US3775157A - Metal coated structure - Google Patents

Metal coated structure Download PDF

Info

Publication number
US3775157A
US3775157A US3775157DA US3775157A US 3775157 A US3775157 A US 3775157A US 3775157D A US3775157D A US 3775157DA US 3775157 A US3775157 A US 3775157A
Authority
US
United States
Prior art keywords
metal
layer
actinic
metal layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
H Fromson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fromson H A
Original Assignee
Fromson H A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fromson H A filed Critical Fromson H A
Application granted granted Critical
Publication of US3775157A publication Critical patent/US3775157A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/016Diazonium salts or compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching
    • H05K3/046Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by selective transfer or selective detachment of a conductive layer
    • H05K3/048Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by selective transfer or selective detachment of a conductive layer using a lift-off resist pattern or a release layer pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0347Overplating, e.g. for reinforcing conductors or bumps; Plating over filled vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0525Patterning by phototackifying or by photopatterning adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/072Electroless plating, e.g. finish plating or initial plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0023Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/146By vapour deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12986Adjacent functionally defined components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • a metal coated structure includes a Fleld of Search 117/7l 71 substrate, an actinic-sensitive coating thereon which 204/38 38 38 B becomes adherent upon exposure to actinic radiation and a thin metal coating over the actinic-sensitive [56] Refe enc Cited coating which will transmit actinic radiation for ren- UNITED STATES PATENTS dering the actinic-sensitive coating adherent to the 3,361,842 H1968 Applegath et al 260/837 R Substrate and the metal coating- After expcsure 3,30s,004 3/1967 Rouault 117/71 R x tinic radiation, the adhered metal coating is useful p 3.6l5,442 10/1971 Geris et al.
  • This invention relates to vacuum deposited metal coatings characterized by excellent adhesion to the substrate coated. Moreover, this invention relates to post-adhering vacuum deposited metal coatings using actinic radiation by a technique herein termed photogluing.
  • Vacuum deposited metal coatings have been widely used to provide shaped articles made from plastic for example with metal finishes.
  • the technique of so-called vacuum metallizing has thus been used extensively to make interior automobile parts molded from plastic appear to be made from more expensive metal.
  • Bright chrome and aluminum finishes have been extensively used in this and other applications.
  • Etching pretreatments have also been used to improve adhesion but these often involve as much as five or six separate treatment steps which unduly adds to the cost of vacuum metallizing.
  • the present invention provides a post-coating technique for obtaining excellent adhesion of vacuum metallized coatings. Not only is adhesion greatly improved but also the avenue opened for fabricating further structures using widely practiced metal deposition techniques.
  • the metal coated structure of the invention broadly comprises (a) a substrate; (b) an actinic-sensitive coating on said substrate which becomes adherent upon'exposure to actinic radiation and (c) a metal layer over said actinic-sensitive material which will transmit actinic radiation for rendering the actinic-sensitive coating adherent to the substrate and the metal coating.
  • the metal layer can have applied thereto a layer of electroless deposited metal after exposure of the actinic-sensitive layer through the metal coating. Following this, the structure may be electroplated over the electroless metal layer.
  • the process of this invention comprises coating a substrate having an actinic-sensitive layer thereon with a preferably vacuum deposited metal layer which will transmit actinic radiation for rendering the actinicsensitive layer adherent to the substrate and the metal coating.
  • the process of the invention also embodies the additional steps of depositing an electroless metal layer on the metal layer and electroplating over theelectroless deposited metal.
  • substrate 10 is shown having an unexposed light-sensitive layer 12 thereon over which is applied a preferred vacuum deposited metal layer 14.
  • FIG. 2 the structure of FIG. 1 is shown positioned below a source 20 of actinic radiation which passes through layer 14 to layer 12 thereby rendering same adherent to substrate 10 and layer 14.
  • FIG. 3 a layer of electroless deposited metal is shown applied to the layer 14.
  • FIG. 4 the structure of FIG. 3 is shown with an electroplated layer 50 over the electroless layer 40.
  • the substrate may be virtually any shaped or flat article such as a sheet or a laminate which may be rigid or flexible with varying thicknesses.
  • the substrate may be a synthetic resin, plastic film or sheet, metallic sheets or foils or papers and textiles formed from natural or synthetic fibers or filaments.
  • the light-sensitive layer or coating used in the structure of this invention must become strongly adherent to both the substrate and the metal layer upon exposure and may be formed from a host of photochemical materials known in the art.
  • Such light-sensitive materials include dichromated colloids, such as those based on organic colloids, gelatin, process glue, albumens, caseins, natural gums, starch and its derivatives, synthetic resins, such as polyvinyl alcohol and the like; unsaturated compounds such as those based on cinnamic acid and its derivatives, chalcone type compounds, stilbene compounds and the like; and photopolymerizable compositions, a wide variety of polymers including vinyl polymers and copolymers such as polyvinyl alcohol, polyvinyl acetals, polyvinyl acetate vinyl sorbate, polyvinyl ester acetal, polyvinyl pyrrolidone, polyvinyl butyrol, halogenated polyvinyl alcohol; cellulose based polymers such as cellulose-acetate
  • polyethylene glycols and the like.
  • Such compositions utilize as initiators carbonyl compounds, organic sulphur compounds, peroxides, redox systems, azo and diazo compounds, halogen compounds and the like.
  • photochemical materials including their chemistry and uses are discussed in ,detail in a text entitled Light-Sensitive Systems, Jaromir Kosar, John Wiley and Sons, Inc., New York, 1965. Diazo resins are particularly preferred.
  • photochemicals are often used in the printing plate art where negative working, lightsensitive materials are applied or coated onto a suitable support or substrate and are of such a nature that before exposure to actinic radiation they are soluble in a particular solvent (usually water). When exposed to actinic radiation, however, the material becomes insoluble in the solvent.
  • solvent usually water
  • Other positive working light-sensitive materials function just the opposite, that is, they are insoluble and become soluble upon exposure to actinic radiation.
  • the criteria for the present invention is not based on relative solubility but on the ability of the photochemical material to become adherent to both the substrate be it hydrophilic, oleophilic or ampholic and the vacuum deposited metal layer upon exposure to actinic radiation.
  • the thickness of the layer 14 may range from a layer which is atomic in dimension, that is 1 molecule thick up to a thickness of about 1.5 microns.
  • the layer 14 preferably has a thickness of from about 2,000 to about 15,000 Angstroms and more preferably from about 4,000 to about 10,000 Angstroms.
  • the thickness of the layer 14 can also be expressed as a function of the wave length of the actinic radiation utilized to expose the light-sensitive layer 12. It has been found that generally the thickness of the layer 14 should not be greater than about times the wave length of the actinic radiation and preferably not greater than 5 times the wave length.
  • actinic radiation is that which will initiate a photochemical reaction and includes x-rays, infrared, visible light and ultraviolet light. Generally, speaking an intense source of visible and/or ultraviolet light is used.
  • the thickness of the layer 14 must be such that it is capable of transmitting actinic radiation to the lightsensitive coating.
  • the layer 14 is deposited in thicknesses within the ranges specified above such that there is at least 5 percent and preferably at least 30 percent transparency so as to transmit actinic radiation to the underlying light-sensitive layer.
  • the layer 14 according to this invention may be vacuum depositable metal elected from the group of the metals of Groups I B, 11 B, Ill A, IV A, VI B, VII, of the Periodic Chart. Two or more metals may be used in combination to form the protective coating. Examples of preferred metals include chromium, copper, aluminum, gold, gold alloys, silver, zinc, platinum, iron, cobalt and nickel.
  • the metal layer 14 has been referred herein as vacuum coated which is the preferred deposition technique.
  • metal layer 14 can be applied or deposited using coating techniques which result in uniform deposition of the metal on the light-sensitive layer and which will not adversely affect the light sensitive layer such as by premature exposure. Suitable coating techniques include vacuum coating, sputtering, ion plating, gas plating, and metallized coatings produced by spray metal techniques.
  • the preferred coating technique is vacuum coating.
  • vacuum coating metal particles are deposited by vacuum distillation over the light-sensitive layer to form the metal layer.
  • the substrate with the lightsensitive layer thereon is placed in a coating chamber which is evacuated to eliminate molecular interference between the source of the coating material and the surface to be coated.
  • Readily high vacuum pumps or diffusion pumps may be, used to evacuate the coating chamber.
  • the metal is heated intensely, for example, by resistance, induction or electron beam methods, so that it vaporizes and travels from the course to the substrate with the light-sensitive coating thereon.
  • the high vacuum facilitates evaporation of the metal and the absence of air in the coating chamber permits the vaporized metal to travel directly to the relatively cool coated substrate where it condenses to form a layer having a thickness in the range mentioned above.
  • Processes for vacuum coating are well known as disclosed for example in U.S. Pat. Nos. 2,206,020; 2,562,182; 2,622,041; 2,635,579; 2,643,201;
  • Metals readily deposited by vacuum coating normally have a deposition constant of at least 5 X 10' grams per square centimeter per second at 1 micron pressure (absolute).
  • Metals especially suited for vacuum coating include aluminum, silver, gold, lead, zinc, chromium, nickel, copper, tin, iron, platinum and the like.
  • vacuum coated articles are useful per se especially where scratch and abrasion resistance is improved as in the present invention, in many instances it is desirable to further reinforce the vacuum coated structure. This can be done by using conventional electrodeposition techniques to deposit further metal coatings over the vacuum metal layer after exposure of the light-sensitive layer therethrough.
  • An especially suitable electrodeposition technique as referred to is electroless plating and is desirable since the initial vacuum metal layer need only be thick enough for the electroless deposited metal to bridge molecules in the layer.
  • electroless plating techniques are well-known and widely practiced in the art.
  • vacuum metal layers according to the invention formed from copper, aluminum, nickel, gold, molybdenum, iron, tin, and platinum will catalyze the electroless chemical reduction deposition of copper, nickel, cobalt, lead, platinum, iron, silver, aluminum, gold, palladium, and magnesium among others.
  • Protective layers formed from cobalt, nickel and iron will also catalyze the deposition of chromium.
  • a preferred metal for electroless deposition is copper which can be accomplished by immersing the structure shown in FIG. 2, for example, in an electroless copper bath containing copper salt, complexing agents to keep the copper in solution and a reducing agent.
  • the electroless clad structure of the present invention is shown in FIG. 3, for example.
  • the structure shown in FIG. 3 may also be utilized to fabricate further structures. This can be accomplished by electroplating the electroless metal layer 40 with layer 50. Electroplating can be carried out using conventional techniques such as set forth in Kirk-Othmer Encyclopedia of Chemical Technology, 2nd Edition, Interscience Publishers, New York, 1965, Vol. 8, pages 36-74.
  • the present invention finds particular application in the making of shaped and flat articles from metal, glass, plastic, composites and the like having a metal finish for use as automotive trim, both interior and exterior, machine parts, decorative trim and plaques and the like. Also and very importantly, the present invention makes it possible to replace relatively heavy and expensive core" materials with cheaper (e.g. plastic for metal), lighter and in many cases stronger or more resilient materials which can be readily metal clad to retain the desirable properties of the metal exterior. Examples are precious metal figures, jewelery and machine parts and more common articles such as automotive bumpers, rails and the like.
  • Metal layers according to the present invention are vacuum deposited using a bell jar coater in which a single sample is exposed to a resistance heated vapor source while under vacuum.
  • the sample to be coated is held against a plate at distances ranging between about and inches depending on the metal being vacuum coated.
  • a resistance heated tungsten wire or a molybdenum strip formed into a boat shape so as to contain the material to be evaporated is utilized.
  • a moveable baffle is interposed to allow the material being deposited to attain the proper vaporizing temperature prior to exposure and to time the length of the vacuum coating.
  • the baffle prevents the deposition of powdery or non-adherent coatings which can occur before full vaporizing temperature is reached.
  • the bell jar coater is also provided with sight ports to permit measurements of the vapor source temperature and observation of the melt source itself during the coating operation.
  • an extruded polyethylene sheet is sensitized with a diazo resin and taped to the plate in a darkened room.
  • a small glass slide strip alongside permits ready measurement of the vacuum deposited coating. Care must be taken to keep the sheet shielded from light while placing it in the bell jar coater.
  • the vacuum pump is started and after a vacuum of about 0.1 .1. is achieved the heat is turned on to melt the metal to be vacuum deposited. When the melt reaches the proper vaporizing temperature, the shutter is opened for a period of time sufficient to deposit a coating of the thickness desired.
  • PHOTOGLUING PROCEDURE Vacuum coated, presensitized polyethylene diazo resin sheets are exposed to a source of UV light to ren' der the diazo resin adherent to both the polyethylene sheet and the vacuum metal layer. Scratch and abrasion resistance is then tested by dragging a weighted point across the vacuum metal layer. If no metal is removed the specimen is marked as passing the test and, if metal is removed, the specimen is marked as failing the test. Adhesion is tested by applying a pressure sensitive adhesive tape to the vacuum metal layer and then rapidly stripping it off at a right angle by hand. A pass or fail is noted as in the scratch and abrasion resistance test.
  • the vacuum metal coatings in Examples 1-8 were approximately 45 to percent transparent.
  • EXAMPLES 9-11 The specimens prepared in Examples 1 and 5 and 6 are each electroless plated with copper after being exposed to UV using a plating bath containing copper sulfate and a reducing agent for the copper. Excellent coatings are obtained.
  • EXAMPLE 12 An electroless plated sheets prepared according to Examples 91 1 is electroplated with copper using conventional techniques. Excellent quality coatings are obtained.
  • Metal coated structure comprising a. a substrate
  • an actinic-sensitive photochemical coating on said substrate which becomes adherent upon exposure to actinic radiation; and c. a metal layer over said actinic-sensitive coating which will transmit actinic radiation to initiate a photochemical reaction in the actinic-sensitive coating thereby rendering same adherent to the substrate and the metal layer.
  • metal layer is selected from the group of copper, gold, alloys of copper and gold, silver, aluminum, zinc, nickel and chromium.
  • Process for making a metal coated structure which comprises coating a substrate having an actinicsensitive photochemical layer thereon with a metal layer which will transmit actinic radiation to initiate a photochemical reaction in the actinic-sensitive layer thereby rendering same adherent to the substrate and the metal coating.
  • Process of claim 14 which includes the step of electroplating a metal layer to the electroless deposited metal layer.

Abstract

A metal coated structure is disclosed and includes a substrate, an actinic-sensitive coating thereon which becomes adherent upon exposure to actinic radiation and a thin metal coating over the actinic-sensitive coating which will transmit actinic radiation for rendering the actinic-sensitive coating adherent to the substrate and the metal coating. After exposure to actinic radiation, the adhered metal coating is useful per se or provides a basis for further metal coatings such as electroless and electrolytic deposited metal coatings.

Description

United States Patent 1191 Fromson Nov. 27, 1973 [54] METAL COATED STRUCTURE 3,267,007 8/1966 Sloan 117/71 R x Inventor: Reward Fromson, l5 Rogues FOREIGN PATENTS OR APPLICATIONS Rldge Weston C(mn' 06880 1,024,943 4/1966 Great Britain 117/71 R [22] Filed: Sept. 24, 1971 Primary Examiner-Ralph S. Kendall 21 A l.N..l3482 1 pp 0 8 Attorney-Burgess, Dinklage & Sprung [52] US. Cl. 117/71 R, 117/93.3, 117/933 T,
117/107, 204/38 B [57] ABSTRACT ll}!- Cl. A metal coated structure is disclosed and includes a Fleld of Search 117/7l 71 substrate, an actinic-sensitive coating thereon which 204/38 38 38 B becomes adherent upon exposure to actinic radiation and a thin metal coating over the actinic-sensitive [56] Refe enc Cited coating which will transmit actinic radiation for ren- UNITED STATES PATENTS dering the actinic-sensitive coating adherent to the 3,361,842 H1968 Applegath et al 260/837 R Substrate and the metal coating- After expcsure 3,30s,004 3/1967 Rouault 117/71 R x tinic radiation, the adhered metal coating is useful p 3.6l5,442 10/1971 Geris et al. se or provides a basis for further metal coatings such 3,562,005 2/1971 DeAngelo etal... as electroless and electrolytic deposited metal coat- 3,528,893 9/1970 Christie et al ings 2,907,678 l0/l959 Bodmer et al. 2,917,439 12/1959 Liu ll7/7l R X 15 Claims, 4 Drawing Figures t/vAcu'uM DEPQSlTED METAL LAYER l2 ACTlNlC SENSITIVE LAYER t SUBSTRATE PATENTEDHUV27 1973 3.775157 FIG. I.
/VACUUM DEPOSITED METAL LAYER \MIWMSH6WWILMER m -I'SUBSTRATE 2\ \I'EXPOSHDADHERENTLAYER LAYER OF ELEC TROLESS .DEPOSITED METAL EL ECTROPLATED LAYER INVENTOR BY HOWARD A. FROMSON BURGESS. DINKLAGE & SPRUNG ATTORNEYS METAL COATED STRUCTURE BACKGROUND This invention relates to vacuum deposited metal coatings characterized by excellent adhesion to the substrate coated. Moreover, this invention relates to post-adhering vacuum deposited metal coatings using actinic radiation by a technique herein termed photogluing.
Vacuum deposited metal coatings have been widely used to provide shaped articles made from plastic for example with metal finishes. The technique of so-called vacuum metallizing has thus been used extensively to make interior automobile parts molded from plastic appear to be made from more expensive metal. Bright chrome and aluminum finishes have been extensively used in this and other applications.
A major problem associated with vacuum metallizing which has seriously limited its usefulness in other than decorative applications has been the generally poor adhesion of the metal coating to the substrate coated. Thus, coated articles readily scratch and mar exposing the substrate. Base and top coats have been used but increase the time and cost of vacuum metallizing. Moreover, top coats render the metal coating passive to further metallizing such as by electroless plating.
Etching pretreatments have also been used to improve adhesion but these often involve as much as five or six separate treatment steps which unduly adds to the cost of vacuum metallizing.
The present invention provides a post-coating technique for obtaining excellent adhesion of vacuum metallized coatings. Not only is adhesion greatly improved but also the avenue opened for fabricating further structures using widely practiced metal deposition techniques.
SUMMARY The metal coated structure of the invention broadly comprises (a) a substrate; (b) an actinic-sensitive coating on said substrate which becomes adherent upon'exposure to actinic radiation and (c) a metal layer over said actinic-sensitive material which will transmit actinic radiation for rendering the actinic-sensitive coating adherent to the substrate and the metal coating.
Additionally, the metal layer can have applied thereto a layer of electroless deposited metal after exposure of the actinic-sensitive layer through the metal coating. Following this, the structure may be electroplated over the electroless metal layer. n
The process of this invention comprises coating a substrate having an actinic-sensitive layer thereon with a preferably vacuum deposited metal layer which will transmit actinic radiation for rendering the actinicsensitive layer adherent to the substrate and the metal coating.
The process of the invention also embodies the additional steps of depositing an electroless metal layer on the metal layer and electroplating over theelectroless deposited metal.
DESCRIPTION OF THE DRAWING In the accompanying drawing schematic edge-on views are shown and the thickness of the various layers have been greatly exaggerated for ease of understanding, it being 'understood that in practice these layers are relatively thin. Also the terms light-sensitive and actinic-sensitive are used interchangeably.
In FIG. 1, substrate 10 is shown having an unexposed light-sensitive layer 12 thereon over which is applied a preferred vacuum deposited metal layer 14.
In FIG. 2, the structure of FIG. 1 is shown positioned below a source 20 of actinic radiation which passes through layer 14 to layer 12 thereby rendering same adherent to substrate 10 and layer 14.
In FIG. 3, a layer of electroless deposited metal is shown applied to the layer 14.
In FIG. 4, the structure of FIG. 3 is shown with an electroplated layer 50 over the electroless layer 40.
DESCRIPTION In general, the substrate may be virtually any shaped or flat article such as a sheet or a laminate which may be rigid or flexible with varying thicknesses. The substrate may be a synthetic resin, plastic film or sheet, metallic sheets or foils or papers and textiles formed from natural or synthetic fibers or filaments.
The light-sensitive layer or coating used in the structure of this invention must become strongly adherent to both the substrate and the metal layer upon exposure and may be formed from a host of photochemical materials known in the art. Such light-sensitive materials include dichromated colloids, such as those based on organic colloids, gelatin, process glue, albumens, caseins, natural gums, starch and its derivatives, synthetic resins, such as polyvinyl alcohol and the like; unsaturated compounds such as those based on cinnamic acid and its derivatives, chalcone type compounds, stilbene compounds and the like; and photopolymerizable compositions, a wide variety of polymers including vinyl polymers and copolymers such as polyvinyl alcohol, polyvinyl acetals, polyvinyl acetate vinyl sorbate, polyvinyl ester acetal, polyvinyl pyrrolidone, polyvinyl butyrol, halogenated polyvinyl alcohol; cellulose based polymers such as cellulose-acetate hydrogenphthalate, cellulose alkyl ethers; urea-formaldehyde resins; polyamide condensation polymers; polyethylene oxides; polyalkylene ethers; .polyhexamethylene adipamide; polychlorophenej. polyethylene glycols, and the like. Such compositions utilize as initiators carbonyl compounds, organic sulphur compounds, peroxides, redox systems, azo and diazo compounds, halogen compounds and the like. These and other photochemical materials including their chemistry and uses are discussed in ,detail in a text entitled Light-Sensitive Systems, Jaromir Kosar, John Wiley and Sons, Inc., New York, 1965. Diazo resins are particularly preferred.
The foregoing photochemicals are often used in the printing plate art where negative working, lightsensitive materials are applied or coated onto a suitable support or substrate and are of such a nature that before exposure to actinic radiation they are soluble in a particular solvent (usually water). When exposed to actinic radiation, however, the material becomes insoluble in the solvent. Other positive working light-sensitive materials function just the opposite, that is, they are insoluble and become soluble upon exposure to actinic radiation.
The criteria for the present invention, however, is not based on relative solubility but on the ability of the photochemical material to become adherent to both the substrate be it hydrophilic, oleophilic or ampholic and the vacuum deposited metal layer upon exposure to actinic radiation.
The thickness of the layer 14 may range from a layer which is atomic in dimension, that is 1 molecule thick up to a thickness of about 1.5 microns. The layer 14 preferably has a thickness of from about 2,000 to about 15,000 Angstroms and more preferably from about 4,000 to about 10,000 Angstroms.
The thickness of the layer 14 can also be expressed as a function of the wave length of the actinic radiation utilized to expose the light-sensitive layer 12. It has been found that generally the thickness of the layer 14 should not be greater than about times the wave length of the actinic radiation and preferably not greater than 5 times the wave length. By definition, actinic radiation is that which will initiate a photochemical reaction and includes x-rays, infrared, visible light and ultraviolet light. Generally, speaking an intense source of visible and/or ultraviolet light is used.
The thickness of the layer 14 must be such that it is capable of transmitting actinic radiation to the lightsensitive coating.
Generally the layer 14 is deposited in thicknesses within the ranges specified above such that there is at least 5 percent and preferably at least 30 percent transparency so as to transmit actinic radiation to the underlying light-sensitive layer.
The layer 14 according to this invention may be vacuum depositable metal elected from the group of the metals of Groups I B, 11 B, Ill A, IV A, VI B, VII, of the Periodic Chart. Two or more metals may be used in combination to form the protective coating. Examples of preferred metals include chromium, copper, aluminum, gold, gold alloys, silver, zinc, platinum, iron, cobalt and nickel.
The metal layer 14 has been referred herein as vacuum coated which is the preferred deposition technique. However, metal layer 14 can be applied or deposited using coating techniques which result in uniform deposition of the metal on the light-sensitive layer and which will not adversely affect the light sensitive layer such as by premature exposure. Suitable coating techniques include vacuum coating, sputtering, ion plating, gas plating, and metallized coatings produced by spray metal techniques.
The preferred coating technique is vacuum coating. In vacuum coating, metal particles are deposited by vacuum distillation over the light-sensitive layer to form the metal layer. The substrate with the lightsensitive layer thereon is placed in a coating chamber which is evacuated to eliminate molecular interference between the source of the coating material and the surface to be coated. Readily high vacuum pumps or diffusion pumps may be, used to evacuate the coating chamber. The metal is heated intensely, for example, by resistance, induction or electron beam methods, so that it vaporizes and travels from the course to the substrate with the light-sensitive coating thereon. The high vacuum facilitates evaporation of the metal and the absence of air in the coating chamber permits the vaporized metal to travel directly to the relatively cool coated substrate where it condenses to form a layer having a thickness in the range mentioned above. Processes for vacuum coating are well known as disclosed for example in U.S. Pat. Nos. 2,206,020; 2,562,182; 2,622,041; 2,635,579; 2,643,201; 2,664,852;
2,664,853; 2,665,233-9; 2,903,544; and 3,562,141.
Metals readily deposited by vacuum coating normally have a deposition constant of at least 5 X 10' grams per square centimeter per second at 1 micron pressure (absolute). Metals especially suited for vacuum coating include aluminum, silver, gold, lead, zinc, chromium, nickel, copper, tin, iron, platinum and the like.
The above-mentioned coating techniques are well known and widely practiced in the art. Details regarding these techniques including vacuum coating in addition to the above mentioned patents may be found in Kirk-Othmer Encyclopedia of Chemical Technology, 2nd Edition, Interscience Publishers, New York, 1967, Vol. 13, pages 249 through 284.
While vacuum coated articles are useful per se especially where scratch and abrasion resistance is improved as in the present invention, in many instances it is desirable to further reinforce the vacuum coated structure. This can be done by using conventional electrodeposition techniques to deposit further metal coatings over the vacuum metal layer after exposure of the light-sensitive layer therethrough. An especially suitable electrodeposition technique as referred to is electroless plating and is desirable since the initial vacuum metal layer need only be thick enough for the electroless deposited metal to bridge molecules in the layer. Such electroless plating techniques are well-known and widely practiced in the art. For example, vacuum metal layers according to the invention formed from copper, aluminum, nickel, gold, molybdenum, iron, tin, and platinum will catalyze the electroless chemical reduction deposition of copper, nickel, cobalt, lead, platinum, iron, silver, aluminum, gold, palladium, and magnesium among others. Protective layers formed from cobalt, nickel and iron will also catalyze the deposition of chromium. A preferred metal for electroless deposition is copper which can be accomplished by immersing the structure shown in FIG. 2, for example, in an electroless copper bath containing copper salt, complexing agents to keep the copper in solution and a reducing agent. The electroless clad structure of the present invention is shown in FIG. 3, for example.
The structure shown in FIG. 3 may also be utilized to fabricate further structures. This can be accomplished by electroplating the electroless metal layer 40 with layer 50. Electroplating can be carried out using conventional techniques such as set forth in Kirk-Othmer Encyclopedia of Chemical Technology, 2nd Edition, Interscience Publishers, New York, 1965, Vol. 8, pages 36-74.
The present invention finds particular application in the making of shaped and flat articles from metal, glass, plastic, composites and the like having a metal finish for use as automotive trim, both interior and exterior, machine parts, decorative trim and plaques and the like. Also and very importantly, the present invention makes it possible to replace relatively heavy and expensive core" materials with cheaper (e.g. plastic for metal), lighter and in many cases stronger or more resilient materials which can be readily metal clad to retain the desirable properties of the metal exterior. Examples are precious metal figures, jewelery and machine parts and more common articles such as automotive bumpers, rails and the like.
GENERAL COATING PROCEDURE Metal layers according to the present invention are vacuum deposited using a bell jar coater in which a single sample is exposed to a resistance heated vapor source while under vacuum. The sample to be coated is held against a plate at distances ranging between about and inches depending on the metal being vacuum coated. A resistance heated tungsten wire or a molybdenum strip formed into a boat shape so as to contain the material to be evaporated is utilized. Between the vacuum source and the work, a moveable baffle is interposed to allow the material being deposited to attain the proper vaporizing temperature prior to exposure and to time the length of the vacuum coating. The baffle prevents the deposition of powdery or non-adherent coatings which can occur before full vaporizing temperature is reached. The bell jar coater is also provided with sight ports to permit measurements of the vapor source temperature and observation of the melt source itself during the coating operation.
In actual operation, an extruded polyethylene sheet is sensitized with a diazo resin and taped to the plate in a darkened room. A small glass slide strip alongside permits ready measurement of the vacuum deposited coating. Care must be taken to keep the sheet shielded from light while placing it in the bell jar coater. Once the coater is closed, the vacuum pump is started and after a vacuum of about 0.1 .1. is achieved the heat is turned on to melt the metal to be vacuum deposited. When the melt reaches the proper vaporizing temperature, the shutter is opened for a period of time sufficient to deposit a coating of the thickness desired.
PHOTOGLUING PROCEDURE Vacuum coated, presensitized polyethylene diazo resin sheets are exposed to a source of UV light to ren' der the diazo resin adherent to both the polyethylene sheet and the vacuum metal layer. Scratch and abrasion resistance is then tested by dragging a weighted point across the vacuum metal layer. If no metal is removed the specimen is marked as passing the test and, if metal is removed, the specimen is marked as failing the test. Adhesion is tested by applying a pressure sensitive adhesive tape to the vacuum metal layer and then rapidly stripping it off at a right angle by hand. A pass or fail is noted as in the scratch and abrasion resistance test.
EXAMPLES 1-8 Employing the general coating procedure the following materials are vacuum deposited using the conditions indicated:
The vacuum metal coatings in Examples 1-8 were approximately 45 to percent transparent.
EXAMPLES 9-11 The specimens prepared in Examples 1 and 5 and 6 are each electroless plated with copper after being exposed to UV using a plating bath containing copper sulfate and a reducing agent for the copper. Excellent coatings are obtained.
EXAMPLE 12 An electroless plated sheets prepared according to Examples 91 1 is electroplated with copper using conventional techniques. Excellent quality coatings are obtained.
What is claimed is:
1. Metal coated structure comprising a. a substrate;
b. an actinic-sensitive photochemical coating on said substrate which becomes adherent upon exposure to actinic radiation; and c. a metal layer over said actinic-sensitive coating which will transmit actinic radiation to initiate a photochemical reaction in the actinic-sensitive coating thereby rendering same adherent to the substrate and the metal layer.
2. Structure of claim 1 wherein said metal layer is vacuum deposited.
3. Structure of claim 1 wherein said metal layer is selected from the group of copper, gold, alloys of copper and gold, silver, aluminum, zinc, nickel and chromium.
4. Structure of claim 1 wherein said metal layer has a thickness of from about 4,000 to about 10,000 Angstroms.
5. Structure of claim 1 wherein said metal layer has a thickness of up to about 1.5 microns.
6. Structure of claim 1 wherein said actinic-sensitive material is a diazo resin.
7. Structure of claim 1 wherein a layer of electroless deposited metal is applied to said metal layer after exposure of the actinic-sensitive layer to actinic radiation.
8. Structure of claim 7 wherein said electroless deposited metal is copper.
9. Structure of claim 7 wherein an electroplated metal layer is applied to said electroless deposited metal layer.
10. Structure of claim 1 exposed to actinic radiation.
11. Structure of claim 1 exposed to actinic heat radiation.
12. Process for making a metal coated structure which comprises coating a substrate having an actinicsensitive photochemical layer thereon with a metal layer which will transmit actinic radiation to initiate a photochemical reaction in the actinic-sensitive layer thereby rendering same adherent to the substrate and the metal coating.
13. Process of claim 12 wherein said metal layer is vacuum deposited.
14. Process of claim 13 wherein the vacuum deposited metal layer has applied thereto a layer of electroless deposited metal after exposure of the actinic sensitive layer to actinic radiation.
15. Process of claim 14 which includes the step of electroplating a metal layer to the electroless deposited metal layer.
I UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3375.157 .HQ emhe r l. l2L
Invencor( Hgm rd A. .gg son I It is certified that error appears in the above-identified patent I and that said Letters Patent are hereby corrected as shown below:
Col. 3, line 30, "elected" should read selected C01. 6, line 48, Claim 11 should 'be cancelled.
Signed and sealed this l6th day. or July 1974.
' (.SEAL) Attest: I
McCOY M. GIBSON, JR. c. MARSHALL DANN Attestihg Officer Commissioner of Patents USCOMM'DC 6031 0-909 FORM PO-IOSO HMS) I I I I... coumnum mum omen nu o-qu-na

Claims (14)

  1. 2. Structure of claim 1 wherein said metal layer is vacuum deposited.
  2. 3. Structure of claim 1 wherein said metal layer is selected from the group of copper, gold, alloys of copper and gold, silver, aluminum, zinc, nickel and chromium.
  3. 4. Structure of claim 1 wherein said metal layer has a thickness of from about 4,000 to about 10,000 Angstroms.
  4. 5. Structure of claim 1 wherein said metal layer has a thickness of up to about 1.5 microns.
  5. 6. Structure of claim 1 wherein said actinic-sensitive material is a diazo resin.
  6. 7. Structure of claim 1 wherein a layer of electroless deposited metal is applied to said metal layer after exposure of the actinic-sensitive layer to actinic radiation.
  7. 8. Structure of claim 7 wherein said electroless deposited metal is copper.
  8. 9. Structure of claim 7 wherein an electroplated metal layer is applied to said electroless deposited metal layer.
  9. 10. Structure of claim 1 exposed to actinic radiation.
  10. 11. Structure of claim 1 exposed to actinic heat radiation.
  11. 12. Process for making a metal coated structure which comprises coating a substrate having an actinic-sensitive photochemical layer thereon with a metal layer which will transmit actinic radiation to initiate a photochemical reaction in the actinic-sensitive layer thereby rendering same adherent to the substrate and the metal coating.
  12. 13. Process of claim 12 wherein said metal layer is vacuum deposited.
  13. 14. Process of claim 13 wherein the vacuum deposited metal layer has applied thereto a layer of electroless deposited metal after exposure of the actinic sensitive layer to actinic radiation.
  14. 15. Process of claim 14 which includes the step of electroplating a metal layer to the electroless deposited metal layer.
US3775157D 1971-09-24 1971-09-24 Metal coated structure Expired - Lifetime US3775157A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US18348271A 1971-09-24 1971-09-24

Publications (1)

Publication Number Publication Date
US3775157A true US3775157A (en) 1973-11-27

Family

ID=22672976

Family Applications (1)

Application Number Title Priority Date Filing Date
US3775157D Expired - Lifetime US3775157A (en) 1971-09-24 1971-09-24 Metal coated structure

Country Status (1)

Country Link
US (1) US3775157A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123280A (en) * 1974-06-14 1978-10-31 Zlafop Pri Ban Silver halide vapor deposition method
US4379022A (en) * 1979-05-08 1983-04-05 International Business Machines Corporation Method for maskless chemical machining
US4407871A (en) * 1980-03-25 1983-10-04 Ex-Cell-O Corporation Vacuum metallized dielectric substrates and method of making same
US4431711A (en) * 1980-03-25 1984-02-14 Ex-Cell-O Corporation Vacuum metallizing a dielectric substrate with indium and products thereof
US4477316A (en) * 1981-02-23 1984-10-16 Nippon Steel Corporation Long-life insoluble electrode and process for preparing the same
US4618504A (en) * 1983-12-20 1986-10-21 Bosna Alexander A Method and apparatus for applying metal cladding on surfaces and products formed thereby
WO1987004952A1 (en) * 1986-02-13 1987-08-27 Bosna Alexander A Method and apparatus for applying metal cladding on surfaces and products formed thereby
US4702941A (en) * 1984-03-27 1987-10-27 Motorola Inc. Gold metallization process
US4714627A (en) * 1984-11-29 1987-12-22 Ontario Development Corp. Method of gold deposition using volatile organogold complexes
US4876114A (en) * 1987-09-23 1989-10-24 International Business Machines Corporation Process for the self fractionation deposition of a metallic layer on a workpiece
US5284683A (en) * 1991-10-15 1994-02-08 Semih Erhan Method for metallization of plastics using poly-diamine-quinone polymers as a binder
US6030708A (en) * 1996-10-28 2000-02-29 Nissha Printing Co., Ltd. Transparent shielding material for electromagnetic interference
US20020108708A1 (en) * 1997-12-31 2002-08-15 Textron Systems Corporation Metallized sheeting, composites, and methods for their formation
US6599573B2 (en) * 2000-08-02 2003-07-29 Vyrobni Druzstvo Irisa Manufacturing process of christmas tree decorations and racks for their fixing during this process
US9900980B2 (en) 2012-03-02 2018-02-20 Ppg Industries Ohio, Inc. Transparent laminates comprising inkjet printed conductive lines and methods of forming the same
US9986669B2 (en) * 2015-11-25 2018-05-29 Ppg Industries Ohio, Inc. Transparency including conductive mesh including a closed shape having at least one curved side
US11745702B2 (en) 2018-12-11 2023-09-05 Ppg Industries Ohio, Inc. Coating including electrically conductive lines directly on electrically conductive layer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2907678A (en) * 1954-03-23 1959-10-06 Heberlein Patent Corp Process of producing metallizing effects on textiles
US2917439A (en) * 1957-01-03 1959-12-15 Liu Hsing Method for metallizing non-conductive material
GB1024943A (en) * 1961-09-27 1966-04-06 Intermetalon Ag Process for the metallization of textile surfaces by the vapour-deposition of metals in a vacuum
US3267007A (en) * 1966-08-16 Bonding metal deposits to electrically non-conductive material
US3308004A (en) * 1937-05-10 1967-03-07 Rhone Poulenc Sa Translucent panels having selective transmission and their manufacture
US3361842A (en) * 1963-04-25 1968-01-02 Dow Chemical Co Liquid copolymers of ethylene, another alpha olefin and carboxylic acids and compositions thereof with polyepoxides
US3528893A (en) * 1966-11-22 1970-09-15 Atomic Energy Authority Uk Vacuum depositing and electrodepositing method of forming a thermoelectric module
US3562005A (en) * 1968-04-09 1971-02-09 Western Electric Co Method of generating precious metal-reducing patterns
US3615442A (en) * 1968-03-21 1971-10-26 Wisconsin Alumni Res Found Metal printing plate and method for preparation of same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267007A (en) * 1966-08-16 Bonding metal deposits to electrically non-conductive material
US3308004A (en) * 1937-05-10 1967-03-07 Rhone Poulenc Sa Translucent panels having selective transmission and their manufacture
US2907678A (en) * 1954-03-23 1959-10-06 Heberlein Patent Corp Process of producing metallizing effects on textiles
US2917439A (en) * 1957-01-03 1959-12-15 Liu Hsing Method for metallizing non-conductive material
GB1024943A (en) * 1961-09-27 1966-04-06 Intermetalon Ag Process for the metallization of textile surfaces by the vapour-deposition of metals in a vacuum
US3361842A (en) * 1963-04-25 1968-01-02 Dow Chemical Co Liquid copolymers of ethylene, another alpha olefin and carboxylic acids and compositions thereof with polyepoxides
US3528893A (en) * 1966-11-22 1970-09-15 Atomic Energy Authority Uk Vacuum depositing and electrodepositing method of forming a thermoelectric module
US3615442A (en) * 1968-03-21 1971-10-26 Wisconsin Alumni Res Found Metal printing plate and method for preparation of same
US3562005A (en) * 1968-04-09 1971-02-09 Western Electric Co Method of generating precious metal-reducing patterns

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123280A (en) * 1974-06-14 1978-10-31 Zlafop Pri Ban Silver halide vapor deposition method
US4379022A (en) * 1979-05-08 1983-04-05 International Business Machines Corporation Method for maskless chemical machining
US4407871A (en) * 1980-03-25 1983-10-04 Ex-Cell-O Corporation Vacuum metallized dielectric substrates and method of making same
US4431711A (en) * 1980-03-25 1984-02-14 Ex-Cell-O Corporation Vacuum metallizing a dielectric substrate with indium and products thereof
US4477316A (en) * 1981-02-23 1984-10-16 Nippon Steel Corporation Long-life insoluble electrode and process for preparing the same
US4618504A (en) * 1983-12-20 1986-10-21 Bosna Alexander A Method and apparatus for applying metal cladding on surfaces and products formed thereby
US4702941A (en) * 1984-03-27 1987-10-27 Motorola Inc. Gold metallization process
US4714627A (en) * 1984-11-29 1987-12-22 Ontario Development Corp. Method of gold deposition using volatile organogold complexes
US4714623A (en) * 1985-02-28 1987-12-22 Riccio Louis M Method and apparatus for applying metal cladding on surfaces and products formed thereby
WO1987004952A1 (en) * 1986-02-13 1987-08-27 Bosna Alexander A Method and apparatus for applying metal cladding on surfaces and products formed thereby
US4876114A (en) * 1987-09-23 1989-10-24 International Business Machines Corporation Process for the self fractionation deposition of a metallic layer on a workpiece
US5284683A (en) * 1991-10-15 1994-02-08 Semih Erhan Method for metallization of plastics using poly-diamine-quinone polymers as a binder
US6030708A (en) * 1996-10-28 2000-02-29 Nissha Printing Co., Ltd. Transparent shielding material for electromagnetic interference
US20020108708A1 (en) * 1997-12-31 2002-08-15 Textron Systems Corporation Metallized sheeting, composites, and methods for their formation
US6761793B2 (en) * 1997-12-31 2004-07-13 Textron Systems Corporation Method for forming a metallized composite
US6599573B2 (en) * 2000-08-02 2003-07-29 Vyrobni Druzstvo Irisa Manufacturing process of christmas tree decorations and racks for their fixing during this process
US9900980B2 (en) 2012-03-02 2018-02-20 Ppg Industries Ohio, Inc. Transparent laminates comprising inkjet printed conductive lines and methods of forming the same
US10420210B2 (en) 2012-03-02 2019-09-17 Ppg Industries Ohio, Inc. Transparent laminates comprising inkjet printed conductive lines and methods of forming the same
US9986669B2 (en) * 2015-11-25 2018-05-29 Ppg Industries Ohio, Inc. Transparency including conductive mesh including a closed shape having at least one curved side
US11745702B2 (en) 2018-12-11 2023-09-05 Ppg Industries Ohio, Inc. Coating including electrically conductive lines directly on electrically conductive layer

Similar Documents

Publication Publication Date Title
US3775157A (en) Metal coated structure
US3772056A (en) Sensitized substrates for chemical metallization
US4847139A (en) Flexible circuits
US3801368A (en) Process of electroless plating and article made thereby
US3925578A (en) Sensitized substrates for chemical metallization
US4247600A (en) Metallized plastic camera housing and method
US3993802A (en) Processes and products for making articles for electroless plating
US4109052A (en) Electroconductive transparency
US2917439A (en) Method for metallizing non-conductive material
US3773514A (en) Light-sensitive structure
US3928670A (en) Selective plating on non-metallic surfaces
US4927897A (en) Metal-containing organic polymer and use thereof
US3661538A (en) Plastics materials having electrodeposited metal coatings
CA1277534C (en) Process for the production of printed circuit boards
US2464143A (en) Method of silver coating organic surfaces
US3915809A (en) Plating adherent metal coatings onto polymethyl methacrylate materials
US3666527A (en) Method of electroless deposition of metals with improved sensitizer
US4657786A (en) Black-metallized substrate surfaces
US5284683A (en) Method for metallization of plastics using poly-diamine-quinone polymers as a binder
US3839037A (en) Light-sensitive structure
US3801478A (en) Process of metallizing polymeric materials
JP3016795B2 (en) Sticky deposition method of silver film, silver film and conductive, reflective or decorative film composed thereof
JP2769833B2 (en) Method of forming metal material pattern
US3255035A (en) Tin oxide coating
JPH0448697A (en) Electromagnetic shielding material and manufacture thereof