other various compounds as a second dispersed phase commonly referred to as an inhibitor in steel containing a large amount of Si. Secondary recrystallization is developed.

これらの製造方法の共通の特徴として、冷延後、仕上高温焼鈍に先立って、脱炭焼鈍を行うということがある。炭素は実は二次再結晶の進行それ自体には全く不要な元素であるが、田口と坂倉の特許文献2の方法では、MnSとAlNを適切に分布析出させるための成分、即ち二次再結晶の準備のための元素で二次再結晶のための仕上高温焼鈍工程前に鋼中から除去しなければならない。また、この方法では、熱延に先立って鋼塊またはスラブの加熱を1350℃以上という超高温で実施しなければならない。   A common feature of these production methods is that after cold rolling, decarburization annealing is performed prior to finish high temperature annealing. Carbon is actually an element that is completely unnecessary for the progress of secondary recrystallization itself, but in the method of Patent Document 2 of Taguchi and Sakakura, a component for appropriately distributing and precipitating MnS and AlN, that is, secondary recrystallization. It must be removed from the steel before the final high-temperature annealing step for secondary recrystallization. Further, in this method, the steel ingot or slab must be heated at an ultrahigh temperature of 1350 ° C. or higher prior to hot rolling.

この負担を回避するために菅らは特許文献4に開示される新たな技術を発明し、そしてこの方法であれば炭素を予め鋼中に含有させる必要性が低下し脱炭焼鈍を省略する事も可能と考えられるが、しかしこの方法では冷間圧延から仕上高温焼鈍に至るまでに鋼板外部から窒素を鋼中にドープする必要があり結果としての焼鈍工程導入は避けられない。結論的に言えば、従来技術においては、二次再結晶の冶金原理に鑑みて元来不要な脱炭焼鈍もしくは冷延と仕上高温焼鈍に挟まれた独立工程としての焼鈍工程を、省略することが困難である。この課題については、河面らによる発明、例えば特許文献5等が更なる検討対象と成りうる。彼らは旧来の方法を応用し、溶製段階で鋼中に炭素を含有させず、二次再結晶鋼板を得ることに成功した。しかし実際には仕上高温焼鈍に先立つ冷延後の焼鈍を完全には省略できない。なぜなら、方向性電磁鋼板の製品要件である皮膜を形成するために、鋼板表面に僅かな酸化層を形成させて仕上高温焼鈍に必要な焼鈍分離剤の一部と反応させなければ成らず、そのための湿潤雰囲気中焼鈍を導入する方が技術的に容易であったのである。さらにはやはり、熱延に先立つ鋼塊あるいはスラブの加熱温度が1350℃以上の超高温でなければならず大きな負担を強いられる技術であることに変わりはなかった。   In order to avoid this burden, Tatsu et al. Invented a new technique disclosed in Patent Document 4, and this method reduces the necessity of previously containing carbon in the steel and omits decarburization annealing. However, in this method, it is necessary to dope nitrogen into the steel from the outside of the steel sheet from cold rolling to finish high temperature annealing, and the introduction of the resulting annealing process is inevitable. In conclusion, in the prior art, in view of the metallurgical principle of secondary recrystallization, the annealing process as an independent process sandwiched between decarburization annealing or cold rolling and finishing high-temperature annealing that is originally unnecessary is omitted. Is difficult. Regarding this problem, the invention by Kawakami et al., For example, Patent Document 5 can be further studied. They applied an old method and succeeded in obtaining a secondary recrystallized steel sheet without containing carbon in the steel at the melting stage. In practice, however, annealing after cold rolling prior to finish high temperature annealing cannot be completely omitted. Because, in order to form a film, which is a product requirement for grain-oriented electrical steel sheets, a slight oxidation layer must be formed on the steel sheet surface to react with a part of the annealing separator necessary for finishing high temperature annealing. It was technically easier to introduce annealing in a humid atmosphere. Furthermore, the steel ingot or slab heating temperature prior to hot rolling must be an extremely high temperature of 1350 ° C. or more, and it is still a technology that imposes a heavy burden.

これに対して、鋼にTi,Cを適量添加しTiC析出物をインヒビターとして析出させて、冷延板を直接仕上高温焼鈍に供する事で方向性電磁鋼板を製造する事も可能である。この時、スラブ加熱温度は1250℃と普通鋼と同等であり、負担の少ない製造技術として成立しうる。   On the other hand, it is also possible to manufacture grain-oriented electrical steel sheets by adding appropriate amounts of Ti and C to steel and precipitating TiC precipitates as inhibitors, and subjecting the cold-rolled sheet directly to finish high temperature annealing. At this time, the slab heating temperature is 1250 ° C., which is equivalent to that of ordinary steel, and can be established as a manufacturing technique with less burden.

ところが、TiCインヒビターには、改善すべき点があった。インヒビターとして用いられる析出物は、最終製品の電磁鋼板としては、磁化過程における180°磁区の動きを著しく妨げる効果を持ち、従って最も重要な磁気特性である鉄損特性を発揮させるには、二次再結晶完了後に完全に除去されなければならない。即ち、いわゆる純化が行われなければならない。TiC以前に用いられていた、例えばMnSやAlNは、二次再結晶後、時として1200℃に及ぶような仕上高温焼鈍で、乾水素を雰囲気に導入する事により、HSやNHの気体化反応を利用して完全に除去する事が可能であった。しかしながら、TiCの場合、水素化反応であるCH4生成反応はこの様な高温では不安定で、純化を完了させるには不十分である。鋼中に析出したTiCインヒビターが、乾水素中で高温長時間焼鈍する事で鋼板表面にTiC被膜を形成し、実質的に鋼板中に介在物が無くなる事もあるが、良好な磁性を得るためには膨大な熱エネルギーの消費を要する。 However, the TiC inhibitor has a point to be improved. The precipitate used as an inhibitor has the effect of remarkably hindering the movement of the 180 ° magnetic domain in the magnetization process as a final electrical steel sheet, and therefore, in order to exert the iron loss characteristic, which is the most important magnetic characteristic, It must be completely removed after recrystallization is complete. That is, so-called purification must be performed. For example, MnS and AlN used before TiC are high-temperature annealing that sometimes reaches 1200 ° C. after secondary recrystallization, and by introducing dry hydrogen into the atmosphere, H 2 S and NH 3 It was possible to remove completely using a gasification reaction. However, in the case of TiC, the CH4 production reaction, which is a hydrogenation reaction, is unstable at such a high temperature and is insufficient to complete purification. The TiC inhibitor deposited in the steel forms a TiC film on the steel plate surface by annealing at high temperature and long time in dry hydrogen, and the inclusions in the steel plate may be substantially eliminated. Requires enormous consumption of heat energy.

U.S.Pat.1965559公報U. S. Pat. 1965559 特公昭38−4710号公報Japanese Patent Publication No. 38-4710 特公昭38−8214号公報Japanese Patent Publication No. 38-8214 特開昭59−56522号公報JP 59-56522 A 特開昭55−73818号公報JP-A-55-73818

本発明は、方向性電磁鋼板の製造において、一般の鋼と比較した際の大きな工程負担を減ずる事の出来る、TiCをインヒビターとする方向性電磁鋼板の製造方法において、磁気特性発現のための最終工程である仕上高温焼鈍の純化を効率よく実施し、製造に際してのエネルギー消費の減少を図ることを目的とする。   The present invention provides a final method for producing magnetic properties in a method for producing a grain-oriented electrical steel sheet using TiC as an inhibitor, which can reduce a large process burden when compared with general steel in the production of a grain-oriented electrical steel sheet. The aim is to efficiently purify the high-temperature finishing process, which is a process, and to reduce energy consumption during production.

そこで、本発明においては、Ti、Zr、Hfなどの親炭素元素をスパッタ法で鋼板表面に付着させ、仕上高温焼鈍中に炭素を吸い上げさせると、乾水素中焼鈍で生成したTiCと同様な被膜を形成させ、鋼中介在物を除去する事が可能ではないかと考え、それを試みた。   Therefore, in the present invention, when a carbon element such as Ti, Zr, and Hf is attached to the surface of the steel sheet by sputtering and carbon is sucked up during the finish high temperature annealing, the same coating as TiC formed by annealing in dry hydrogen. I thought that it would be possible to remove the inclusions in the steel and tried it.

しかしながら、この場合、逆に親炭素元素が鋼中に拡散侵入し、TiC除去が出来ずに失敗に終わった。そこで次に、本発明者らは、仕上高温焼鈍(長時間)で鋼中TiCを鋼板表面に再析出させ安定な被膜を形成する事が出来るのに、なぜ親炭素元素を鋼板表面に付着させただけではCを吸い上げて安定な被膜を形成する事が出来ないのか、その機構解明に取り組んだ。即ち、親炭素元素のコーティング量を変えたり、あるいは合金化したり等の実験を多数行い、脱炭反応が進むかどうか調査した。その中で、親炭素元素が鋼中に侵入せず、鋼板表層に炭化物被膜が形成され、その膜下の地鉄中でインヒビターであるTiC析出物が十分に除去される場合が幾通りかある事が見出された。そこでこれらの条件の共通点を調べた所、これらは皆親炭素元素とFeの合金をコーティングした場合である事を見出した。   However, in this case, conversely, the parent carbon element diffused and penetrated into the steel, and TiC could not be removed, resulting in failure. Then, next, the present inventors can reprecipitate TiC in the steel on the surface of the steel sheet by finish high temperature annealing (for a long time) to form a stable film. We worked on elucidating the mechanism of whether C could not be sucked up to form a stable film. That is, many experiments such as changing the coating amount of the parent carbon element or alloying were conducted to investigate whether the decarburization reaction proceeds. Among them, there are some cases where the parent carbon element does not enter the steel, a carbide film is formed on the surface layer of the steel sheet, and the TiC precipitate which is an inhibitor is sufficiently removed in the base iron under the film. Things were found. Therefore, when the common points of these conditions were examined, it was found that these were all cases in which an alloy of parent carbon element and Fe was coated.

そこで、なぜFeと合金化すると形成される炭化物被膜が安定化して純化が可能になるのかを考察した。ここで実験に用いた親炭素元素群は全て金属元素であり、Feと合金化が可能である。従ってそもそもFe中での拡散は容易と考える事が出来る。一方、拡散を引き起こす物理パラメータは、フィックの第二法則に従えば、化学ポテンシャルの勾配である。これは巨視的には活量勾配であり、合金の場合濃度勾配に比例する事が多い。そこで、Ti、Hf、等の金属元素が鋼板上にそのままコーティングされた場合、濃度差は100%と0%であるが、Fe合金化してコーティングされればコーティング組成と地鉄組成の濃度差は縮まり、従って拡散の駆動力が低下するのではないかと考えた。   Therefore, the reason why the carbide film formed by alloying with Fe is stabilized and can be purified is considered. Here, all of the parent carbon element groups used in the experiment are metal elements and can be alloyed with Fe. Therefore, it can be considered that diffusion in Fe is easy. On the other hand, the physical parameter causing diffusion is the gradient of chemical potential according to Fick's second law. This is an activity gradient macroscopically, and in the case of an alloy, it is often proportional to the concentration gradient. Therefore, when a metal element such as Ti, Hf or the like is coated on the steel plate as it is, the concentration difference is 100% and 0%. However, if the Fe alloy is coated and coated, the concentration difference between the coating composition and the base iron composition is I thought that the driving force of diffusion would decrease.

例えば、FeとTiの合金スパッタにおいて、組成を1:3として2μm厚みコーティングし、乾水素中1200℃までの焼鈍で二次再結晶を完遂させながら純化焼鈍を試みた後の、鋼板表面の被膜−地鉄界面性状をグロー放電分光分析:GDSで解析した。その結果を図1(a)に示す。また、比較材として(b)純Tiをコーティング後、焼鈍したもの、(c)コーティングせず、乾水素中高温仕上焼鈍(長時間)で安定な被膜を形成したものを併せて示す。図には被膜部分、界面部分、地鉄部分を明示したが、図(a)は界面領域の幅が(c)と同等で、十分な平滑度が得られている事が解る。また、(b)の条件では界面領域が広く、即ち地鉄と被膜の界面が平滑ではなくて鉄損得性状好ましくない事が理解できる。また、この時の磁性であるが板厚0.23mmの材料で、(a)B8=1.91T、W17/50=0.83w/kg、(b)B8=1.92T、W17/50=1.15w/kg、(c)B8=1.90T、W17/50=0.87w/kg、であり、(b)が極端に鉄損が悪かったのに対し、(a)は(c)と同レベルであった。   For example, in an alloy sputtering of Fe and Ti, the coating on the surface of the steel sheet after coating with a composition of 1: 3 and having a thickness of 2 μm and purifying annealing while completing secondary recrystallization by annealing up to 1200 ° C. in dry hydrogen. -The surface property of the ground iron was analyzed by glow discharge spectroscopic analysis: GDS. The result is shown in FIG. Moreover, (b) what annealed after coating pure Ti as a comparative material, and (c) what did not coat and formed the stable film in high temperature finishing annealing in dry hydrogen (long time) are shown collectively. In the figure, the coating part, the interface part, and the ground iron part are clearly shown, but in the figure (a), the width of the interface region is equivalent to (c), and it is understood that sufficient smoothness is obtained. Further, it can be understood that the interface region is wide under the condition (b), that is, the interface between the ground iron and the coating is not smooth, and the iron loss property is not preferable. In addition, the magnetic material at this time is a material having a thickness of 0.23 mm. (A) B8 = 1.91T, W17 / 50 = 0.83 w / kg, (b) B8 = 1.92T, W17 / 50 = 1.15 w / kg, (c) B8 = 1.90 T, W17 / 50 = 0.87 w / kg, (b) was extremely bad in iron loss, whereas (a) was (c) And the same level.

本発明は上述したようにその原理を解明したが、本発明者らは、上記原理をベースにさらにこの応用技術を探索、研究した。即ち、親炭素元素の化合物反応を適用したこの技術において、反応の開始素材は元素ではなく化合物であっても良いのではないかと考え、試験を行った。一例としてTiOを適用した。TiOは1μm程度の微粉で供給する事が可能で、鋼板表面への塗布は水スラリー化したもので実施し、直ちに乾燥することで鋼板に十分付着させる事が出来た。この様な方法で10g/mの量を冷延鋼板に塗布し、タイトコイル化して仕上焼鈍に供した所、1150℃×40hrの焼鈍で残C量25ppmとする事が出来た。この時用いた鋼板にTiOの替りにMgOを塗布した時には、同一条件にて残C量が95ppmであったものである。また、化合物中のTiの反応活性度は低いので、当然の結果ではあるが、被膜−地鉄界面は平滑であった。 The present invention has clarified the principle as described above, but the present inventors have further searched and studied this applied technology based on the above principle. That is, in this technique to which a compound reaction of a parent carbon element was applied, a test was performed on the assumption that the starting material for the reaction may be a compound instead of an element. As an example, TiO 2 was applied. TiO 2 could be supplied in a fine powder of about 1 μm, and the application to the steel plate surface was carried out with a water slurry, and it was possible to sufficiently adhere to the steel plate by drying immediately. In this way, an amount of 10 g / m 2 was applied to a cold-rolled steel sheet, made into a tight coil and subjected to finish annealing, and a residual C content of 25 ppm could be achieved by annealing at 1150 ° C. × 40 hr. When MgO was applied to the steel plate used at this time instead of TiO 2 , the amount of residual C was 95 ppm under the same conditions. Moreover, since the reaction activity of Ti in the compound is low, the coating film-base metal interface was smooth although it was a natural result.

ここにおける反応として考えられるのは、
TiO+3→TiC+2CO↑
で表されるCarbothermal反応であろう。ここでは鋼中の固溶Cである。この反応は気体が関与する反応であり、右辺のCOが雰囲気ガスと置換されて反応から除去されればどんどん進行していくものである。
Possible reactions here are:
TiO 2 +3 C → TiC + 2CO ↑
The Carbothermal reaction represented by Here, C is solute C in steel. This reaction is a reaction involving gas, and proceeds more and more as CO on the right side is replaced with atmospheric gas and removed from the reaction.

この方法においてもまた効果が発現したものはIVa、Va族元素である、Ti,Nb,Hf,Ta,V,Zrの酸化物であった。窒化物、硫化物を用いても効果が現れる事があったが、これは雰囲気が乾水素のみである時に限られた。即ち化合するN,Sがそれぞれ気体であるNH3、H2Sで雰囲気中に放出されると考えられる場合である。何となれば、これ以外のArや真空雰囲気では、N,Sがかえって鋼中に侵入してしまい、TiN、TiS等を介在物として形成して、鉄損特性を劣化させてしまったからである。   In this method, the effect was also exhibited by oxides of Ti, Nb, Hf, Ta, V, and Zr, which are IVa and Va group elements. Even when nitrides and sulfides were used, the effect sometimes appeared, but this was limited to when the atmosphere was only dry hydrogen. That is, this is a case where the combined N and S are considered to be released into the atmosphere by NH3 and H2S which are gases, respectively. This is because in other Ar and vacuum atmospheres, N and S instead penetrate into the steel, and TiN, TiS, etc. are formed as inclusions, resulting in deterioration of iron loss characteristics.

本発明は上記知見に基づいてなされたもので、その要旨は以下の通りである。
(1)質量%で、Si:2%〜4.5%、Ti:0.1%〜0.4%、C:0.035%〜0.1%、を含み、残部Fe及び不可避的不純物からなる鋼を、鋳造し、熱延し、冷延して製品板厚とした後、鋼板表面にNb,Hf,Ta,Zrの1種または2種以上の酸化物、窒化物または硫化物の合計で50%以上含む酸化物、窒化物または硫化物を塗布または付着させ、次いで仕上高温焼鈍を施すことを特徴とする方向性電磁鋼板の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) By mass%, Si: 2% to 4.5%, Ti: 0.1% to 0.4%, C: 0.035% to 0.1%, the balance Fe and inevitable impurities After steel is cast, hot-rolled, cold-rolled to obtain a product sheet thickness, one or more oxides, nitrides or sulfides of Nb, Hf, Ta, Zr are formed on the steel plate surface . A method for producing a grain-oriented electrical steel sheet, characterized in that oxides, nitrides or sulfides containing 50% or more in total are applied or adhered, and then subjected to finish high temperature annealing.

本発明により、TiCをインヒビターとする方向性電磁鋼板の製造方法において、二次再結晶完了後のインヒビター除去を効率よく行い、仕上高温焼鈍の純化におけるエネルギー消費を抑えながら、かつ良好な磁気特性を確保することができる。   According to the present invention, in the method for producing a grain-oriented electrical steel sheet using TiC as an inhibitor, the inhibitor is efficiently removed after the completion of secondary recrystallization, while suppressing the energy consumption in the purification of finishing high-temperature annealing, and providing good magnetic properties. Can be secured.

次に、本発明の実施形態について述べる。   Next, an embodiment of the present invention will be described.

先ず鋼の成分について述べる。   First, the components of steel will be described.

Si量は、4.5%を超えると脆化が激しくなり、スリット、剪断等の加工で所定の形状を得ることが困難になることから4.5%以下とした。2%を下回ると、商用周波数における使用で発生するエネルギー損失のうちの渦電流損が増大して磁気特性が劣化するので、2%以上とした。   When the Si content exceeds 4.5%, embrittlement becomes severe, and it becomes difficult to obtain a predetermined shape by processing such as slitting and shearing, so the Si content is set to 4.5% or less. If it falls below 2%, eddy current loss of energy loss generated by use at a commercial frequency increases and the magnetic properties deteriorate, so it was made 2% or more.

Tiは0.1%を下回ると、二次再結晶不良に起因する極端な鉄損特性劣化が生じたので0.1%以上とした。0.4%を超えると精錬後の鋳造時に大量の酸化物系介在物が溶鋼中に形成され、ノズル目詰まりを起こして生産性が極端に劣化するので0.4%以下とした。   When Ti was less than 0.1%, extreme iron loss characteristic deterioration due to secondary recrystallization failure occurred, so it was made 0.1% or more. If it exceeds 0.4%, a large amount of oxide inclusions are formed in the molten steel during casting after refining, causing nozzle clogging and extremely deteriorating productivity.

Cは溶製時点で0.035%を下回ると冷延後の高温焼鈍で二次再結晶が発現しないので0.035%以上とした。0.1%を超えると、二次再結晶完了後の純化焼鈍で鋼中の炭素量を0.0005%以下とすることが困難なので0.1%以下とした。   When C is less than 0.035% at the time of melting, secondary recrystallization does not occur due to high-temperature annealing after cold rolling, so 0.035% or more. If it exceeds 0.1%, it is difficult to make the amount of carbon in the steel 0.0005% or less by purification annealing after the completion of secondary recrystallization, so it was made 0.1% or less.

純化焼鈍に先立つ鋼板表面への塗布元素についてであるが、まずO、N、Hgの様な、室温で気体または液体以外の元素を、原子番号3のLiから原子番号92のUまで全てについて、鋼板表面への塗布を行った。金属元素についてはスパッタ法、非金属元素については粉末をエチルアルコールに溶いてスラリーとした物を塗布後乾燥させた。その結果、周期律表の族番号に完全に対応して純化挙動が分類できた。即ち、Ia、IIa、IIIa族は鋼中様々な不純物や雰囲気中に僅かに存在するO、H2Oと反応して、鋼中Cを吸い上げる効果が認められなかった。VIa、VIIa、VIIIaおよびI〜VIIb族は、CよりむしろFeと合金化し、あるいは化合物を形成してしまった。その結果、鋼中Cと反応して純化能力を発揮したのは、IVa、Va族のTi,Nb,Hf,Ta,V,Zrの6元素だけであった。   Regarding elements applied to the steel sheet surface prior to purification annealing, first of all elements other than gas or liquid at room temperature, such as O, N, and Hg, from Li of atomic number 3 to U of atomic number 92, Application to the steel sheet surface was performed. For metal elements, a sputtering method was used, and for nonmetal elements, a powder was dissolved in ethyl alcohol to form a slurry and then dried. As a result, the purification behavior could be classified completely corresponding to the group number of the periodic table. That is, Ia, IIa and IIIa groups did not react with various impurities in the steel or O and H2O which are slightly present in the atmosphere, and the effect of sucking up C in the steel was not recognized. Groups VIa, VIIa, VIIIa and groups I-VIIb have alloyed or formed compounds with Fe rather than C. As a result, only the 6 elements of IVa and Va group Ti, Nb, Hf, Ta, V, and Zr reacted with C in the steel and exhibited the purification ability.

次に、これらの元素を塗布して純化した場合の磁気特性発現状況であるが、化合していない純物質素材を用いて塗布した場合は、スパッタコーティング、粉末のスラリーコーティング、あるいはめっきコーティング等の塗布形態に依らず、被膜と地鉄の界面の凹凸が激しく、十分なB8値が得られたとしても鉄損特性が劣悪であった。そこで、Fe,Co,Ni,Mn,Crと合金化して塗布したところ、これら合金化元素が20%以上のときに十分平滑な界面となり、良好な鉄損特性が得られたので、Ti,Nb,Hf,Ta,V,Zrを80%以下の合金とした。   Next, it is the situation of magnetic characteristics when these elements are applied and purified, but when applied using pure materials that are not combined, sputter coating, powder slurry coating, plating coating, etc. Irrespective of the coating form, the unevenness of the interface between the coating and the ground iron was severe, and even if a sufficient B8 value was obtained, the iron loss characteristics were poor. Therefore, when alloyed with Fe, Co, Ni, Mn, and Cr, and coated, when these alloying elements were 20% or more, a sufficiently smooth interface was obtained, and good iron loss characteristics were obtained. , Hf, Ta, V, Zr were made into an alloy of 80% or less.

さらに、Ti,Nb,Hf,Ta,V,Zrの酸化物を10μm以下の微粉とし、水でスラリーに溶いて塗布後乾燥し、純化に供したところ、形成された炭化物被膜と地鉄の界面が平滑なまま純化が完了して、十分良好な鉄損値が得られた。併せてN化物、S化物も塗布したが、He、Ar、真空雰囲気で焼鈍を行ったところ、鋼中にNやSが拡散進入し、鉄損を劣化させた。一方、H2中で焼鈍したところ、NやSの鋼中への進入は無く、良好な鉄損特性が得られた。   Furthermore, when the oxide of Ti, Nb, Hf, Ta, V, Zr is made into fine powder of 10 μm or less, dissolved in slurry with water, dried, and subjected to purification, the interface between the formed carbide coating and the iron As a result, the purification was completed with a smoothness, and a sufficiently good iron loss value was obtained. In addition, N and S were also applied, but when annealing was performed in He, Ar, and a vacuum atmosphere, N and S diffused into the steel and deteriorated the iron loss. On the other hand, when annealed in H2, there was no entry of N or S into the steel, and good iron loss characteristics were obtained.

ここで、仕上高温焼鈍の温度は、1000℃〜1250℃の範囲で行われ1000℃未満だと純化が不十分であり、1250℃を超えるとエネルギ−的にコストがかかる。   Here, the temperature of the finish high temperature annealing is performed in the range of 1000 ° C. to 1250 ° C., and if it is less than 1000 ° C., purification is insufficient, and if it exceeds 1250 ° C., the energy is expensive.

Si:3.3重量%、Ti:0.21重量%、C:0.08重量%の鋼を連続鋳造し、幅1mのスラブとした後、1270℃でスラブ加熱して2.0mm厚さの熱延板とし、0.22mm厚さまで冷延した。その後、表1の成分を持ち、平均粒径が1〜5μmとなるように調整した粉末を、水100gに対して35gの割合で混合し、ホモジナイザーで30分攪拌して均一なスラリーとした後、ゴムロールからなるロールコーターで塗布して内径500mmのタイトコイルに巻き取った。このコイル状試料を箱焼鈍炉に装填し、ガス加熱によって50℃/hrの昇温速度で1200℃まで加熱し、その後15時間保定した。この様な実験を、(i)H2中、(ii)Ar中、(iii)1/20気圧としたAr中の3種類の雰囲気で行った。この時の鉄損の結果を表2に示す。 After continuously casting a steel of Si: 3.3 wt%, Ti: 0.21 wt%, C: 0.08 wt% to form a slab having a width of 1 m, the slab is heated at 1270 ° C. to a thickness of 2.0 mm. And cold-rolled to a thickness of 0.22 mm. Thereafter, the powder having the components shown in Table 1 and adjusted to have an average particle size of 1 to 5 μm was mixed at a rate of 35 g with respect to 100 g of water, and stirred for 30 minutes with a homogenizer to obtain a uniform slurry. It was coated with a roll coater made of a rubber roll and wound up on a tight coil having an inner diameter of 500 mm. This coiled sample was loaded into a box annealing furnace, heated to 1200 ° C. at a heating rate of 50 ° C./hr by gas heating, and then maintained for 15 hours. Such experiments were performed in three atmospheres in Ar: (i) H2, (ii) Ar, (iii) 1/20 atm. The results of iron loss at this time are shown in Table 2 .

Figure 0004648797
Figure 0004648797

Figure 0004648797
Figure 0004648797

水素中焼鈍の場合は、Zr、Ta、Nb、Hfの化合物を含まないlの条件以外は全て良好な鉄損値が得られている。 In the case of annealing in hydrogen, good iron loss values are obtained except for the condition of l which does not include the compounds of Zr, Ta, Nb and Hf .

(a)はTi:75%、Fe:25%合金をコーティング後純化焼鈍した場合の鋼板表面の被膜−地鉄界面性状のGDS解析結果を示す図、(b)は純Tiをコーティング後純化焼鈍した場合の鋼板表面の被膜−地鉄界面性状のGDS解析結果を示す図、(c)はコーティングせずに乾燥中高温長時間焼鈍で安定な被膜を形成した場合の鋼板表面の被膜−地鉄界面性状のGDS解析結果を示す図である。(A) is a figure which shows the GDS analysis result of the coating-base metal interface property of the steel plate surface at the time of refined annealing after coating Ti: 75% and Fe: 25% alloy, (b) is purified annealing after coating pure Ti The figure which shows the GDS analysis result of the coating film-steel interface property of the steel plate surface in the case of carrying out, (c) is the coating film of the steel plate surface-iron in the case where a stable coating film is formed by annealing at high temperature and long time during drying without coating. It is a figure which shows the GDS analysis result of an interface property.

Claims (1)

質量%で、Si:2%〜4.5%、Ti:0.1%〜0.4%、C:0.035%〜0.1%、を含み、残部Fe及び不可避的不純物からなる鋼を、鋳造し、熱延し、冷延して製品板厚とした後、鋼板表面にNb,Hf,Ta,Zrの1種または2種以上の酸化物、窒化物または硫化物の合計で50%以上含む酸化物、窒化物または硫化物を塗布または付着させ、次いで仕上高温焼鈍を施すことを特徴とする方向性電磁鋼板の製造方法。 Steel comprising, by mass%, Si: 2% to 4.5%, Ti: 0.1% to 0.4%, C: 0.035% to 0.1%, the balance being Fe and inevitable impurities Is cast, hot-rolled, cold-rolled to obtain a product plate thickness, and a total of 50 oxides, nitrides or sulfides of one or more of Nb, Hf, Ta, and Zr on the steel plate surface. A method for producing a grain-oriented electrical steel sheet, comprising applying or adhering an oxide, nitride or sulfide containing at least 50% , followed by finish high temperature annealing.
JP2005235821A 2005-08-16 2005-08-16 Method for producing grain-oriented electrical steel sheet with excellent coating adhesion Active JP4648797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235821A JP4648797B2 (en) 2005-08-16 2005-08-16 Method for producing grain-oriented electrical steel sheet with excellent coating adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235821A JP4648797B2 (en) 2005-08-16 2005-08-16 Method for producing grain-oriented electrical steel sheet with excellent coating adhesion

Publications (2)

Publication Number Publication Date
JP2007051316A JP2007051316A (en) 2007-03-01
JP4648797B2 true JP4648797B2 (en) 2011-03-09

Family

ID=37915958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235821A Active JP4648797B2 (en) 2005-08-16 2005-08-16 Method for producing grain-oriented electrical steel sheet with excellent coating adhesion

Country Status (1)

Country Link
JP (1) JP4648797B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176855A1 (en) * 2022-03-14 2023-09-21 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819391B2 (en) * 1976-05-14 1983-04-18 クレツネル・ヴエルケ・アクチエンゲゼルシヤフト Composite material manufacturing method
JP2001098331A (en) * 1999-09-28 2001-04-10 Sumitomo Metal Ind Ltd Method of producing {100} texture silicon steel sheet
WO2003087420A1 (en) * 2002-03-28 2003-10-23 Nippon Steel Corporation Directional hot rolled magnetic steel sheet or strip with extremely high adherence to coating and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819391B2 (en) * 1976-05-14 1983-04-18 クレツネル・ヴエルケ・アクチエンゲゼルシヤフト Composite material manufacturing method
JP2001098331A (en) * 1999-09-28 2001-04-10 Sumitomo Metal Ind Ltd Method of producing {100} texture silicon steel sheet
WO2003087420A1 (en) * 2002-03-28 2003-10-23 Nippon Steel Corporation Directional hot rolled magnetic steel sheet or strip with extremely high adherence to coating and process for producing the same

Also Published As

Publication number Publication date
JP2007051316A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
KR101963990B1 (en) Grain-oriented electrical steel sheet and method of manufacturing same
JP6461798B2 (en) Manufacturing method of high magnetic flux density general-purpose directional silicon steel
JP4369536B2 (en) Manufacturing method of unidirectional electrical steel sheet
KR930001330B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
US20210130937A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP2014508858A (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JPWO2003087420A1 (en) Oriented electrical steel sheet with excellent film adhesion and method for producing the same
JP4598624B2 (en) Oriented electrical steel sheet with excellent film adhesion and method for producing the same
JP5008949B2 (en) Method for producing grain-oriented electrical steel sheets with excellent productivity
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JP4648797B2 (en) Method for producing grain-oriented electrical steel sheet with excellent coating adhesion
KR930011404B1 (en) Process for manufacturing double oriented electrical steel having high magnetic flux density
JP4119634B2 (en) Method for producing mirror-oriented electrical steel sheet with good iron loss
CN111566250B (en) Oriented electrical steel sheet and method for manufacturing the same
JP2021080501A (en) Non-oriented magnetic steel sheet
JP4291733B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet using the same
US20070125450A1 (en) High-silicon steel and method of making the same
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
CN113166874B (en) Oriented electrical steel sheet and method for manufacturing the same
CN114867873B (en) Oriented electrical steel sheet and method for manufacturing same
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
KR100940720B1 (en) Method for manufacturing grain oriented electrical steel sheets with excellent magnetic properties
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4648797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350