US3779507A - Means for controlling fluid flow - Google Patents
Means for controlling fluid flow Download PDFInfo
- Publication number
- US3779507A US3779507A US00179510A US3779507DA US3779507A US 3779507 A US3779507 A US 3779507A US 00179510 A US00179510 A US 00179510A US 3779507D A US3779507D A US 3779507DA US 3779507 A US3779507 A US 3779507A
- Authority
- US
- United States
- Prior art keywords
- walls
- clamp
- flattened portion
- tapered
- set forth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/22—Valves or arrangement of valves
- A61M39/28—Clamping means for squeezing flexible tubes, e.g. roller clamps
- A61M39/284—Lever clamps
Definitions
- salinedrips and other medical fluids in hospltal administration sets is in the form of a clamp having jaws engaging a flattened portion of tube, and this flattened portion has a tapered groove or a tapered elongated member between its opposed walls. Movement of the point of action of the clamp along the flattened tube portion varies the rate of flow.
- MEANS FOR CONTROLLING FLUID FLOW This invention relates to means for Controlling the flow of a fluid (primarily a liquid, although the invention may also be used to control gas flow) by means of an adjustable clamp acting on the walls of a flexiblewalled tube.
- Such clamps are used in medical equipment to control the flow of blood or saline fluid or other medical fluid to the body of a patient from a container which is usually suspended above the patient to allow the flow to take place by gravity .under the control of the adjustable clamp. It is necessary to be able to adjust the flow over a range of values, all small, of the order of 400 millilitres and hour down to as little as a millilitre per hour, under a head of about 75 cm.
- Such clamps are widely used, in the form of a ribbed roller movable along a channel-like guide that receives a flexible tube of plastics material, the opposing wall of the guide being inclined at an acute angleto the path of the roller, so that by moving the roller along the guide one can adjust the degree of flattening of the tube.
- a clamp forms the subject of U.S. Pat. specification No. 3,099,429.
- Another proposal on these lines-is shown for example by U.S. Pat. specification No. 1,330,523 and a clamp employinga slide with an inclined surface but no roller is shown in U.S. Pat. specification No. 3,497,175.
- This last-mentioned specification discloses also a straightforward screw type of clamp, another example of which is shown by French Pat; specification No. 1,206,243.
- the primary aim of the present invention is to overcome this drawback and to provide a tube clamp which can be adjusted in small steps and which moreover maintains the flow rate indefinitely at substantially the rate set.
- I now propose means for controlling fluid flow comprising a passageway having opposed flexible walls which are capable of being held in mutual contact throughout their cross-section except for a limited region, this region being of cross-section which varies along the general direction of flow through the passageway, with an externally applied clamp of which opposed jaws hold the walls in contact .over a localised area of limited axial length, the jaws being movable along the direction of flow to other positions, along this direction of flow to alter the position, along this direction of flow, of the said area.
- the region in which the walls are not in mutual contact is formed by a groove in one of thewalls or, better still, mutually aligned grooves in both walls, that define a tapering passage of round or substantially round cross-section.
- this round passage forms a path for the fluid, but upstream and downstream of this area the flexible nature of the walls allows the walls to move apart under even slight pressure, so that the cross-section for flow away from the selected area is large.
- the walls are preferably formed by the opposed walls of an initially round tube of plastics material which has been permanently flattened by a heating and moulding operation.
- a filament preferably a tapering one
- FIG. 1 is a general view of part of a medical fluid administration set, showing the manner in which the clamp according to the invention can be used;
- FIG. 2 is a view, partly sectioned, of a length of tube to which the clamp is applied, but with the clamp omit-
- FIG. 3 is a view perpendicular to that of FIG. 2, showing the clamp in place;
- FIG. 4 is a section through the clamp, to a larger scale
- FIG. 5 is a perspective view of one component of the clamp
- FIGS. 6 and 7 are respectively transverse and longitudinal cross-sections through a die suitable for moulding the tube to receive the clamp;
- FIG. 8 is a perspective view, partly broken away, of an alternative version of the tubeshown in FIG. 2.
- a typical medical administration set for administering fluids such as blood or saline fluid to a patient in hospital, comprises a tube I carrying a hollow needle 2'at -its-upper endfor inserting through a membrane in the cap or wall of an inverted reservoir or container (not shown) holding the fluid to be administered, an air venting branch 3, a filter bag 4, a transparent bag 5 for observing the rate of flow by counting the drops of fluid falling through it, and an outlet tube 6 leading to the patient.
- the clamp according to the invention shown generally at 7, is applied to this outlet tube.
- the tube 6 is made of flexible thermoplastic synthetic resin, such as polyvinyl chloride.
- part of the length of such tubing is permanently flattened, for example by means of a die such as that shown in FIGS. 6 and 7.
- this die comprises two co-operating parts 8 and 9 which do not merely squash the tube flat, which would leave two ends of the oval cross-section still rounded, to leave a passageway of dumb-bell shape, but mould the tube to a rectangular profile with a passageway in the form of a plain slit which, in the rest condition, is of zero crosssectional area.
- the aperture in the die is onlyof exactly the same cross-sectional area as the materal of the tube itself.
- the flattening is performed with the application of sufficient heat to allow the material of the tube to flow and take a permanent set, with substantially no recovery, nearly in the shape shown in FIG. 6.
- the degree of shaping is preferably such that in the free condition, i.e., with zero pressure difference across them, the walls do have a tendency to separate slightly.
- a thin tapered body for example a fine tapered metal needle or uniformly tapered wire, as indicated at 10 in FIG. 6.
- This wire or needle is removed after the moulding operation and leaves in the opposing inner surfaces of the two walls of the flattened portion 11 of the tube a pair of mutually aligned co-operating grooves 12 which taper from a maximum cross-section at one end of the flattened portion 1 1 down to zero before the other end is reached.
- the tapered portion is 1% inches (38 mm) long.
- the needle or tapered wire-l can be made by selective electrolytic etching of an initially uniform wire. As it is very fragile, it can be enclosed in a tube of stainless steel, which is inserted in the plastics tube 6 with the wire inside it. Then the stainless steel tube is carefully withdrawn, leaving the wire 10 inside the plastics tube, which is then placed in the die 8, 9.
- the clamp comprises a pair of co-operating lever members 13 having a mutual pivoting or rocking action so that jaw portions 14 of these lever members grip between them a localised area of the flattened tube 11 with an action not unlike that of a clothes peg.
- the lever members 13 are identical mouldings in synthetic resin, for example a silicon resin or polystyrene.
- lugs 15 that form a rocking hinge. Additional lugs 16 limit the rocking movement so that the opposite ends of the members l3'from the jaw portions 14 cannot themselves close onto the tube and interfere with movment of the clamp along the tube; flanges 17 help to locate the clamp on the tube portion 11, and lugs 18 on the jaw portions 14 keep these ends of the members 13 in alignment.
- the jaw portions 14 of the members 13 are urged together by two resilient loops 19 encircling these portions and located in suitable grooves formed in the external faces of these portions.
- the loops are conveniently ordinary rubber bands and there are two of them so that failure of one will not result in total failure of the clamp.
- the co-operating inner faces of the jaw portions 14 are flat and, to ensure that they engage the tube 11 squarely, i.e., so that they are truly parallel, the shape and position of the hinge lugs 15 are such that these lugs are out of mutual contact in the rest position of the clamp. They only come into engagement when the serrated finger-engaging ends 20 of the members 13 are manually squeezed together to open the clamp. Thus the jaws 14 are truly parallel, independently of slight variations in the thickness of the tube 11.
- the rate of flow through the tube is controlled by the smallest crosssectional area of the grooves 12 in that area of the tube which is gripped by the jaw portions 14. Upstream and downstream of this area (subject to the comment below) the walls of the tube are free to move apart under the pressure of the fluid to provide a relatively large cross-sectional area.
- the tapered passage formed by the grooves 12 is larger or smaller one can increase or decrease the rate of flow of the fluid, and by moving the clamp to the area beyond the small end of the grooves 12 one can cut off flow altogether.
- FIGS. 2 and 3 I can form a partially flattened portion 21 on the tube to provide clearance for the ends 20 of the clamp when the clamp is at this end of the portion 11.
- the device according to the invention is preferably formed in a separate short length of tube, which can then be of slightly harder material than the normal polyvinyl chloride forming the remainder of the tube 6. It can be joined to the remainder by short internal sleeves as indicated at 6a in FIG. 2.
- the flattned portion 11 may have markings on it, for example transverse lines, to enable the user to move the clamp rapidly to a known position to set the flow to a required value.
- the clamp may be held in place by adhesive tape binding one of the ends 20 to the tube. Where it is desired to allow maximum flow without the restriction imposed by the clamp 7, the clamp can be held open by a resilient sleeve which is slipped over the ends 20 to hold the jaws open. This sleeve can be permanently on the tube, normally just clear of the end position of the clamp 7.
- the ends 20 may have projections (not shown) to be engaged by the sleeve.
- the grooves 12 are omitted altogether and in place of them there is a longitudinally extending tapered wire or filament 22 placed between the walls of the flattened por' tion 11. Flow takes place in the roughly triangular spaces that are left between the walls immediately on each side of the filament. As before, the flow is controlled by moving the clamp longitudinally.
- This version is however less satisfactory as the rate of flow may be influenced by the pressure applied by the jaws, this pressure being a somewhat indeterminate quantity.
- the form of the clamp may be different from that shown, the only essential thing being that it acts only on a area of the tube walls of limited longitudinal extent.
- a jaw formed by a flat stationary plate forming a backing or anvil lying on one side of the flattened portion and extending the full axial length.
- the other side of the flattened portion is engaged by a bar, forming the other jaw, which is slidable in guides associated with the anvil.
- a bar there could be a roller, not unlike that of US. Pat. specification No. 3,099,429, except that its spacing from the anvil would remain constant,
- Means for controlling fluid flow comprising a hollow tubular body, a longitudinally extending flattened portion in said body, said flattened portion having two opposed flexible walls capable of being brought into mutual contact, a clamp, said clamp having opposed jaws capable of engaging externally said walls over a longitudinally limited region thereof whereby to bring said walls forcibly into contact only over said region, the unclamped portions of said opposed walls being capablepof flexing outwardly under fluid pressure to define between them a fluid duct of relatively large crosssectional area if not already flexed outwardly by their own innate resilience to define such a duct, longitudinally extending tapered means disposed between said opposed walls to define a fluid passage therebetween even when said walls are in mutual contact, the crosssectional area of said passage varying longitudinally by virtue of the taper of said tapered means, and the re gion of engagement of said jaws on said flattened portion being movable longitudinally of said flattened portion.
- tapered means comprise surfaces defining a longitudi nally extending tapered groove in the inner surface of at least one said walls.
- tapered means comprise a tapered elongated member extending longitudinally between said walls and serving to keep said walls apart locally against the action of said clamp.
- said clamp comprises first and second lever members, asid lever members lying on opposite sides of said flattened portion, means defining a rocking hinged connection between said lever members, and resilient means urging one pair of adjacent ends of said lever members together, said ends defining said jaws and clamping said flattened portion therebetween.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Devices For Use In Laboratory Experiments (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB4351370 | 1970-09-11 | ||
GB1093471*[A GB1361405A (en) | 1970-09-11 | 1971-04-23 | Means for controlling fluid flow |
Publications (1)
Publication Number | Publication Date |
---|---|
US3779507A true US3779507A (en) | 1973-12-18 |
Family
ID=26247868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00179510A Expired - Lifetime US3779507A (en) | 1970-09-11 | 1971-09-10 | Means for controlling fluid flow |
Country Status (6)
Country | Link |
---|---|
US (1) | US3779507A (enrdf_load_html_response) |
JP (1) | JPS5343750Y2 (enrdf_load_html_response) |
CA (1) | CA943119A (enrdf_load_html_response) |
DE (2) | DE2145410A1 (enrdf_load_html_response) |
FR (1) | FR2107505A5 (enrdf_load_html_response) |
GB (1) | GB1361405A (enrdf_load_html_response) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2601581A1 (de) * | 1975-01-17 | 1976-07-22 | Ellis Whiteside Clarke | Stroemungsmitteldurchsatzeinstellvorrichtung |
US4065093A (en) * | 1976-05-24 | 1977-12-27 | Baxter Travenol Laboratories, Inc. | Flow control device |
US4087301A (en) * | 1975-08-22 | 1978-05-02 | Avon Medicals Limited | Method of forming a flow restrictor |
US4114640A (en) * | 1977-01-10 | 1978-09-19 | Will Ross Inc. | Drain valve |
US4588160A (en) * | 1985-03-27 | 1986-05-13 | Sherwood Medical Company | Tube clamping device |
US20060081797A1 (en) * | 2004-10-18 | 2006-04-20 | Z-Man Corporation | Pinch clamp |
US20070119809A1 (en) * | 2005-11-29 | 2007-05-31 | Taiwan Vertex Production Corp. | Mouthpiece assembly for water bottles |
US20070167922A1 (en) * | 2004-06-17 | 2007-07-19 | Hammersmith Hospital's Nhs Trust | Cannula components |
US20160007901A1 (en) * | 2013-03-04 | 2016-01-14 | Andromeda Medizinische Systeme Gmbh | Device Fore Regulating A Volumetric Flow Rate |
US20160213565A1 (en) * | 2015-01-23 | 2016-07-28 | Aesynt Incorporated | Fluid Container with Fluid Identification Sensor and Method |
US10161533B2 (en) * | 2016-05-09 | 2018-12-25 | Picobrew, Inc. | Bi-stable electrically actuated valve |
US10863839B1 (en) | 2018-07-21 | 2020-12-15 | Edward Conrad, Jr. | Protective cover for pop-up straw |
US11627901B2 (en) | 2013-03-04 | 2023-04-18 | Medical Measurement Systems B.V. | Device for measuring pressure in a fluid |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6246418Y2 (enrdf_load_html_response) * | 1985-04-12 | 1987-12-15 | ||
JP3013242U (ja) * | 1994-12-28 | 1995-07-11 | 有限会社オーエムクリエイティブ | クリップ |
CN116877631A (zh) * | 2023-06-29 | 2023-10-13 | 济南本安科技发展有限公司 | 一种具有抗震、抗摔功能的报警器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US113016A (en) * | 1871-03-28 | Improvement in regulating clasps for elastic tubes | ||
US2969064A (en) * | 1957-03-26 | 1961-01-24 | Baxter Laboratories Inc | Drinking tube device |
US3610566A (en) * | 1969-09-19 | 1971-10-05 | Illinois Tool Works | Rocker clamp for flexible tubing |
US3625472A (en) * | 1969-09-19 | 1971-12-07 | Illinois Tool Works | Roller clamp for flexible tubing |
-
1971
- 1971-04-23 GB GB1093471*[A patent/GB1361405A/en not_active Expired
- 1971-09-10 DE DE19712145410 patent/DE2145410A1/de active Pending
- 1971-09-10 FR FR7132657A patent/FR2107505A5/fr not_active Expired
- 1971-09-10 US US00179510A patent/US3779507A/en not_active Expired - Lifetime
- 1971-09-10 DE DE19717134567U patent/DE7134567U/de not_active Expired
- 1971-09-10 CA CA122,556A patent/CA943119A/en not_active Expired
- 1971-09-11 JP JP1971083081U patent/JPS5343750Y2/ja not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US113016A (en) * | 1871-03-28 | Improvement in regulating clasps for elastic tubes | ||
US2969064A (en) * | 1957-03-26 | 1961-01-24 | Baxter Laboratories Inc | Drinking tube device |
US3610566A (en) * | 1969-09-19 | 1971-10-05 | Illinois Tool Works | Rocker clamp for flexible tubing |
US3625472A (en) * | 1969-09-19 | 1971-12-07 | Illinois Tool Works | Roller clamp for flexible tubing |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4066238A (en) * | 1975-01-17 | 1978-01-03 | Ellis Whiteside Clarke | Means for controlling fluid flow |
DE2601581A1 (de) * | 1975-01-17 | 1976-07-22 | Ellis Whiteside Clarke | Stroemungsmitteldurchsatzeinstellvorrichtung |
US4087301A (en) * | 1975-08-22 | 1978-05-02 | Avon Medicals Limited | Method of forming a flow restrictor |
US4065093A (en) * | 1976-05-24 | 1977-12-27 | Baxter Travenol Laboratories, Inc. | Flow control device |
US4114640A (en) * | 1977-01-10 | 1978-09-19 | Will Ross Inc. | Drain valve |
US4588160A (en) * | 1985-03-27 | 1986-05-13 | Sherwood Medical Company | Tube clamping device |
US20070167922A1 (en) * | 2004-06-17 | 2007-07-19 | Hammersmith Hospital's Nhs Trust | Cannula components |
US20070252096A1 (en) * | 2004-10-18 | 2007-11-01 | Zerfas Gerald B | Pinch clamp |
US7234677B2 (en) | 2004-10-18 | 2007-06-26 | Z-Man Corporation | Pinch clamp |
US20060081797A1 (en) * | 2004-10-18 | 2006-04-20 | Z-Man Corporation | Pinch clamp |
US8485495B2 (en) | 2004-10-18 | 2013-07-16 | Z-Man Corporation | Pinch clamp |
US20070119809A1 (en) * | 2005-11-29 | 2007-05-31 | Taiwan Vertex Production Corp. | Mouthpiece assembly for water bottles |
CN105263543B (zh) * | 2013-03-04 | 2019-04-05 | 安多美达医疗系统有限公司 | 用于调节体积流量的设备 |
CN105263543A (zh) * | 2013-03-04 | 2016-01-20 | 安多美达医疗系统有限公司 | 用于调节体积流量的设备 |
US20160007901A1 (en) * | 2013-03-04 | 2016-01-14 | Andromeda Medizinische Systeme Gmbh | Device Fore Regulating A Volumetric Flow Rate |
US10863941B2 (en) * | 2013-03-04 | 2020-12-15 | Medical Measurement Systems B.V. | Device for regulating a volumetric flow |
US11627901B2 (en) | 2013-03-04 | 2023-04-18 | Medical Measurement Systems B.V. | Device for measuring pressure in a fluid |
US20160213565A1 (en) * | 2015-01-23 | 2016-07-28 | Aesynt Incorporated | Fluid Container with Fluid Identification Sensor and Method |
US9606037B2 (en) * | 2015-01-23 | 2017-03-28 | Aesynt Incorporated | Fluid container with fluid identification sensor and method |
US10161533B2 (en) * | 2016-05-09 | 2018-12-25 | Picobrew, Inc. | Bi-stable electrically actuated valve |
US10863839B1 (en) | 2018-07-21 | 2020-12-15 | Edward Conrad, Jr. | Protective cover for pop-up straw |
Also Published As
Publication number | Publication date |
---|---|
DE7134567U (de) | 1972-05-18 |
GB1361405A (en) | 1974-07-24 |
CA943119A (en) | 1974-03-05 |
FR2107505A5 (enrdf_load_html_response) | 1972-05-05 |
JPS5343750Y2 (enrdf_load_html_response) | 1978-10-20 |
JPS47158U (enrdf_load_html_response) | 1972-04-20 |
DE2145410A1 (de) | 1972-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3779507A (en) | Means for controlling fluid flow | |
US3960149A (en) | Flow control device | |
US2889848A (en) | Flow control clamp | |
US4406440A (en) | Flow regulating device | |
US3893468A (en) | Clamp for flexible tube and method of regulating flow in such tube | |
US3624800A (en) | Fluid flow control means | |
US4406042A (en) | Tubing clip | |
US5704584A (en) | Pinch clip occluder for infusion sets | |
JPH0316570A (ja) | ローラクランプ | |
US3189038A (en) | Variable flow clamp for flexible tubing | |
US4382453A (en) | Flow ristrictor for flexible tubing | |
US3949744A (en) | Apparatus for the administration of liquids | |
US3918675A (en) | Flow regulating device particularly for infusion and transfusion tubes | |
US4223671A (en) | Endotracheal tube stabilizer | |
US3584830A (en) | Clamp for resilient tubing | |
US4238108A (en) | Flow control device | |
WO1981002770A1 (en) | Flow regulating device | |
US4869457A (en) | Arrangement for controlling and regulating a liquid flowing through a line | |
US4285492A (en) | Flow control device | |
US4121622A (en) | Multitube valve | |
US4856755A (en) | Flow control | |
DE102012112097A1 (de) | Druckausgleichsvorrichtung | |
US3061263A (en) | Clamping device | |
US4475709A (en) | Intravenous tubing clamping device | |
US4340201A (en) | Intravenous tubing clamping device |