US3772167A - Electrodeposition of metals - Google Patents
Electrodeposition of metals Download PDFInfo
- Publication number
- US3772167A US3772167A US00175771A US3772167DA US3772167A US 3772167 A US3772167 A US 3772167A US 00175771 A US00175771 A US 00175771A US 3772167D A US3772167D A US 3772167DA US 3772167 A US3772167 A US 3772167A
- Authority
- US
- United States
- Prior art keywords
- percent
- chromium
- concentration
- ions
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title abstract description 28
- 239000002184 metal Substances 0.000 title abstract description 28
- 238000004070 electrodeposition Methods 0.000 title abstract description 9
- 150000002739 metals Chemical group 0.000 title description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 149
- 239000000243 solution Substances 0.000 claims abstract description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 53
- 238000000576 coating method Methods 0.000 claims abstract description 25
- -1 halide ions Chemical class 0.000 claims abstract description 24
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 22
- 239000003960 organic solvent Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 17
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims abstract description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229960001760 dimethyl sulfoxide Drugs 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 8
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 claims abstract description 6
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011248 coating agent Substances 0.000 claims abstract description 5
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 3
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 13
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 10
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 10
- 239000004327 boric acid Substances 0.000 claims description 10
- 229910001430 chromium ion Inorganic materials 0.000 claims description 8
- 239000008139 complexing agent Substances 0.000 claims description 8
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 claims description 7
- 229910001453 nickel ion Inorganic materials 0.000 claims description 7
- 239000000010 aprotic solvent Substances 0.000 claims description 6
- 239000011780 sodium chloride Substances 0.000 claims description 6
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 claims description 3
- 238000007747 plating Methods 0.000 description 55
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 35
- 239000011651 chromium Substances 0.000 description 34
- 229910052804 chromium Inorganic materials 0.000 description 32
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 26
- 239000000203 mixture Substances 0.000 description 17
- 229940021013 electrolyte solution Drugs 0.000 description 13
- 229910052759 nickel Inorganic materials 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 11
- 239000000460 chlorine Substances 0.000 description 10
- 238000000151 deposition Methods 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 230000008021 deposition Effects 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 6
- 239000005695 Ammonium acetate Substances 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229940043376 ammonium acetate Drugs 0.000 description 5
- 235000019257 ammonium acetate Nutrition 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 4
- 150000003863 ammonium salts Chemical class 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229960000359 chromic chloride Drugs 0.000 description 3
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 150000001845 chromium compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 150000003891 oxalate salts Chemical class 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 1
- QQGNLKJAIVSNCO-UHFFFAOYSA-N N-butylformamide Chemical group CCCCNC=O QQGNLKJAIVSNCO-UHFFFAOYSA-N 0.000 description 1
- 101100258315 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) crc-1 gene Proteins 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 101100076863 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mnh1 gene Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- UIFOTCALDQIDTI-UHFFFAOYSA-N arsanylidynenickel Chemical compound [As]#[Ni] UIFOTCALDQIDTI-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000007831 chromium(III) chloride Nutrition 0.000 description 1
- 239000011636 chromium(III) chloride Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- IYWCBYFJFZCCGV-UHFFFAOYSA-N formamide;hydrate Chemical compound O.NC=O IYWCBYFJFZCCGV-UHFFFAOYSA-N 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- WHQSYGRFZMUQGQ-UHFFFAOYSA-N n,n-dimethylformamide;hydrate Chemical compound O.CN(C)C=O WHQSYGRFZMUQGQ-UHFFFAOYSA-N 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/04—Electroplating: Baths therefor from solutions of chromium
- C25D3/06—Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/04—Electroplating: Baths therefor from solutions of chromium
- C25D3/10—Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used
Definitions
- ABSTRACT The specification discloses an improved method and A 9 Claims, No Drawings ELECTRODEPOSKTKON F METALS This is a continuation-in-part of our copending applications Ser. Nos. 840,823 filed July 10, 1968 and 718,234 filed Apr. 2, 1968, both now abandoned. This invention is directed to the electrodeposition of metal coatings and to electrolyte solutions suitable for the depositions of metallic coatings.
- Chrome nickel alloy coatings have excellent resistance to oxidation and corrosion.
- Prior methods of applying such coatings have involved electrophoresis or cladding of a layer of the alloy to the metal object to be coated.
- Methods for applying such coatings by electrodeposition have been put forward, but have not been satisfactory, due, as is the case with chromium plating, to the fact that, at the pH range at which nickel is readily deposited, chromic acid solutions do not readily deposit coherent chromium coatings and solutions of trivalent chromium evolve excessive amounts of hydrogen.
- chromic acid solutions do not readily deposit coherent chromium coatings and solutions of trivalent chromium evolve excessive amounts of hydrogen.
- the general object of this invention is to provide an improved process for the electrodeposition of metallic coatings and to provide improved plating baths for use in electroplating processes.
- a particular object of the invention is to provide improved electrolyte solutions for the deposition of metallic coatings by electrolytic techniques.
- a further object of the invention is to provide metallic coatings which are characterized by improved corrosion resistance.
- Another object of the invention is to provide metallic coatings by a method characterized by improved current efficiency and throwing power.
- a further object of the invention is to provide a method for the deposition of metallic coatings by an electrolytic process characterized by reduced hydrogen evolution at the cathode during deposition.
- a still further object of the invention is to satisfy the need for chromium plating solutions capable of providing crack free deposits over a wide range of current densities and to provide chromium plating baths capable of depositing a suitable chromium deposit under conditions of adequate current efficiency, improved covering characteristics, and improved throwing power.
- a still further object of the invention is to provide an electrolyte solution for the plating of chromium nickel alloy and nickel metallic coatings.
- a still further object of the invention is to provide a method by which significantly improved coatings can be deposited upon articles of complex shape.
- the instant invention is directed to the plating of any metal which can be electroplated or deposited from solution by passing an electric current through a solution containing ions of the metal to be deposited.
- metals include chromium, manganese, iron, zinc, copper, lead, nickel, cobalt, tin, and cadmium. Chromium is of particular interest in view of its desirable appearance and high resistance to tarnish and corrosion under varied indoor and outdoor environmental conditions.
- metallic deposits particularly chromium deposits, having greatly improved corrosion resistance and exhibiting a very good appearance
- electrolytic techniques through the use of a plating bath containing chromium ions, particularly trivalent chromium ions, ammonium ions, halide ions and a homogeneous mixture of water and a dipolar organic solvent, the molecules of which contain a highly electronegative oxygen atom as hereinafter defined.
- the plating baths of this invention comprise a homogeneous mixture of water and a dipolar organic solvent, preferably a dipolar aprotic organic solvent, ammonium ions, and halide ions in addition to the ions of the metal to be deposited.
- a dipolar organic solvent preferably a dipolar aprotic organic solvent, ammonium ions, and halide ions in addition to the ions of the metal to be deposited.
- the proportion of water in the electrolyte solvent can range from about 20 to about 60 percent by volume and the amount of organic solvent can range from about 40 to about percent by volume.
- the preferred ratio of water to dipolar organic solvent is from 45 55 to about 55 45 by volume.
- dipolar organic solvent refers to an organic liquid which is capable of dissolving a substantial amount of a salt of the metal to be deposited and which does not donate a substantial amount or quantity of hydrogen ions. it is to be understood that the solvent must permit ionization of the dissolved metal salts in the bath.
- the dipolar organic molecule must contain at least one highly electronegative oxygen atom.
- suitable dipolar organic solvents include dimethylsulphoxide and tetrahydrothiophen dioxide. The oxygen atoms of these materials are activated by the electron donating prop erties of the sulphur atoms.
- a ketonic oxygen atom is not generally sufficiently electronegative to constitute a suitable dipolar organic solvent unless there is present an activating group adjacent to the carbon atom, for example, an amino group.
- compounds such as tetramethylurea, tertiary butyl formamide, and compounds of the formula R,R N.OCR wherein R R and R may be the same or different members selected from the group consisting of hydrogen atoms, aryl groups, e.g., phenyl, or alkyl groups, preferably lower alkyl, are suitable.
- Such solvents include dimethylformamide (DMF) and dimethylacetamide (DMAC). It will be appreciated that mixtures of several of the above-mentioned organic solvents may be employed.
- dipolar organic solvents are the dipolar aprotic organic solvents.
- aprotic solvents include dimethylsulphoxide, tetrahydrothiophen dioxide, tetramethylurea, dimethylacetamide and dimethylformamide.
- dimethylformamide is especially convenient. Dirnethylformamide, in addition to possessing an excellent balance of physical, chemical, toxicological, and economic properties, has shown excellent electroplating properties. Dimethylformamide is characterized by a relatively wide liquid range, a boiling point of 150 C., a high dielectric constant of about 37.5, a low vapor pressure of about 3.6 millimeters of mercury at 25 C.
- Dimethylforrnamide is also completely miscible with water in all proportions and has the ability to dissolve substantial amounts of metal salts, e.g., about 450 grams per liter of hexahydratecl chromium trichloride. Dimethylformamide also interacts with such salts to form stable complexes of the type CrCl .6DMF and CrCl .4DMF. It is important to note that because of the ability of the DMF to function as a complexing agent, no other complexing agent need be utilized.
- the metal to be deposited can be conveniently incorporated in the plating bath in a form of a metal salt which is soluble in the water-organic solvent mixture.
- Halide salts such as bromides, chlorides, or iodides, nitrates, acetates, formates, oxalates, and sulfates are suitable.
- the bromides, chlorides, and iodides with their characteristic water of hydration are preferable due to the rather limited solubility of the acetates, for mates, oxalates, sulfates, and chrome alums in the dipolar solvents.
- soiubility can be increased by the use of water concentra tions near the upper end of the ranges above mentioned.
- the physical characteristics of the solution e.g., color, pH, and viscosity, have been found to change during storage and the color and adhesion of successive metal deposits from the same bath may deteriorate.
- plating baths containing low concentrations of water have a relatively low conductivity, while solutions with higher concentration of water tend to evolve excessive amounts of hydrogen at the cathode during plating. it has been found that the presence of an ammonium salt improves the stability of the solution and reduces the tendency of the bath to evolve hydrogen at high water content.
- ammonium salts have been found to significantly reduce the effect of changes in pl-l on the lower limiting plating current density.
- the ammonium ion should be present at a concentration of at least about 0.2 molar and preferably from about 0.6 to about 1 molar.
- Solutions containing over percent by volume of dimethylformamide provide limited solubility for ammonium salts. it is therefore necessary to provide sufficient water to dissolve the required amount of ammonium salt.
- the use of about 20 percent by volume of added water and about 80 percent by volume of dimethylformamide allows solutions containing about 1 molar concentrations of ammonium ions to be prepared at 55 C.
- the preferred proportion by volume of added water to dipolar organic compound is from 10 to 5G S0.
- a prerequisite of successful chromium, chromium nickel, and nickel plating from a dipolar organic solvent is that the trivalent chromium and nickel ions shall form small moderately stable complexes with the solvent molecule. lf there is no complex formation, then the chromic and nickel salts are unlikely to be sufficiently soluble. If the complexes formed are excessively stable, then electrodeposition may be difficult. It is believed that the highly electronegative oxygen atoms which characterize the dipolar organic compounds of this invention may act as covalent links in the formation of complexes between the chromic ions and the organic molecules. Such solutions by themselves do not, however, give smooth coherent metallic deposits.
- the addition of water probably generates the polynuclear olated and oxalated chromic species usually found in solutions of trivalent chromium compounds, which again do not readily give good chromium deposits.
- the effect of the ammonium ion may be attributed to its structure-disordering properties simplifying the nature of the trivalent chromium and nickel species in solution, possibly with the formation of mononuclear Cr +DMF-H O complexes.
- the water may be pre vented from showing its full protic tendencies by reason of the formation of complexes with the dipolar or ganic molecules.
- the halogen ions may be partly solvated, although the ready evolution of chlorine at the anode indicates solvation is not complete.
- the pH of the solution should be from i to 3.5 and preferably about 2. If the pH is too low, hydrogen tends to be evolved at the cathode in preference to chromium. if the pH is too high, basic chromium compounds are liable to precipitate out.
- the pH can be adjusted by the use of hydrochloric acid or sodium hydroxide as required.
- the current efficiency of the solution may be improved by the addition of boric acid, preferably to a concentration of at least OlM.
- Boric acid is not normally soluble to the extent of more than about 0.2M.
- electroplating baths of the present invention contain a sodium halide which has been found to increase the plating range and current efficiency.
- Sodium halides are also beneficial in that they enhance the covering power of the bath. It is preferred that the sodium halide be present in a concentration of at least about 0.8 molar.
- the concentration of chromium in the solution is not critical, and is preferably about from 0.8M to 1.3M, particularly about 1M.
- Nickel ions should be present in the solution at a concentration of at least 0.05M, and a preferred concentration range is about 0.8M to 1.2M.
- the invention also provides a method of electrodepositing a chromium nickel alloy, which method comprises providing a cathode in the solution described above, and an anode, and passing an electric current through the solution so as to deposit a chromium nickel alloy on the cathode.
- Electroplating baths as described herein have useful current density ranges of from 0.5 to about 20 amperes per square decimeter, depending on the composition and temperature of the particular solution and on the desired composition of the deposited metal. Optimum current densities are generally within the range from about 6 to about amperes per square decimeter.
- the useful plating current range for a particular plating solution varies with temperature, being larger at lower temperatures. Above about 30 C. narrower plating ranges are encountered.
- the amount of organic solvent in the bath influences the plating range and the temperature at which optimum plating occurs. For example, a solution containing a high ratio of dimethylformamide to water provides suitable plating at temperatures of about 50 C. Preferred plating temperatures are in the range of 40 to 80 C.
- the composition of the alloy deposited depends on the composition of the plating solution, on the temperature and on the plating current density. in general, the higher the current density, the greater is the percentage of chromium in the alloy deposited, and the lower the current density, the greater is the percentage of nickelin the alloy deposited. This may be due to the fact that the threshold current density for plating with the two separate metals differs.
- the anode of the electroplating apparatus may be immersed in a chromium or chromium nickel solution, it is preferred that the anode be of graphite or titanium or of some other similar inert material.
- the use of graphite anodes is disadvantageous because of the evolution of chlorine gas at the anode. Since chlorine is very soluble in some of the organic solvents, particularly dimethylformamide, large concentrations of chlorine can build up in the solution.
- the use of a nickel chromium anode prevents chlorine formation, but the chromium may dissolve off as chromic acid which is liable to oxidize the DMF.
- a suitable aqueous anolyte comprises a molar solution of ammonium or sodium acetate separated from the plating solution by a porous ceramic diaphragm.
- EXAMPLE 1 Bright nickel plated copper cathodes were plated with chromium in a bath comprising 240 grams per liter of chromic chloride hexahydrate, 58 grams per liter of sodium chloride, 50 grams per liter ammonium chloride, and 8 grams per liter of boric acid, the solvent being a 50 percent by volume mixture of water and dimethylformamide (DMF).
- the bath was operated at temperatures from to 30 C., a current density of from 1 to amperes per square decimeter, and a pH from 1 to 3. Current efficiencies of up to 50 percent M Li+ (1 M ammonium acetate anolyte) tam the relative concentrations of mckel and chro- 45 were achieved.
- Plating range ratio 9.5.
- the plating performance of a triva- 1O lent organic solution according to the invention is corn- EXAMPLE 32 pared with a conventional hexavalent aqueous bath.
- DMAC Dimethylacetamide
- Plating range LS-22.5 ajdm. Plating range ratio: 5
- EXAMPLE 31 EXAMPLE 34 P 2 40 Percem DMF Solution 60
- This solution yields a dark deposit containing, approximately 20 percent chromium, 80 percent nickel.
- EXAMPLE 37 Composition Operating Conditions 1 M CrCl .6H O .0 40 l M NiCl .6H O Temperature 25C. 25 g/l Nl-LCl Current Density 100 A/Sq.ft.
- EXAMPLE 39 The invention also encompasses electrolyte solutions for nickel plating.
- electroforming applications e.g.,
- An electrolyte solution for electrodeposition of a chromium-nickel alloy on a substrate comprising at least about 40 percent of an organic dipolar aprotic solvent selected from the group consisting of dimethylformamide, dimethylsulphoxide, dimethylacetamide, tetrahydrothiophen dioxide, propylene carbonate, tetramethyl urea, and hexamethyl phosphoramide, trivalent chromium ions in a concentration of at least about 0.8M, nickel ions in a concentration of at least about 0.05M, and at least about 20 percent water.
- an organic dipolar aprotic solvent selected from the group consisting of dimethylformamide, dimethylsulphoxide, dimethylacetamide, tetrahydrothiophen dioxide, propylene carbonate, tetramethyl urea, and hexamethyl phosphoramide, trivalent chromium ions in a concentration of at least about 0.8M, nickel ions in a concentration of at least about 0.05M,
- An electrolyte solution according to claim 1 containing at least 0.2M ammonium ions, and a complexing agent which consists essentially of said organic dipolar aprotic solvent.
- An electrolyte solution according to claim 7 containing at least 0.8 M sodium chloride.
- a method for electrodepositing a chromium-nickel alloy on a substrate which comprises immersing said substrate in an electrolyte solution comprising at least about 40 percent of a dipolar aprotic organic solvent selected from the group consisting of dimethylformamide, dimethylsulphoxide, dimethylacetamide, tetrahydrothiophen dioxide, propylene carbonate, tetramethyl urea, and hexamethyl phosphoramide, trivalent chromium ions in a concentration of at least about 0.8M, nickel ions in a concentration of at least about 0.05M, ammonium ions in a concentration of at least 0.2M, from about 20 percent to about 60 percent water, and a complexing agent which consists essentially of said dipolar aprotic solvent, the pH of the solution being from about 1 to about 3.5, said solution being free of other complexing agents, and passing an electric current through said solution thereby to deposit said metal ions on a substrate in the form of a metallic coating.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1523767 | 1967-04-03 | ||
GB3297668A GB1213556A (en) | 1966-10-31 | 1968-07-10 | Electrodeposition of chromium/nickel alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
US3772167A true US3772167A (en) | 1973-11-13 |
Family
ID=26251152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00175771A Expired - Lifetime US3772167A (en) | 1967-04-03 | 1971-08-27 | Electrodeposition of metals |
Country Status (2)
Country | Link |
---|---|
US (1) | US3772167A (enrdf_load_stackoverflow) |
BE (1) | BE735856A (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184929A (en) * | 1978-04-03 | 1980-01-22 | Oxy Metal Industries Corporation | Trivalent chromium plating bath composition and process |
EP0040461A1 (en) * | 1980-04-16 | 1981-11-25 | Rolls-Royce Plc | Electroplating of titanium and titanium alloy |
US4376685A (en) * | 1981-06-24 | 1983-03-15 | M&T Chemicals Inc. | Acid copper electroplating baths containing brightening and leveling additives |
US4686017A (en) * | 1981-11-05 | 1987-08-11 | Union Oil Co. Of California | Electrolytic bath and methods of use |
US4755265A (en) * | 1985-06-28 | 1988-07-05 | Union Oil Company Of California | Processes for the deposition or removal of metals |
US4801511A (en) * | 1985-06-28 | 1989-01-31 | Union Oil Company Of California | Battery cell electrolyte |
US20220042195A1 (en) * | 2019-08-09 | 2022-02-10 | Changzhou University | Method for preparing copper-based graphene/aluminum composite wire with high electrical conductivity |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB189822622A (en) * | 1898-10-27 | 1899-10-27 | Quintin Marino | Improvements in or relating to Electrolytic Baths. |
US2693444A (en) * | 1951-02-12 | 1954-11-02 | Battelle Development Corp | Electrodeposition of chromium and alloys thereof |
US3131134A (en) * | 1961-08-03 | 1964-04-28 | Grumman Aircraft Engineering C | Electroplating from an organic electrolytic solution |
US3336658A (en) * | 1963-12-06 | 1967-08-22 | Rca Corp | Superconductive articles |
-
1969
- 1969-07-09 BE BE735856D patent/BE735856A/xx unknown
-
1971
- 1971-08-27 US US00175771A patent/US3772167A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB189822622A (en) * | 1898-10-27 | 1899-10-27 | Quintin Marino | Improvements in or relating to Electrolytic Baths. |
US2693444A (en) * | 1951-02-12 | 1954-11-02 | Battelle Development Corp | Electrodeposition of chromium and alloys thereof |
US3131134A (en) * | 1961-08-03 | 1964-04-28 | Grumman Aircraft Engineering C | Electroplating from an organic electrolytic solution |
US3336658A (en) * | 1963-12-06 | 1967-08-22 | Rca Corp | Superconductive articles |
Non-Patent Citations (1)
Title |
---|
R. D. Blue et al., Trans. Electrochemical Soc., Vol. 43, pp. 231 238, (1933). * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184929A (en) * | 1978-04-03 | 1980-01-22 | Oxy Metal Industries Corporation | Trivalent chromium plating bath composition and process |
EP0040461A1 (en) * | 1980-04-16 | 1981-11-25 | Rolls-Royce Plc | Electroplating of titanium and titanium alloy |
US4376685A (en) * | 1981-06-24 | 1983-03-15 | M&T Chemicals Inc. | Acid copper electroplating baths containing brightening and leveling additives |
US4686017A (en) * | 1981-11-05 | 1987-08-11 | Union Oil Co. Of California | Electrolytic bath and methods of use |
US4755265A (en) * | 1985-06-28 | 1988-07-05 | Union Oil Company Of California | Processes for the deposition or removal of metals |
US4801511A (en) * | 1985-06-28 | 1989-01-31 | Union Oil Company Of California | Battery cell electrolyte |
US20220042195A1 (en) * | 2019-08-09 | 2022-02-10 | Changzhou University | Method for preparing copper-based graphene/aluminum composite wire with high electrical conductivity |
Also Published As
Publication number | Publication date |
---|---|
BE735856A (enrdf_load_stackoverflow) | 1970-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106661753B (zh) | 离子液体电解质和电沉积金属的方法 | |
US3480523A (en) | Deposition of platinum-group metals | |
KR20160113610A (ko) | 3가 크롬을 포함하는 전기도금배스 및 크롬 증착 공정 | |
JP3302949B2 (ja) | 黒色ルテニウムめっき液 | |
CN102782192B (zh) | 镀铬方法 | |
US3576724A (en) | Electrodeposition of rutenium | |
US2693444A (en) | Electrodeposition of chromium and alloys thereof | |
US2250556A (en) | Electrodeposition of copper and bath therefor | |
KR910004972B1 (ko) | 주석-코발트, 주석-니켈, 주석-납 2원합금 전기도금조의 제조방법 및 이 방법에 의해 제조된 전기도금조 | |
US3772167A (en) | Electrodeposition of metals | |
US4249999A (en) | Electrolytic zinc-nickel alloy plating | |
US2990343A (en) | Chromium alloy plating | |
US3850701A (en) | Anode coated with magnetite and the manufacture thereof | |
US3793162A (en) | Electrodeposition of ruthenium | |
US4543167A (en) | Control of anode gas evolution in trivalent chromium plating bath | |
US3206382A (en) | Electrodeposition of platinum or palladium | |
CA2236933A1 (en) | Electroplating of low-stress nickel | |
JPS6141999B2 (enrdf_load_stackoverflow) | ||
US3788957A (en) | Electrodeposition of chromium | |
US3855089A (en) | Process for the electrolytic refining of heavy metals | |
JPH10130878A (ja) | 電解ニッケルめっき方法 | |
JPS5887291A (ja) | クロム電気メツキ液 | |
FR2519656A1 (fr) | Procede de revetement electrolytique de chrome trivalent sans formation d'ion chrome hexavalent, en utilisant une anode en ferrite | |
US4111760A (en) | Method and electrolyte for the electrodeposition of cobalt and cobalt-base alloys in the presence of an insoluble anode | |
US4358352A (en) | Electrodeposition of platinum from a cis-diamminedihaloplatinum (II) electrolyte |