US2907678A - Process of producing metallizing effects on textiles - Google Patents

Process of producing metallizing effects on textiles Download PDF

Info

Publication number
US2907678A
US2907678A US496064A US49606455A US2907678A US 2907678 A US2907678 A US 2907678A US 496064 A US496064 A US 496064A US 49606455 A US49606455 A US 49606455A US 2907678 A US2907678 A US 2907678A
Authority
US
United States
Prior art keywords
fabric
metal
coating
impregnated
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US496064A
Inventor
Bodmer Albert
Risch Karl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heberlein Patent Corp
Original Assignee
Heberlein Patent Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heberlein Patent Corp filed Critical Heberlein Patent Corp
Application granted granted Critical
Publication of US2907678A publication Critical patent/US2907678A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06QDECORATING TEXTILES
    • D06Q1/00Decorating textiles
    • D06Q1/04Decorating textiles by metallising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31688Next to aldehyde or ketone condensation product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31703Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3382Including a free metal or alloy constituent
    • Y10T442/3398Vapor or sputter deposited metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/475Including a free metal or alloy constituent

Definitions

  • This invention relates to a process of metallizing textiles and to the resulting products.
  • the principal object of the present invention accordingly, is to eliminate this difiiculty, at least in .part.
  • the invention comprises the novel products as well as thenovel processes and steps of processes according to which such products are manufactured, the specific embodiments of which are described hereinafter by way of example and in accordance with Which we. now prefer to practice the invention.
  • crocking or peeling of such metal-coated textiles is due at least in part to swelling of the cellulosic fiber on wetting same.
  • the swelling increases the dimensions of the fiber and since the metal does not similarly swell, it is loosened and comes off.
  • Another reason for such crocking or peeling is that cellulosic fibers, in themselves, have a low adhesion to metals so deposited as compared with natural animal fibers or completely synthetic polymer fibers.
  • cellulosic textile, or fabric is intended to designate a textile fabric composed of, or containing substantial amounts of artificial cellulosic fibers such as viscose or similar regenerated cellulose or natural cellulosic fibers, such as cotton and other cellulose containing natural fibers.
  • artificial cellulosic fibers such as viscose or similar regenerated cellulose or natural cellulosic fibers, such as cotton and other cellulose containing natural fibers.
  • the defects mentioned may be at least in part overcome by treating the cellulosic textile or fabric with an antiswelling agent or agent to inhibit swelling thereof when coated with metal. Thereafter, such treatment appears to inhibit separation of the metal and to improve its adherence to the cellulosic material.
  • a further improvement may be effected by thinly coating said material, in addition to the treatment with the anti-swelling agent, with a water-insoluble resin.
  • Agents to inhibit the swelling of the cellulosic fiber include solutions of formaldehyde. Glyoxal and pyruvicaldehyde may also be used. These substances are employed with an acid catalyst. The so-treated textile is heated to an elevated temperature. Instead of such treatment, methylolamide resins and resins of acetone-formaldehyde may be incorporated in the textile.
  • water-insoluble natural resins such as shellac or rosin.
  • water-insoluble plastics there are suitable for instance film-forming resins obtained by polymerization, particularly vinyl resins, for instance polymers of vinylchloride, vinylidenechloride, vinylacetate, vinylacetal, vinylbutyral or copolymers thereof, as Well as acrylic and methacrylic resins and also polystyrene resins.
  • filmforming resins obtained by polycondensation particularly aminoplast-ether resins, for instance ureaor melamineformaldehyde-ether resins, alkyd resins, for instance glyptal resin, alkyd-alkylaminoplastether co-resins or ethoxyline resins.
  • Resins or plastics can be applied to the textile material either in the form of solutions in organic solvents or in the form of aqueous emulsions.
  • resins which have the property ofcondensing further at higher temperature and thereby becoming insoluble such as, for instance, urea and mela:
  • Example 1 Dyed satin which consists in the Warp and filling of viscose rayon is impregnated with an aqueous solution containing per liter cc. of 37% formaldehyde solution and 10 grams of oxalic acid.
  • the treated fabric is dried on a tenter frame, heated for two minutes at C., rinsed with hot water, and dried on a tenter frame.
  • the satin is then coated with aluminum by vaporizing the same at a temperature between 800-1000" C., in a high vacuum of about 510- mm. Hg, and condensing the aluminum on the satin to form a coating in a known manner.
  • Example 2 Mercerized cotton poplin is impregnated with an aqueous solution containing per liter 50 grams dimethylol urea, 100 cc. of a 37% formaldehyde solution and 3 grams monoammoniumphosphate, dried on a tenter frame, heated for 2 /2 minutes at 140 C., to condense the dimethylol urea washed with water containing 2 grams soda per liter at 40 C., rinsed, dried, and thereupon treated in a high vacuum of about 5.10- mm. mercury, first of all with copper vapor at a temperature between 1000-1300 C. with subsequent deposition and thereupon with gold vapor at a temperature between:
  • Example 4 Dyed cotton percale is impregnated with an aqueous solution containing per liter 120 grams of tetramethylolmelamine and 5 grams of triethanolaminelactate as catalyst, dried on a tenter frame, friction-calendered wlth heated rollers, cured at 160 C. for 3 minutes, to further condense the tetramethylolamine, washed with water containing 2 grams dodecyl sulfate per liter, dried on a tenter frame and coated with aluminum by vaporizing and condensing same as in Example 1.
  • Example 5 Dyed spun-rayon cretonne is impregnated with a solution containing, per liter, 100 grams of tetrarnethylolmelamine and a catalyst, namely triethanolamine glycolate, which gives off acid in the hot, dried on a tenter frame, friction-calendered at about 160 C., heated at 160 C. for 4 to 5 minutes in a heating chamber, washed with a synthetic detergent such as sodium salt of taurine oleate, dried on a tenter frame, impregnated with an aqueous emulsion of polyvinylbutyral, containing 4% of said polyvinylbutyral, and dried on a tenter frame.
  • Aluminum is deposited on the so-treated fabric in the manner given in Example 1.
  • Example 6 Dyed viscose taffeta is impregnated with an aqueous solution containing, per liter, 40 grams pure formaldehyde and grams of oxalic acid, dried on a tenter frame, heated. at 140 C. for 2 minutes, rinsed with hot water, dried on a tenter frame, impregnated with an aqueous 5% emulsion of a polymethacrylate, and dried on a tenter frame. Aluminum is deposited on the sotreated fabric in the manner given in Example 1.
  • Example 7 Dyed crepe lavable of cuprammonium rayon is impregnated with an aqueous solution containing, per liter, 90 grams of dimethylolethylene urea and 1.5 grams ammonium chloride, dried on a tenter frame, heated at 145 C. for 2 /2 minutes, rinsed with hot water, dried on a tenter frame, impregnated with an aqueous polyvinylacetate resin. emulsion containing 3% resin, and dried on a tenter frame. Aluminum is deposited on the so-treated fabric in the manner given in Example 1.
  • Example 8 Dyed crepe satin of viscose rayon is impregnated with a solution containing, per liter, 120 cc. glyoxal and 12 grams oxalic acid, dried on a tenter frame, heated at 145 C. for 3 minutes, washed with hot water containing 2 grams soda and 2 grams of a sodium salt of taurine oleate per liter, rinsed, dried on a tenter frame, sprinkled with a solution of a precondensate of methylolmelamine ether resin in toluene containing 8% of resin, dried, and finally heated at 140 C., for 4 minutes in order to cure the methylol-melamine resin.
  • Aluminum is deposited on the so-treated fabric in the manner given in Example 1.
  • Example 9 Dyed cotton percale is impregnated with an aqueous solution containing per liter 100 grams tetramethylolmelamine and 4 grams triethanolamine glycolate. T hereupon the fabric is dried on a tenter frame, frictioncalendered with heated rollers, cured at 150 C. for
  • Example 1' washed with water containing 1 gram soda per'liter at 60 C. and dried on a tenter frame.
  • the fabric is then impregnated with an aqueous emulsion of a polymethacrylate containing grams solids per liter, dried on a tenter frame and coated with aluminum by vaporizing and condensing the same in the manner given in Example 1'.
  • Each of the fabrics prepared in accordance with the above examples shows a greatly improved resistance to cro'cking and when the materials are wet they show substantially no loss of metal coating the fibers.
  • materials of this sort are made up into wearing apparel, they show substantially no signs of crocking, even when the garments are'worn over long periods and show substantially no loss of coating even when wet.
  • a process which comprises impregnating a textile fabric of natural or regenerated cellulose fiber material with an aqueous solution of an antiswelling agent selected from the group consisting of 'an aldehyde and a condensible methylol compound and an acid catalyst, heating the so impregnated material at a temperature of between and C. for 1 to 5 minutes, coating said fabric with a thin continuous coating of water-insoluble filmforming synthetic resin selected from the group consisting of polyvinylbutyral, polyvinylacetate, polyacrylate and polymethacrylate, and vaporizing at least one metal and condensing a thin coating of said metal thereon, whereby peeling of said metal from the fabric when wet is inhibited.
  • a process which comprises impregnating a penetrable cellulosic fabric selected from the group consisting of fabric of natural and regenerated cellulose fiber with an antiswelling agent selected from the group consisting of an aldehyde and a condensible methylol compound and an acid catalyst, heating the so impregnated fabric, and vacuum-vaporizing and condensing at least one metal thereon to coat the textile therewith.
  • a process which comprises impregnating a penetrable cellulosic fabric selected from the group consisting of fabrics of natural and regenerated cellulose fiber with an antiswelling agent selected from the group consisting of an aldehyde and a condensible methylol compound and an acid catalyst, heating the so impregnated fabric,
  • a process which comprises impregnating a regenerated cellulose fabric with an antiswelling agent consisting of an aldehyde and an acid catalyst, heating the so impregnated fabric and vacuum-vaporizing and condensing at least one metal thereon to coat the fabric therewith, whereby peeling of said metal from said fabric when wet is inhibited.
  • an antiswelling agent consisting of an aldehyde and an acid catalyst
  • a process which comprises impregnating a regenerated cellulose fabric with formaldehyde and'an acid catalyst, heating the so impregnated fabric and vacuum-vaporizing and condensing at least one metal thereon to coat the fabric therewith, whereby peeling of said metal from said fabric when wet is inhibited.
  • a process which comprises impregnating a regenerated cellulose fabric with a methylol amide and an acid catalyst, heating the so impregnated fabric and vacuumvaporizing and condensing at least one metal thereon to coat the fabric therewith, whereby peeling of said metal from said fabric when wet is inhibited.
  • a process which comprises impregnating a regenerated cellulose fabric with an antiswelling agent consisting of an aldehyde and an acid catalyst, heating the so impregnated fabric, coating said fabric with a thin continuous coating of water-insoluble resin and vacuum-vaporizing at least one metal and condensing a coating of said metal thereon, whereby peeling of said metal from said fabric when wet is inhibited.
  • an antiswelling agent consisting of an aldehyde and an acid catalyst
  • a process which comprises impregnating a regenerated cellulose fabric with an antiswelling agent consisting of an aldehyde and an acid catalyst, heating the so impregnated fabric, coating said fabric with a thin continuous coating of an aminoplast ether resin, and vaporizing at least one metal and condensing a thin coating of said metal thereon, whereby peeling of said metal from said fabric when wet is inhibited.
  • an antiswelling agent consisting of an aldehyde and an acid catalyst
  • a process which comprises impregnating a regenerated cellulose fabric with an antiswelling agent selected v due to swelling of from the group consisting of an aldehyde and a condensible methylol compound and an acid catalyst, heating the so impregnated fabric, coating said fabric with a thin continuous coating of water-insoluble resin and vacuumvaporizing aluminum and condensing a coating of said aluminum thereon, whereby peeling of said metal from said fabric when wet is inhibited.
  • an antiswelling agent selected v due to swelling of from the group consisting of an aldehyde and a condensible methylol compound and an acid catalyst
  • a process which comprises impregnating a penetrable cellulosic fabric selected from the group consisting of fabrics of natural and regenerated cellulose fiber with an acetone-formaldehyde resin and an acid catalyst, heating said impregnated fabric to inhibit swelling thereof, coating said fabric with a thin continuous coating of water-insoluble resin, and vacuum-vaporizing at least one metal and condensing a coating of said metal thereon, whereby peeling of said metal from said fabric when wet is inhibited.
  • a cellulosic textile product selected from the group consisting of a natural cellulose and a regenerated cellulose fabric impregnated with an acid catalyzed antiswelling agent selected from the group consisting of an aldehyde and a condensible methylol compound to inhibit swelling of said fabric, and having a surface coating of vacuum-vaporized metal.
  • a viscose fabric containing cellulose impregnated with formaldehyde having a thin coating of water-insoluble resin and a thin coating of vacuum-vaporized alumium thereon, whereby peeling of said metal from the fabric when wet is inhibited.

Description

United States Patent PROCESS OF PRODUCING METALLIZING EFFECTS ON TEXTILES Albert Bodmer and Karl Risch, Wattwil, Switzerland, as-
signors to Heberlein Patent Corporation, New York, N.Y., a corporation of New York No Drawing. Application March 22, 1955 Serial No. 496,064
Claims priority, application Germany March 23, 1954 13 Claims. (Cl. 117-71) This invention relates to a process of metallizing textiles and to the resulting products.
The process of providing various textiles with a thin metal coating by depositing thereon vaporized metals in a high vacuum, thereby imparting to these textiles a metallic appearance without impairing the valuable textile properties such as flexibility, suppleness, and heat retention, is known, Nevertheless, in the case of textiles consisting of natural or artificial cellulosic material metal coatings so deposited tend to crock or peel off from the fiber or fabric particularly when such fabric or fiber is wetted.
The principal object of the present invention, accordingly, is to eliminate this difiiculty, at least in .part.
The invention comprises the novel products as well as thenovel processes and steps of processes according to which such products are manufactured, the specific embodiments of which are described hereinafter by way of example and in accordance with Which we. now prefer to practice the invention. p
In accordance with our invention, we have found that crocking or peeling of such metal-coated textiles is due at least in part to swelling of the cellulosic fiber on wetting same. The swelling increases the dimensions of the fiber and since the metal does not similarly swell, it is loosened and comes off. Another reason for such crocking or peeling is that cellulosic fibers, in themselves, have a low adhesion to metals so deposited as compared with natural animal fibers or completely synthetic polymer fibers. The expression cellulosic textile, or fabric, as used herein, is intended to designate a textile fabric composed of, or containing substantial amounts of artificial cellulosic fibers such as viscose or similar regenerated cellulose or natural cellulosic fibers, such as cotton and other cellulose containing natural fibers.
We have also found, in accordance with our invention,
that the defects mentioned may be at least in part overcome by treating the cellulosic textile or fabric with an antiswelling agent or agent to inhibit swelling thereof when coated with metal. Thereafter, such treatment appears to inhibit separation of the metal and to improve its adherence to the cellulosic material. A further improvement may be effected by thinly coating said material, in addition to the treatment with the anti-swelling agent, with a water-insoluble resin. When cellulosic material is so treated with both anti-swelling agent and a thin coating of resin, there is a great improvement in both the resistance to peeling or crocking. The resulting metallized products are accordingly resistant to the crocking and peeling mentioned.
Agents to inhibit the swelling of the cellulosic fiber include solutions of formaldehyde. Glyoxal and pyruvicaldehyde may also be used. These substances are employed with an acid catalyst. The so-treated textile is heated to an elevated temperature. Instead of such treatment, methylolamide resins and resins of acetone-formaldehyde may be incorporated in the textile.
For thinly coating the textile treated with the anti- 2,907,678 Patented Oct. 6, 1959 2 swelling agent, we may employ water-insoluble natural resins, such as shellac or rosin. As water-insoluble plastics, there are suitable for instance film-forming resins obtained by polymerization, particularly vinyl resins, for instance polymers of vinylchloride, vinylidenechloride, vinylacetate, vinylacetal, vinylbutyral or copolymers thereof, as Well as acrylic and methacrylic resins and also polystyrene resins. There can also be used filmforming resins obtained by polycondensation, particularly aminoplast-ether resins, for instance ureaor melamineformaldehyde-ether resins, alkyd resins, for instance glyptal resin, alkyd-alkylaminoplastether co-resins or ethoxyline resins. Resins or plastics can be applied to the textile material either in the form of solutions in organic solvents or in the form of aqueous emulsions. When resins are used which have the property ofcondensing further at higher temperature and thereby becoming insoluble such as, for instance, urea and mela:
treatment with the agent for reducing the swellability be calendered before the heating, which heating is part of the process for reducing the swellability, in accordance with our invention, for instance by means of a friction calender.
The following are examples of processes, in accordance with our invention, as we now prefer to practice it:
Example 1 Dyed satin which consists in the Warp and filling of viscose rayon is impregnated with an aqueous solution containing per liter cc. of 37% formaldehyde solution and 10 grams of oxalic acid. The treated fabric is dried on a tenter frame, heated for two minutes at C., rinsed with hot water, and dried on a tenter frame. The satin is then coated with aluminum by vaporizing the same at a temperature between 800-1000" C., in a high vacuum of about 510- mm. Hg, and condensing the aluminum on the satin to form a coating in a known manner.
Example 2 Example 3 Mercerized cotton poplin is impregnated with an aqueous solution containing per liter 50 grams dimethylol urea, 100 cc. of a 37% formaldehyde solution and 3 grams monoammoniumphosphate, dried on a tenter frame, heated for 2 /2 minutes at 140 C., to condense the dimethylol urea washed with water containing 2 grams soda per liter at 40 C., rinsed, dried, and thereupon treated in a high vacuum of about 5.10- mm. mercury, first of all with copper vapor at a temperature between 1000-1300 C. with subsequent deposition and thereupon with gold vapor at a temperature between:
I 1000-1500" C., with subsequent deposition.
Example 4 Dyed cotton percale is impregnated with an aqueous solution containing per liter 120 grams of tetramethylolmelamine and 5 grams of triethanolaminelactate as catalyst, dried on a tenter frame, friction-calendered wlth heated rollers, cured at 160 C. for 3 minutes, to further condense the tetramethylolamine, washed with water containing 2 grams dodecyl sulfate per liter, dried on a tenter frame and coated with aluminum by vaporizing and condensing same as in Example 1.
Example 5 Dyed spun-rayon cretonne is impregnated with a solution containing, per liter, 100 grams of tetrarnethylolmelamine and a catalyst, namely triethanolamine glycolate, which gives off acid in the hot, dried on a tenter frame, friction-calendered at about 160 C., heated at 160 C. for 4 to 5 minutes in a heating chamber, washed with a synthetic detergent such as sodium salt of taurine oleate, dried on a tenter frame, impregnated with an aqueous emulsion of polyvinylbutyral, containing 4% of said polyvinylbutyral, and dried on a tenter frame. Aluminum is deposited on the so-treated fabric in the manner given in Example 1.
Example 6 Dyed viscose taffeta is impregnated with an aqueous solution containing, per liter, 40 grams pure formaldehyde and grams of oxalic acid, dried on a tenter frame, heated. at 140 C. for 2 minutes, rinsed with hot water, dried on a tenter frame, impregnated with an aqueous 5% emulsion of a polymethacrylate, and dried on a tenter frame. Aluminum is deposited on the sotreated fabric in the manner given in Example 1.
Example 7 Dyed crepe lavable of cuprammonium rayon is impregnated with an aqueous solution containing, per liter, 90 grams of dimethylolethylene urea and 1.5 grams ammonium chloride, dried on a tenter frame, heated at 145 C. for 2 /2 minutes, rinsed with hot water, dried on a tenter frame, impregnated with an aqueous polyvinylacetate resin. emulsion containing 3% resin, and dried on a tenter frame. Aluminum is deposited on the so-treated fabric in the manner given in Example 1.
Example 8 Dyed crepe satin of viscose rayon is impregnated with a solution containing, per liter, 120 cc. glyoxal and 12 grams oxalic acid, dried on a tenter frame, heated at 145 C. for 3 minutes, washed with hot water containing 2 grams soda and 2 grams of a sodium salt of taurine oleate per liter, rinsed, dried on a tenter frame, sprinkled with a solution of a precondensate of methylolmelamine ether resin in toluene containing 8% of resin, dried, and finally heated at 140 C., for 4 minutes in order to cure the methylol-melamine resin. Aluminum is deposited on the so-treated fabric in the manner given in Example 1.
Example 9 Dyed cotton percale is impregnated with an aqueous solution containing per liter 100 grams tetramethylolmelamine and 4 grams triethanolamine glycolate. T hereupon the fabric is dried on a tenter frame, frictioncalendered with heated rollers, cured at 150 C. for
4 minutes, washed with water containing 1 gram soda per'liter at 60 C. and dried on a tenter frame. The fabric is then impregnated with an aqueous emulsion of a polymethacrylate containing grams solids per liter, dried on a tenter frame and coated with aluminum by vaporizing and condensing the same in the manner given in Example 1'.
Each of the fabrics prepared in accordance with the above examples shows a greatly improved resistance to cro'cking and when the materials are wet they show substantially no loss of metal coating the fibers. Thus, when materials of this sort are made up into wearing apparel, they show substantially no signs of crocking, even when the garments are'worn over long periods and show substantially no loss of coating even when wet.
We claim:
1. A process which comprises impregnating a textile fabric of natural or regenerated cellulose fiber material with an aqueous solution of an antiswelling agent selected from the group consisting of 'an aldehyde and a condensible methylol compound and an acid catalyst, heating the so impregnated material at a temperature of between and C. for 1 to 5 minutes, coating said fabric with a thin continuous coating of water-insoluble filmforming synthetic resin selected from the group consisting of polyvinylbutyral, polyvinylacetate, polyacrylate and polymethacrylate, and vaporizing at least one metal and condensing a thin coating of said metal thereon, whereby peeling of said metal from the fabric when wet is inhibited. H
2. A process which comprises impregnating a penetrable cellulosic fabric selected from the group consisting of fabric of natural and regenerated cellulose fiber with an antiswelling agent selected from the group consisting of an aldehyde and a condensible methylol compound and an acid catalyst, heating the so impregnated fabric, and vacuum-vaporizing and condensing at least one metal thereon to coat the textile therewith.
3. A process which comprises impregnating a penetrable cellulosic fabric selected from the group consisting of fabrics of natural and regenerated cellulose fiber with an antiswelling agent selected from the group consisting of an aldehyde and a condensible methylol compound and an acid catalyst, heating the so impregnated fabric,
coating said fabric with a thin continuous coating of water-insoluble resin, vacuum-vaporizing at least one metal, and condensing a coating of said metal thereon.
4. A process which comprises impregnating a regenerated cellulose fabric with an antiswelling agent consisting of an aldehyde and an acid catalyst, heating the so impregnated fabric and vacuum-vaporizing and condensing at least one metal thereon to coat the fabric therewith, whereby peeling of said metal from said fabric when wet is inhibited.
5. A process which comprises impregnating a regenerated cellulose fabric with formaldehyde and'an acid catalyst, heating the so impregnated fabric and vacuum-vaporizing and condensing at least one metal thereon to coat the fabric therewith, whereby peeling of said metal from said fabric when wet is inhibited.
6. A process which comprises impregnating a regenerated cellulose fabric with a methylol amide and an acid catalyst, heating the so impregnated fabric and vacuumvaporizing and condensing at least one metal thereon to coat the fabric therewith, whereby peeling of said metal from said fabric when wet is inhibited.
7. A process which comprises impregnating a regenerated cellulose fabric with an antiswelling agent consisting of an aldehyde and an acid catalyst, heating the so impregnated fabric, coating said fabric with a thin continuous coating of water-insoluble resin and vacuum-vaporizing at least one metal and condensing a coating of said metal thereon, whereby peeling of said metal from said fabric when wet is inhibited.
8. A process which comprises impregnating a regenerated cellulose fabric with an antiswelling agent consisting of an aldehyde and an acid catalyst, heating the so impregnated fabric, coating said fabric with a thin continuous coating of an aminoplast ether resin, and vaporizing at least one metal and condensing a thin coating of said metal thereon, whereby peeling of said metal from said fabric when wet is inhibited.
9. A process which comprises impregnating a regenerated cellulose fabric with an antiswelling agent selected v due to swelling of from the group consisting of an aldehyde and a condensible methylol compound and an acid catalyst, heating the so impregnated fabric, coating said fabric with a thin continuous coating of water-insoluble resin and vacuumvaporizing aluminum and condensing a coating of said aluminum thereon, whereby peeling of said metal from said fabric when wet is inhibited.
10. A process which comprises impregnating a penetrable cellulosic fabric selected from the group consisting of fabrics of natural and regenerated cellulose fiber with an acetone-formaldehyde resin and an acid catalyst, heating said impregnated fabric to inhibit swelling thereof, coating said fabric with a thin continuous coating of water-insoluble resin, and vacuum-vaporizing at least one metal and condensing a coating of said metal thereon, whereby peeling of said metal from said fabric when wet is inhibited.
11. A cellulosic textile product selected from the group consisting of a natural cellulose and a regenerated cellulose fabric impregnated with an acid catalyzed antiswelling agent selected from the group consisting of an aldehyde and a condensible methylol compound to inhibit swelling of said fabric, and having a surface coating of vacuum-vaporized metal.
12. A viscose fabric containing cellulose impregnated with formaldehyde, having a thin coating of a water-insoluble resin thereon and a second thin coating of vacuumvaporized metal.
13. A viscose fabric containing cellulose impregnated with formaldehyde, having a thin coating of water-insoluble resin and a thin coating of vacuum-vaporized alumium thereon, whereby peeling of said metal from the fabric when wet is inhibited.
References Cited in the file of this patent UNITED STATES PATENTS Great Britain Oct. 14, 1953

Claims (1)

1. A PROCESS WHICH COMPRISES IMPREGNATING A TEXTILE FABRIC OF NATURAL OR REGENERATED CELLULOSE FIBER MATERIAL WITH AN AQUEOUS SOLUTION OF AN ANTISWELLING AGENT SELECTED FROM THE GROUP CONSISTING OF AN ALDEHYDE AND A CONDENSIBLE METHYLOL COMPOUND AND AN ACID CATALYST, HEATING THE SO IMPREGNATED MATERIAL AT A TEMPERATURE OF BETWEEN 120* AND 180*C. FOR 1 TO 5 MINUTES, COATING SAID FABRIC WITH A THIN CONTINUOUS COATING OF WATER-INSOLUBLE FILMFORMING SYNTHETIC RESIN SELECTED FROM THE GROUP CONSISTING OF POLYVINYLBUTYRAL, POLYVINYLACETATE, POLYACRYLATE AND POLYMETHACRYLATE, AND VAPORIZING AT LEAST ONE METAL AND CONDENSING A THIN COATING OF SAID METAL THEREON, WHEREBY PEELING OF SAID METAL FROM THE FABRIC WHEN WET IS INHIBITED.
US496064A 1954-03-23 1955-03-22 Process of producing metallizing effects on textiles Expired - Lifetime US2907678A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2907678X 1954-03-23

Publications (1)

Publication Number Publication Date
US2907678A true US2907678A (en) 1959-10-06

Family

ID=8000976

Family Applications (1)

Application Number Title Priority Date Filing Date
US496064A Expired - Lifetime US2907678A (en) 1954-03-23 1955-03-22 Process of producing metallizing effects on textiles

Country Status (1)

Country Link
US (1) US2907678A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442697A (en) * 1965-12-28 1969-05-06 Du Pont Adherent cellulose film comprising negatively charged aldehyde
US3775157A (en) * 1971-09-24 1973-11-27 Fromson H A Metal coated structure
US4042737A (en) * 1973-11-14 1977-08-16 Rohm And Haas Company Process for producing crimped metal-coated filamentary materials, and yarns and fabrics obtained therefrom
WO1990001074A1 (en) * 1988-07-25 1990-02-08 Ultrafibre, Inc. Nonwoven insulating webs
US20040013812A1 (en) * 2000-06-29 2004-01-22 Wolfgang Kollmann Method for producing cathodes and anodes for electrochemical systems, metallised material used therein, method and device for production of said metallised material
WO2006121935A2 (en) * 2005-05-10 2006-11-16 Noble Biomaterials, Inc. Process for creating spun yarn

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB492985A (en) * 1935-08-28 1938-09-30 Charles Sykes Improvements relating to the manufacture of metal-coated surfaces
GB518312A (en) * 1937-08-14 1940-02-23 Bosch Gmbh Robert Articles of synthetic material having metallic coatings
US2301959A (en) * 1940-09-10 1942-11-17 Du Pont Moistureproof sheet wrapping material
GB569055A (en) * 1944-06-15 1945-05-02 John Hill Watson Metallised paper and products made therefrom
US2423428A (en) * 1943-12-30 1947-07-01 American Cyanamid Co Pretreatment of cellulosic textiles with melamine formaldehyde resin
GB623357A (en) * 1943-04-30 1949-05-17 American Cyanamid Co Improvements in or relating to the coating of non-fibrous cellulosic bodies
GB698245A (en) * 1950-02-17 1953-10-14 Clark & Sons Ltd William Improvements in or relating to the finishing of textile fabrics
US2684919A (en) * 1950-02-20 1954-07-27 British Cellophane Ltd Production of moistureproof films
US2688570A (en) * 1951-02-24 1954-09-07 American Cyanamid Co Water-resistant nonfibrous regenerated cellulose and process of producing the same
US2699402A (en) * 1953-07-28 1955-01-11 Eastman Kodak Co Method for the manufacture of plastic articles having reflecting surfaces thereon

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB492985A (en) * 1935-08-28 1938-09-30 Charles Sykes Improvements relating to the manufacture of metal-coated surfaces
GB518312A (en) * 1937-08-14 1940-02-23 Bosch Gmbh Robert Articles of synthetic material having metallic coatings
US2301959A (en) * 1940-09-10 1942-11-17 Du Pont Moistureproof sheet wrapping material
GB623357A (en) * 1943-04-30 1949-05-17 American Cyanamid Co Improvements in or relating to the coating of non-fibrous cellulosic bodies
US2423428A (en) * 1943-12-30 1947-07-01 American Cyanamid Co Pretreatment of cellulosic textiles with melamine formaldehyde resin
GB569055A (en) * 1944-06-15 1945-05-02 John Hill Watson Metallised paper and products made therefrom
GB698245A (en) * 1950-02-17 1953-10-14 Clark & Sons Ltd William Improvements in or relating to the finishing of textile fabrics
US2684919A (en) * 1950-02-20 1954-07-27 British Cellophane Ltd Production of moistureproof films
US2688570A (en) * 1951-02-24 1954-09-07 American Cyanamid Co Water-resistant nonfibrous regenerated cellulose and process of producing the same
US2699402A (en) * 1953-07-28 1955-01-11 Eastman Kodak Co Method for the manufacture of plastic articles having reflecting surfaces thereon

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442697A (en) * 1965-12-28 1969-05-06 Du Pont Adherent cellulose film comprising negatively charged aldehyde
US3775157A (en) * 1971-09-24 1973-11-27 Fromson H A Metal coated structure
US4042737A (en) * 1973-11-14 1977-08-16 Rohm And Haas Company Process for producing crimped metal-coated filamentary materials, and yarns and fabrics obtained therefrom
WO1990001074A1 (en) * 1988-07-25 1990-02-08 Ultrafibre, Inc. Nonwoven insulating webs
US4933129A (en) * 1988-07-25 1990-06-12 Ultrafibre, Inc. Process for producing nonwoven insulating webs
US20040013812A1 (en) * 2000-06-29 2004-01-22 Wolfgang Kollmann Method for producing cathodes and anodes for electrochemical systems, metallised material used therein, method and device for production of said metallised material
US7344776B2 (en) * 2000-06-29 2008-03-18 Wolfgang Kollmann Method for producing cathodes and anodes for electrochemical systems, metallised material used therein, method and device for production of said metallised material
US20080261096A1 (en) * 2000-06-29 2008-10-23 Wolfgang Kollmann Method For Producing Cathodes and Anodes for Electrochemical Systems, Metallised Material Used Therein, Method and Device For Production of Said Metallised Material
WO2006121935A2 (en) * 2005-05-10 2006-11-16 Noble Biomaterials, Inc. Process for creating spun yarn
WO2006121935A3 (en) * 2005-05-10 2008-02-07 Noble Biomaterials Inc Process for creating spun yarn
US20090025359A1 (en) * 2005-05-10 2009-01-29 N Satish Chandra Process for creating spun yarn

Similar Documents

Publication Publication Date Title
US2137465A (en) Process of finishing textiles
US3676207A (en) Permanent sizing of yarns and fibers with durable polymers and copolymers for the production of fabrics with improved properties for particular end uses
US2907678A (en) Process of producing metallizing effects on textiles
US2912345A (en) Process for metallizing textile and other materials and products therefrom
US3646749A (en) Machine-washable metallized fibrous article and method of making same
US3206273A (en) Cellulosic textile finishing
US3139322A (en) Fabric resination
US3709657A (en) Wet fixation of resins in fiber systems for durable press products
US3713878A (en) Textile finishing process and product produced thereby
US3627556A (en) Durable press finish for wool/cellulosic fabrics (melamine/dihydroxy-imidazolidinone resins)
US3642428A (en) Vapor phase resin fixation process for cellulosic material permitting subsequent cure
US2921864A (en) Process for metalizing textiles and products therefrom
US2622995A (en) Process for resin impregnating cellulosic fabrics
US3484332A (en) Shrink-proof cellulosic fabric
US2769727A (en) Sizing and drying of filamentary material
US3189404A (en) Treatment of cellulosic fibre fabrics
US3128147A (en) Process for treating polynosic fibers and products obtained thereby
US3402988A (en) Chemical deactivation of catalyst at both faces of a cellulosic fabric impregnated with a resin-catalyst system to improve abrasion resistance of fabric after curing
US3445277A (en) Differential treatment for improving the shape holding properties of cellulosic fabrics
US2940863A (en) Treatment of textiles
US2876136A (en) Method of producing resinous copolymers in situ on fabrics
US3634126A (en) Process for controlling location of composition in fabrics
Welch et al. Cross-Linked Silicone Films in Textile Finishing: II. Wash-Wear and Durable-Press Cottons at Low Levels of Cellulose Cross-Linking1, 2
US3709716A (en) Wet fixation of modifying agents on fibrous systems by heating in aqueous salt solution
US2525476A (en) Process for laminating starch-free resin sized fabrics