US3763614A - Roof construction - Google Patents
Roof construction Download PDFInfo
- Publication number
- US3763614A US3763614A US00162486A US3763614DA US3763614A US 3763614 A US3763614 A US 3763614A US 00162486 A US00162486 A US 00162486A US 3763614D A US3763614D A US 3763614DA US 3763614 A US3763614 A US 3763614A
- Authority
- US
- United States
- Prior art keywords
- roof
- layer
- water
- insulating layer
- deck
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010276 construction Methods 0.000 title description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000010410 layer Substances 0.000 claims description 72
- 239000000463 material Substances 0.000 claims description 25
- 239000006260 foam Substances 0.000 claims description 19
- 230000001413 cellular effect Effects 0.000 claims description 13
- 239000011810 insulating material Substances 0.000 claims description 12
- 239000011241 protective layer Substances 0.000 claims description 10
- 239000010440 gypsum Substances 0.000 claims description 8
- 229910052602 gypsum Inorganic materials 0.000 claims description 8
- 239000012784 inorganic fiber Substances 0.000 claims description 4
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 abstract description 22
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 239000002184 metal Substances 0.000 abstract description 15
- 238000009413 insulation Methods 0.000 abstract description 9
- 230000009970 fire resistant effect Effects 0.000 abstract description 6
- 239000012528 membrane Substances 0.000 description 26
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 239000010426 asphalt Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229920006327 polystyrene foam Polymers 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 239000002984 plastic foam Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000011398 Portland cement Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 229920006248 expandable polystyrene Polymers 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- IQYKECCCHDLEPX-UHFFFAOYSA-N chloro hypochlorite;magnesium Chemical compound [Mg].ClOCl IQYKECCCHDLEPX-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 239000011494 foam glass Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000005335 volcanic glass Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/16—Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
- E04D13/1606—Insulation of the roof covering characterised by its integration in the roof structure
- E04D13/1662—Inverted roofs or exteriorly insulated roofs
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D11/00—Roof covering, as far as not restricted to features covered by only one of groups E04D1/00 - E04D9/00; Roof covering in ways not provided for by groups E04D1/00 - E04D9/00, e.g. built-up roofs, elevated load-supporting roof coverings
- E04D11/02—Build-up roofs, i.e. consisting of two or more layers bonded together in situ, at least one of the layers being of watertight composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
- Y10T428/249968—Of hydraulic-setting material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249976—Voids specified as closed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249987—With nonvoid component of specified composition
Definitions
- ABSTRACT A roof is prepared wherein the water barrier layer is placed on a metal roof deck and waterproof thermal insulation is placed over the water barrier layer.
- a non-combustible fire resistant insulating layer is disposed beneath the water resistant layers and above the meta! [90 s19 ,-.Ih2.y. &t9r t layeris not jected to the extremes of tfiiatufiiiraee11 countered when the water.
- barrier layer is the outermost element of the roof structure and the structure is resistant to fire originating above or below the metal deck.
- thermoplastic organic materials such as asphalt and plastic foam are employed for such a construction on a metal roof deck such as a steel roof deck
- substantial difficulties occur when the structure is subjected to an internal fire.
- the moisture barrier membrane such as a felt-asphalt built-up membrane and a thermoplastic foam insulation become heat plastified and can result in flaming drips from roof edges and fissures between the roof decking members.
- a roof structure which comprises a roof support means and metal roof deck having an upper surface and a lower surface, a fire resistant insulating layer disposed on a metal deck, a water barrier membrane disposed adjacent the fire resistant insulating layer on the upper side thereof, the water barrier containing heat softening organic combustible material, a layer of thermal insulation, the layer of thermal insulation comprising closed-celled water impervious cellular insulating material affixed to the roof membrane.
- Also contemplated within the scope of the present invention is a method of preparing a roof comprising disposed upon the upper surface of a metal roof deck a non-combustible thermally insulating layer and above the non-combustible insulating layer a water impermeable membrane, disposing upon the membrane a closed cell water impermeable insulating foam.
- FIGURE schematically depicts an isometric schematic cutaway view of a roof structure.
- FIG. 1 there is illustrated a schematic, isometric representation of a roof structure generally in accordance with the present invention designated by the reference numeral 10.
- the roof structure 10 comprises in cooperative combination a metal roof deck 11.
- the roof deck 11 has an upper surface 12 and a lower surface 13.
- the roof deck 11 has supported means 11a.
- a non-combustible thermally insulating layer 14 is affixed directly to the upper surface 12 of the deck 11.
- Affixed to the insulating layer 14 is a water or moisture barrier layer 15.
- the water impermeable membrane 15 may comprise a plurality of alternating layers of felt and a bituminous material or asphalt.
- a thermal insulating layer 16 having a lower surface 17 and an upper surface 18 is adhered to the surface of the barrier layer 15 remote from the roof deck surface 12.
- the thermal insulating layer 16 is of closed cell configuration and is water resistant and water impermeable.
- a protective layer 19 is disposed on the surface 18 of the thermal insulating layer 16.
- the roof deck or metal roof support means may be prepared from steel, aluminum sheet or mesh.
- steel sheet is employed which has formed therein a plurality of ribs which give excellent stiffness without undue weight.
- the roof deck may be supported in any convenient manner such as by being firmly affixed to the support means or beam by means of nails, screws, bolts and the like.
- the roof decking may be of panels and readily inserted into suitable recesses in a framework and prepared by like methods well known to the art.
- the non-combustible first or lower insulating layer may comprise or consist of any one of a variety of materials such as cement/asbestos board, gypsum board, foamed glass, ceramic foam, thermoset plastic foam scuh as phenolic resin foam, epoxy resin foam and the like.
- a particularly advantageous non-combustible insulating layer is board prepared from a mixture of gypsum, inorganic fibers such as glass fibers and expanded mica such as vermiculite. Such a composite gypsum board provides excellent fire resistance to the roof structure of the invention.
- the water impermeable membrane may comprise or consist of a wide variety of water impermeable materials including conventional asphaltic and bituminous compositions employedfor roofing as well as laminates of the bituminous material with fibrous products such as roofing felt employing organic or inorganic fibers.
- felt and bituminous materials may be applied in alternating layers to provide a water impermeable membrane of the desired thickness and mechanical strength to resist movement of the roof deck and associated supporting structure.
- a water impermeable membrane can be formed of synthetic thermoplastic resinous film or sheet such as polyethylene, polyvinyl chloride, chlorinated polyethylene and the like which is adhered to the roof deck by a suitable adhesive.
- One or more layers of such material may be employed, depending on the characteristics which are desired from the finished structure.
- the upper or second thermal insulating layer employed in the practice of the present invention beneficially is a closed cellular material which is substantially water impermeable.
- Particularly beneficial and advantageous for use in the present invention are cellular plastic foams of a closed cell configuration including styrene polymer foams, styrene/acrylonitrile copolymer foams, styrene/methylmethacrylate copolymer foams, polyvinyl chloride foams, polyethylene foams and other water impermeable materials available in cellular foam form which are well known to the art.
- Foam glass is particularly advantageous when it is desired to omit a protective layer over the thermal insulating material.
- a protective layer beneficially is employed when synthetic resinous organic cellular thermal insulating layers are utilized. Such organic materials are generally subjected to decomposition when exposed to weather and more particularly when exposed to sunlight. Therefore, it is advantageous to place a protective layer on the outside surface of thermal insulating layer.
- such a protective layer may comprise or consist of a particulate inorganic material such as gravel, spread over the foam layer, or if desired, a relatively thin weather and sun-proof protective coating is readily provided by employing an inorganic mortar such as is formed from a mixture of portland cement and sand and is spread thinly upon the surface of the insulating layer in such a manner as to provide protection from the sun and the weather.
- an inorganic mortar such as is formed from a mixture of portland cement and sand and is spread thinly upon the surface of the insulating layer in such a manner as to provide protection from the sun and the weather.
- the metal roof deck is affixed to the suitable support means or structure
- the noncombustible layer is affixed to the uppermost surface of the metal roof deck and the water resistant membrane applied to the non-combustible insulating layer; for example, by applying a layer of bituminous material thereto, applying a suitable roofing felt to the bituminous material and providing the repeated applications of roofing felt and bituminous material until a suitable membrane is formed.
- the uppermost or closed cell thennal insulating layer is joined to the water impermeable membrane by the use of the same or different bituminous composition employed in preparing the water resistant membrane while the bituminous material is in a heat plastified condition, pressing planks or sheets of the heat insulating material into the bituminous layer to provide a suitable bond.
- bituminous composition employed in preparing the water resistant membrane while the bituminous material is in a heat plastified condition
- pressing planks or sheets of the heat insulating material into the bituminous layer to provide a suitable bond.
- the bituminous material when foamed polystyrene sheets are utilized as the heat insulating layer, it is generally desirable that the bituminous material have a temperature not greatly in excess of about 100 C., in order that undue distortion or melting of the polystyrene foam insulating material occur. It is essential and critical to the practice of the present invention that the insulating layer be of a closed cell configuration. The particular density or physical strength of such an insulating material need only be sufficient to meet the mechanical demands of the particular installation. Generally, foamed polystyrene sheets having a density of about 1.5 pounds per cubic foot are adequate for roof installations which are not subject to heavy foot traffic.
- the insulating layer If lower density and/or lower physical strength closed cell foamed materials are employed as the insulating layer, it is often desirable to provide the protective layer of sufficient strength to resist mechanical damage. Thus, in a region where little or no foot traffic is expected on a roof, a loose gravel coating is applied directly over the closed cell thermal insulated layer and provides adequate protection; however, in regions where frequent or heavy foot traffic occurs, it is often desirable to employ a layer of cementitious material as is obtained from a mixture of portland cement, sand and water or magnesium oxychloride cement and the like.
- the protective layer be resistant to the passage of moisture, nor is it essential that the insulating layer have a surface which prevents moisture from contacting the water resistant membrane.
- thermal insulating panels such as planks or sheets or cellular polystyrene or other cellular material are positioned adjacent each other in edge to edge relationship and no attempt has been made to seal the cracks or fissures therebetween.
- shrinkage of the foam occurs wherein the foam cracks in random patterns similar to mud cracking and mortar on the surface thereof ruptures in a similar pattern. Such cracking does not appear to cause loss of serviceability or desirability of the roof structure.
- Roof structures in accordance with the invention do not appear subject to damage by freezing of water in the minor spaces between adjacent foam insulating elements.
- the foam insulating elements appear to have sufficient resilience to resist rupturing by the expansion of freezing water in crevices. Furthermore, in installations on a heated building the temperature adjacent the water resistant membrane usually does not reach freezing temperatures. In buildings having a roof applied in accordance with the present invention, little or no tendency is observed for moisture to condense on the inner surface of the roof deck.
- the thermal conductivity of the lower or noncombustible insulating layer will be from about percent to about 1,000 percent of the upper or closed cell insulating layer, and most beneficially from about 100 percent to 500 percent.
- the normal temperature cycling of the membrane layer will be relatively small compared to the cycling of the ambient external temperature while reasonable protection from internal fire is obtained; i.e., a time lag of many minutes is obtained between initiation of the fire and melting of the moisture barrier layer and/or the closed cell insulating layer.
- a plurality of roof panels are evaluated for fire resistance by evaluating the panels for life in a test furnace.
- the furnace is a hollow, square, firebrick structure having an upper opening 12 inches square. All samples are prepared using a 14 inch square of 22 gauge (about 0.025 inch) steel roof deck sheet having I-% inch deep by 1 inch rectangular ribs formed therein by adhering on a sheet 6 inches.
- ribs are removed adjacent the edges thereof so that the ribs fit into the upper opening of the furnace.
- a plurality of roof panels are prepared, each having the general structure shown in the FIGURE.
- the moisture barrier layer is three layers of pounds per square roofing felt, each layer of felt being bonded to adjacent layers (including both insulating layers) by asphalt.
- the closed cell insulating layer is one inch thick polystyrene foam having a density of about two pounds per cubic foot.
- the upper surface of the polystyrene foam is covered with pebbles to provide a coating weight of 0.] pound.
- a propane gas burner is positioned within the furnace; the burner is upwardly facing and is about 4 inches below the ribs of the steel roof deck sheet.
- a thermocouple is positioned immediately below the steel deck sheet and temperatures indicated during evaluation of the samples at given times are as follows:
- Sample failure is considered to be ignition of the combustible asphalt or polystyrene foam or collapse of the polystyrene foam.
- roofs are prepared by disposing closed cellular water resistant insulating material above a water impermeable membrane from a roof structure, such insulating materials including foamed glass, foamed polyethylene, foamed copolymers of styrene/acrylonitrile and the like.
- a roof structure comprising a roof support means and a metal roof deck having an upper surface and a lower surface,
- a water barrier membrane disposed adjacent the fire resistant insulating layer and on the upper side thereof and remote from the roof deck, the water barrier layer containing heat softening, organic, combustible material,
- thermal insulation a layer of thermal insulation affixed to the water barrier membrane, the thermal insulation comprising closed-cell, water impervious cellular insulating material affixed to the water barrier membrane.
- the roof of claim 1 wherein the water impermeable layer comprises a plurality of layers of bituminous material and roofing felt.
- the roof of claim 1 including a protective layer disposed on the uppermost surface of the closed-cell insulating material.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
- Building Environments (AREA)
- Laminated Bodies (AREA)
Abstract
A roof is prepared wherein the water barrier layer is placed on a metal roof deck and waterproof thermal insulation is placed over the water barrier layer. A non-combustible fire resistant insulating layer is disposed beneath the water resistant layers and above the metal roof deck. The water barrier layer is not subjected to the extremes of temperature that are encountered when the water barrier layer is the outermost element of the roof structure and the structure is resistant to fire originating above or below the metal deck.
Description
United States Patent 1191 Hyde et al.
1 ROOF CONSTRUCTION [75] Inventors: Mike Arthur Hyde; Peter Denton Chalmers, both of Sarnia, Ontario; Walter Blair Mackie, Vancouver, VBP HPQlPWUEElL911 211202..
[73] Assignee: The Dow Chemical Company,
Midland, Mich.
[22] Filed: July 14, 197 1 [2!] Appl. No.: 162,486
[52] U.S. Cl 52/309, 552/408, 156/71 [51 Int. Cl E04b 7/00, E04b 1/66 [58] Field of Search 52/309, 408;
[56] References Cited UNITED STATES PATENTS Best 52/408 [4 Oct. 9, 1973 3,466,222 9/1969 Curtis 52/408 X 3,616,173 10/1971 Green et al. 2,861,525 11/1958 Curtis et al. 52/309 Primary Examiner-Alfred C. Perham Attorney-Richard G. Waterman et al.
[57] ABSTRACT A roof is prepared wherein the water barrier layer is placed on a metal roof deck and waterproof thermal insulation is placed over the water barrier layer. A non-combustible fire resistant insulating layer is disposed beneath the water resistant layers and above the meta! [90 s19 ,-.Ih2.y. &t9r t layeris not jected to the extremes of tfiiatufiiiraee11 countered when the water. barrier layer is the outermost element of the roof structure and the structure is resistant to fire originating above or below the metal deck.
5 Claims, 1 Drawing Figure ROOF CONSTRUCTION i Built-up roofing has been employed for many years, wherein a roof deck supports a weatherproof membrane where often the weatherproof membrane comprises a plurality of felt and bitumen layers which prevent the penetration of moisture of the roof deck. Oftentimes it is desirable that such a roof be insulated and various insulatingmaterials and methods have been utilized to accomplish this end. For example, oftentimes insulation is positioned below the roof deck on the interiorof the building between rafters or similar roof deck support means. Frequently an insulating body such cellular glass, fiber board, plastic foams and the like are positioned on the upper surface of the roof deck and subsequently covered with alternating layers of felt and bitumen to provide a water resistant membrane. Gravel or like material is then spread upon the roof to provide protection from the sun. Considerable difficulty over many years has been encountered with such built-uproofs. Cracking of the water impermeable membrane often occurs and is probably due to the loss of volatile components from the bituminous material. Direct damage from foot traffic, condensation during cold weather on or about the roof deck, on the underside toward the building, are some of the many causes of failure of this type of roof. Many of these problems have been overcome by the use of the roof structure set forth in US. Pat. No. 3,411,256 wherein the barrier layer is positioned on the roof deck and the insulation layer above the barrier layer. When thermoplastic organic materials such as asphalt and plastic foam are employed for such a construction on a metal roof deck such as a steel roof deck, substantial difficulties occur when the structure is subjected to an internal fire. Usually within very few minutes the moisture barrier membrane such as a felt-asphalt built-up membrane and a thermoplastic foam insulation become heat plastified and can result in flaming drips from roof edges and fissures between the roof decking members.
It would be beneficial if there were available an improved roof structure and method of preparing such a roof structure which would preserve the integrity of the water barrier or barrier membrane and offer substantial resistance to internal fire.
Further, it would be advantageous if there were available a simplified roof structure and method of forming such a roof structure having improved properties.
These benefits and other advantages in accordance with the present invention are achieved in a roof structure which comprises a roof support means and metal roof deck having an upper surface and a lower surface, a fire resistant insulating layer disposed on a metal deck, a water barrier membrane disposed adjacent the fire resistant insulating layer on the upper side thereof, the water barrier containing heat softening organic combustible material, a layer of thermal insulation, the layer of thermal insulation comprising closed-celled water impervious cellular insulating material affixed to the roof membrane.
Also contemplated within the scope of the present invention is a method of preparing a roof comprising disposed upon the upper surface of a metal roof deck a non-combustible thermally insulating layer and above the non-combustible insulating layer a water impermeable membrane, disposing upon the membrane a closed cell water impermeable insulating foam.
Further features and advantages of the present invention will become more apparent from the following specification when taken in connection with the drawing wherein the FIGURE schematically depicts an isometric schematic cutaway view of a roof structure.
In the FIGURE there is illustrated a schematic, isometric representation of a roof structure generally in accordance with the present invention designated by the reference numeral 10. The roof structure 10 comprises in cooperative combination a metal roof deck 11. The roof deck 11 has an upper surface 12 and a lower surface 13. The roof deck 11 has supported means 11a. A non-combustible thermally insulating layer 14 is affixed directly to the upper surface 12 of the deck 11. Affixed to the insulating layer 14 is a water or moisture barrier layer 15. Beneficially, the water impermeable membrane 15 may comprise a plurality of alternating layers of felt and a bituminous material or asphalt. A thermal insulating layer 16 having a lower surface 17 and an upper surface 18 is adhered to the surface of the barrier layer 15 remote from the roof deck surface 12. The thermal insulating layer 16 is of closed cell configuration and is water resistant and water impermeable. A protective layer 19 is disposed on the surface 18 of the thermal insulating layer 16. A plurality of spaces or fissures 20 is defined by the layer 16.
A wide variety of materials may be employed in the preparation of roofs in accordance with the roof and the method of the present invention. The roof deck or metal roof support means may be prepared from steel, aluminum sheet or mesh. Advantageously, steel sheet is employed which has formed therein a plurality of ribs which give excellent stiffness without undue weight.
The roof deck may be supported in any convenient manner such as by being firmly affixed to the support means or beam by means of nails, screws, bolts and the like. The roof decking may be of panels and readily inserted into suitable recesses in a framework and prepared by like methods well known to the art.
The non-combustible first or lower insulating layer may comprise or consist of any one of a variety of materials such as cement/asbestos board, gypsum board, foamed glass, ceramic foam, thermoset plastic foam scuh as phenolic resin foam, epoxy resin foam and the like. A particularly advantageous non-combustible insulating layer is board prepared from a mixture of gypsum, inorganic fibers such as glass fibers and expanded mica such as vermiculite. Such a composite gypsum board provides excellent fire resistance to the roof structure of the invention.
The water impermeable membrane may comprise or consist of a wide variety of water impermeable materials including conventional asphaltic and bituminous compositions employedfor roofing as well as laminates of the bituminous material with fibrous products such as roofing felt employing organic or inorganic fibers. Beneficially, such felt and bituminous materials may be applied in alternating layers to provide a water impermeable membrane of the desired thickness and mechanical strength to resist movement of the roof deck and associated supporting structure. In certain instances, a water impermeable membrane can be formed of synthetic thermoplastic resinous film or sheet such as polyethylene, polyvinyl chloride, chlorinated polyethylene and the like which is adhered to the roof deck by a suitable adhesive. 1
One or more layers of such material may be employed, depending on the characteristics which are desired from the finished structure.
The upper or second thermal insulating layer employed in the practice of the present invention beneficially is a closed cellular material which is substantially water impermeable. Particularly beneficial and advantageous for use in the present invention are cellular plastic foams of a closed cell configuration including styrene polymer foams, styrene/acrylonitrile copolymer foams, styrene/methylmethacrylate copolymer foams, polyvinyl chloride foams, polyethylene foams and other water impermeable materials available in cellular foam form which are well known to the art. Foam glass is particularly advantageous when it is desired to omit a protective layer over the thermal insulating material. A protective layer beneficially is employed when synthetic resinous organic cellular thermal insulating layers are utilized. Such organic materials are generally subjected to decomposition when exposed to weather and more particularly when exposed to sunlight. Therefore, it is advantageous to place a protective layer on the outside surface of thermal insulating layer.
Beneficially, such a protective layer may comprise or consist of a particulate inorganic material such as gravel, spread over the foam layer, or if desired, a relatively thin weather and sun-proof protective coating is readily provided by employing an inorganic mortar such as is formed from a mixture of portland cement and sand and is spread thinly upon the surface of the insulating layer in such a manner as to provide protection from the sun and the weather. In certain instances, depending on weather conditions and pitch of the roof, it may be desirable to provide an intermediate or bonding layer to adhere the protective layer to the thermal insulating layer.
In preparation of roof structures in accordance with the invention, usually the metal roof deck is affixed to the suitable support means or structure, the noncombustible layer is affixed to the uppermost surface of the metal roof deck and the water resistant membrane applied to the non-combustible insulating layer; for example, by applying a layer of bituminous material thereto, applying a suitable roofing felt to the bituminous material and providing the repeated applications of roofing felt and bituminous material until a suitable membrane is formed. Advantageously, the uppermost or closed cell thennal insulating layer is joined to the water impermeable membrane by the use of the same or different bituminous composition employed in preparing the water resistant membrane while the bituminous material is in a heat plastified condition, pressing planks or sheets of the heat insulating material into the bituminous layer to provide a suitable bond. When employing a heat insulating layer of a thermoplastic synthetic resinous material, it is necessary that the bituminous material not have a temperature sufficiently high to destroy a large portion or proportion of the cellular insulating material. For example, when foamed polystyrene sheets are utilized as the heat insulating layer, it is generally desirable that the bituminous material have a temperature not greatly in excess of about 100 C., in order that undue distortion or melting of the polystyrene foam insulating material occur. It is essential and critical to the practice of the present invention that the insulating layer be of a closed cell configuration. The particular density or physical strength of such an insulating material need only be sufficient to meet the mechanical demands of the particular installation. Generally, foamed polystyrene sheets having a density of about 1.5 pounds per cubic foot are adequate for roof installations which are not subject to heavy foot traffic. If lower density and/or lower physical strength closed cell foamed materials are employed as the insulating layer, it is often desirable to provide the protective layer of sufficient strength to resist mechanical damage. Thus, in a region where little or no foot traffic is expected on a roof, a loose gravel coating is applied directly over the closed cell thermal insulated layer and provides adequate protection; however, in regions where frequent or heavy foot traffic occurs, it is often desirable to employ a layer of cementitious material as is obtained from a mixture of portland cement, sand and water or magnesium oxychloride cement and the like.
It is not essential that the protective layer be resistant to the passage of moisture, nor is it essential that the insulating layer have a surface which prevents moisture from contacting the water resistant membrane.
Beneficially, in the fabrication of a roof in accordance with the present invention, thermal insulating panels such as planks or sheets or cellular polystyrene or other cellular material are positioned adjacent each other in edge to edge relationship and no attempt has been made to seal the cracks or fissures therebetween. Indeed, in some installations employing incompletely cured or stabilized synthetic resinous foams, shrinkage of the foam occurs wherein the foam cracks in random patterns similar to mud cracking and mortar on the surface thereof ruptures in a similar pattern. Such cracking does not appear to cause loss of serviceability or desirability of the roof structure.
Roof structures in accordance with the invention do not appear subject to damage by freezing of water in the minor spaces between adjacent foam insulating elements. The foam insulating elements appear to have sufficient resilience to resist rupturing by the expansion of freezing water in crevices. Furthermore, in installations on a heated building the temperature adjacent the water resistant membrane usually does not reach freezing temperatures. In buildings having a roof applied in accordance with the present invention, little or no tendency is observed for moisture to condense on the inner surface of the roof deck. Generally for most applications the thermal conductivity of the lower or noncombustible insulating layer will be from about percent to about 1,000 percent of the upper or closed cell insulating layer, and most beneficially from about 100 percent to 500 percent. Thus, the normal temperature cycling of the membrane layer will be relatively small compared to the cycling of the ambient external temperature while reasonable protection from internal fire is obtained; i.e., a time lag of many minutes is obtained between initiation of the fire and melting of the moisture barrier layer and/or the closed cell insulating layer.
By way of further illustration, a plurality of roof panels are evaluated for fire resistance by evaluating the panels for life in a test furnace. The furnace is a hollow, square, firebrick structure having an upper opening 12 inches square. All samples are prepared using a 14 inch square of 22 gauge (about 0.025 inch) steel roof deck sheet having I-% inch deep by 1 inch rectangular ribs formed therein by adhering on a sheet 6 inches. The
ribs are removed adjacent the edges thereof so that the ribs fit into the upper opening of the furnace. A plurality of roof panels are prepared, each having the general structure shown in the FIGURE. In each sample the moisture barrier layer is three layers of pounds per square roofing felt, each layer of felt being bonded to adjacent layers (including both insulating layers) by asphalt. The closed cell insulating layer is one inch thick polystyrene foam having a density of about two pounds per cubic foot. The upper surface of the polystyrene foam is covered with pebbles to provide a coating weight of 0.] pound. A propane gas burner is positioned within the furnace; the burner is upwardly facing and is about 4 inches below the ribs of the steel roof deck sheet. A thermocouple is positioned immediately below the steel deck sheet and temperatures indicated during evaluation of the samples at given times are as follows:
TIME IN Five samples are prepared employing the following materials as the layer 14 of the FIGURE, together with the time in minutes to sample failure. Sample failure is considered to be ignition of the combustible asphalt or polystyrene foam or collapse of the polystyrene foam.
TABLE Time to failure Sample Material of layer 14 (minutes) Remarks 1 34 inch thick gypsum board Did not fail in 30 containing about 12 perminutes. cent glass fibers and verm ite. 2 M inch thick gypsum board. 3... W. 1 inch wood flber board... 4 1 inch composite board of mineral h or and expandod volcanic glass commerolally available under the trade designation of Fescoboard. 5 Layer 14 omitted 17 20 Fire and smoke. 13 Do.
2 Fonn collapsed;
asphalt bubbled.
In a manner similar to the foregoing illustration, other beneficial and advantageous roofs are prepared by disposing closed cellular water resistant insulating material above a water impermeable membrane from a roof structure, such insulating materials including foamed glass, foamed polyethylene, foamed copolymers of styrene/acrylonitrile and the like.
As is apparent from the foregoing specification, the present invention is susceptible of being embodied with various alterations and modifications which may differ particularly from those that have been described in the preceding specification and description. For this reason, it is to be fully understood that all of the foregoing is intended to be merely illustrative and is not to be construed or interpreted as being restrictive or otherwise limiting of the present invention.
What is claimed is:
l. A roof structure, the roof structure comprising a roof support means and a metal roof deck having an upper surface and a lower surface,
a fire resistant, thermally insulating layer of gypsum board disposed on the metal deck,
a water barrier membrane disposed adjacent the fire resistant insulating layer and on the upper side thereof and remote from the roof deck, the water barrier layer containing heat softening, organic, combustible material,
a layer of thermal insulation affixed to the water barrier membrane, the thermal insulation comprising closed-cell, water impervious cellular insulating material affixed to the water barrier membrane.
2. The roof of claim 1 wherein the water impermeable layer comprises a plurality of layers of bituminous material and roofing felt.
3. The roof of claim 1 wherein the cellular insulating layer is a synthetic resinous foam.
4. The roof of claim 1 wherein the gypsum board contains inorganic fibers and expanded mica.
5. The roof of claim 1 including a protective layer disposed on the uppermost surface of the closed-cell insulating material.
Claims (4)
- 2. The roof of claim 1 wherein the water impermeable layer comprises a plurality of layers of bituminous material and roofing felt.
- 3. The roof of claim 1 wherein the cellular insulating layer is a synthetic resinous foam.
- 4. The roof of claim 1 wherein the gypsum board contains inorganic fibers and expanded mica.
- 5. The roof of claim 1 including a protective layer disposed on the uppermost surface of the closed-cell insulating material.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16248671A | 1971-07-14 | 1971-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3763614A true US3763614A (en) | 1973-10-09 |
Family
ID=22585822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00162486A Expired - Lifetime US3763614A (en) | 1971-07-14 | 1971-07-14 | Roof construction |
Country Status (13)
Country | Link |
---|---|
US (1) | US3763614A (en) |
JP (1) | JPS5641779B1 (en) |
AT (1) | AT322163B (en) |
AU (1) | AU459657B2 (en) |
BE (1) | BE786217A (en) |
CA (1) | CA953870A (en) |
CH (1) | CH550297A (en) |
DE (1) | DE2234052A1 (en) |
FR (1) | FR2145481B1 (en) |
GB (1) | GB1370872A (en) |
NL (1) | NL7209308A (en) |
NO (1) | NO136654C (en) |
SE (1) | SE384240B (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3868296A (en) * | 1973-04-27 | 1975-02-25 | Gen Electric | Plastic wall construction as a wall unit |
US3882475A (en) * | 1972-12-04 | 1975-05-06 | Robert J Moore | Control of roofing procedure |
US3892899A (en) * | 1973-07-19 | 1975-07-01 | Paul P Klein | Roof construction |
US3965633A (en) * | 1974-04-04 | 1976-06-29 | Decks, Incorporated | Insulated roofing structure and method |
US4019296A (en) * | 1975-12-12 | 1977-04-26 | The Dow Chemical Company | Facade clad buildings and method |
US4045934A (en) * | 1975-04-11 | 1977-09-06 | The Dow Chemical Company | Roof and method of preparation |
DE2705032A1 (en) * | 1976-03-01 | 1977-09-08 | Armstrong Cork Co | BUILDING ELEMENT, IN PARTICULAR PARTITION WALL, CEILING OR ROOF CONSTRUCTION |
US4189886A (en) * | 1974-07-01 | 1980-02-26 | W. R. Grace & Co. | Ventilated insulated roofing system |
US4242406A (en) * | 1979-04-30 | 1980-12-30 | Ppg Industries, Inc. | Fiber reinforced composite structural laminate composed of two layers tied to one another by embedded fibers bridging both layers |
US4272936A (en) * | 1979-01-02 | 1981-06-16 | Bonaguidi Orland H | Inverted roof system |
US4274238A (en) * | 1978-08-23 | 1981-06-23 | Southern Chemicals Limited | Roof structure |
US4282050A (en) * | 1978-08-11 | 1981-08-04 | Isola Fabrikker A/S | Procedure for covering roofs |
US4288951A (en) * | 1979-11-14 | 1981-09-15 | Scientific Applications Incorporated | Auxiliary insulated roof system |
US4425746A (en) | 1979-01-02 | 1984-01-17 | Bonaguidi Orland H | Inverted roof system |
US4441295A (en) * | 1981-04-30 | 1984-04-10 | Kelly Thomas L | Grid system adhering technique and method of practicing same |
US4449336A (en) * | 1980-06-19 | 1984-05-22 | Kelly Thomas L | Fire barrier reservoir |
US4521478A (en) * | 1984-08-20 | 1985-06-04 | Hageman John P | In situ roofing composite and method |
US4530193A (en) * | 1984-07-16 | 1985-07-23 | Minnesota Diversified Products, Inc. | Built-up roof structure and method of preparing roof structure |
WO1986001245A1 (en) * | 1984-08-10 | 1986-02-27 | The Dow Chemical Company | Lightweight roofing system |
US4602396A (en) * | 1984-09-13 | 1986-07-29 | Richard Fraige | Waterbed flotation system with vapor barrier |
US4609305A (en) * | 1982-08-23 | 1986-09-02 | 501 Beheermaatschappij H.D. Groeneveld B.V. | Floor for use in off-shore technique and ship building |
US4628653A (en) * | 1981-07-10 | 1986-12-16 | Fabcon, Inc. | Insulated concrete panel |
US4674245A (en) * | 1984-03-19 | 1987-06-23 | Diversitech Corporation | Roof walkway panel |
US4707961A (en) * | 1985-07-19 | 1987-11-24 | Loadmaster Systems, Inc. | Composite roof/roof deck assembly with polymeric membrane |
US4712349A (en) * | 1984-12-24 | 1987-12-15 | The Dow Chemical Company | Protected membrane roof system for high traffic roof areas |
US4736561A (en) * | 1981-12-14 | 1988-04-12 | Loadmaster Systems, Inc. | Roof deck construction |
US4747247A (en) * | 1986-09-19 | 1988-05-31 | The Dow Chemical Company | Roof system |
US4783942A (en) * | 1985-10-18 | 1988-11-15 | Loadmaster Systems, Inc. | Composite roof deck assembly with polymeric membrane adhered to fiberglass mat |
US4804578A (en) * | 1988-07-27 | 1989-02-14 | Old Reliable Wholesale, Inc. | Insulated roof board |
US4947603A (en) * | 1987-09-16 | 1990-08-14 | Alois Goertz | Unitary foam/gravel roof |
US5069950A (en) * | 1990-04-11 | 1991-12-03 | Old Reliable Wholesale, Inc. | Insulated roof board |
US5584153A (en) * | 1994-03-29 | 1996-12-17 | Loadmaster Systems, Inc. | Composite roof system with an improved anchoring mechanism |
US5768841A (en) * | 1993-04-14 | 1998-06-23 | Swartz & Kulpa, Structural Design And Engineering | Wallboard structure |
WO1999002794A1 (en) | 1997-07-09 | 1999-01-21 | Bridgestone/Firestone, Inc. | Metal roof sealing system and method |
WO1999022935A1 (en) * | 1997-11-03 | 1999-05-14 | Raphael Heifetz | Sealing sheet assembly for construction surfaces and methods of making and applying same |
US6128879A (en) * | 1995-10-24 | 2000-10-10 | Cpi Packaging, Inc. | Insulation barrier |
US6427404B1 (en) * | 1998-12-22 | 2002-08-06 | Palisades Atlantic Corporation | Base sheet for retrofitting existing roofing |
US20020129745A1 (en) * | 2001-03-16 | 2002-09-19 | Semmens Blaine K. | Lightweight cementitious composite material |
US20040107662A1 (en) * | 2002-02-01 | 2004-06-10 | Georgeau Philip C. | Roofing system and method |
US6941715B2 (en) * | 1999-07-02 | 2005-09-13 | John Potter | Prefabricated modular building component |
US20060096211A1 (en) * | 2002-05-23 | 2006-05-11 | Stefaan Verheyen | Compact roof-covering system |
US20060096213A1 (en) * | 2004-11-09 | 2006-05-11 | Griffin Christopher J | Prefabricated multi-layer roofing panel and system |
US20060150573A1 (en) * | 2004-12-23 | 2006-07-13 | Elliott Albert C Jr | Method of framing a building shear wall structure compatible with conventional interior or exterior finishing materials and subsurface panel for use therewith |
EP1739246A1 (en) * | 2005-06-30 | 2007-01-03 | United States Gypsum Company | Corrugated steel deck system including acoustic features |
US20070092708A1 (en) * | 2005-10-24 | 2007-04-26 | Gleich Klaus F | Processes for forming a fiber-reinforced product |
US20070130862A1 (en) * | 2005-11-29 | 2007-06-14 | Semmens Blaine K | Roofing system and apparatus for applying rolled roofing material |
US20070130864A1 (en) * | 2005-11-29 | 2007-06-14 | Semmens Blaine K | Roofing system |
WO2009094075A1 (en) * | 2008-01-24 | 2009-07-30 | Carlisle Intangible Company | Ballasted storm water retention system |
US20090293398A1 (en) * | 2008-05-27 | 2009-12-03 | Eren Tumer H | System for Creating a Decking/Flooring and a method for Installing Same |
US20110197543A1 (en) * | 2010-02-17 | 2011-08-18 | Sealed Air Corporation (Us) | Alkaline and Heat Resistant Foam Composite and Floor Underlayment |
US20110214387A1 (en) * | 2005-02-01 | 2011-09-08 | Brandt Gregory A | High density polyurethane and polyisocyanurate construction boards and composite boards |
US20120324802A1 (en) * | 2011-01-28 | 2012-12-27 | Vass Technologies S.R.L. | Modular roof system for a building |
ES2396320A1 (en) * | 2010-01-15 | 2013-02-20 | Elena CORRES ÁLVAREZ | Forged system built in dry. (Machine-translation by Google Translate, not legally binding) |
US20130231019A1 (en) * | 2001-04-09 | 2013-09-05 | Jeffrey T. Dinkel | Asymmetrical Concrete Backerboard |
US8621798B2 (en) | 2010-12-27 | 2014-01-07 | Lionel E. Dayton | Construction insulating panel |
US8726612B2 (en) | 2008-04-29 | 2014-05-20 | Steven G. Lomske | Modular panel |
US20140260074A1 (en) * | 2004-11-09 | 2014-09-18 | Johns Manville | Roofing systems and methods |
US9909317B2 (en) | 2004-11-09 | 2018-03-06 | Johns Manville | Roofing systems and methods |
US10053870B2 (en) * | 2014-12-04 | 2018-08-21 | Posco | Building material |
USD843019S1 (en) * | 2017-02-16 | 2019-03-12 | Huntsman International Llc | Foam board with facer |
USD844859S1 (en) * | 2017-02-16 | 2019-04-02 | Huntsman International Llc | Foam board with facer |
USD854193S1 (en) * | 2017-02-16 | 2019-07-16 | Huntsman International Llc | Foam board with facer |
US20220403662A1 (en) * | 2019-06-30 | 2022-12-22 | Pittsburgh Corning Europe Nv | Inverted roof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6376033U (en) * | 1986-11-06 | 1988-05-20 | ||
CN103291019A (en) * | 2013-05-17 | 2013-09-11 | 中天建设集团有限公司 | Heat preserving, damp proofing and vapor permeating method for metal roof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2861525A (en) * | 1956-01-30 | 1958-11-25 | Lexsuco Inc | Fire retardant roof vapor barrier and securement means |
US3411256A (en) * | 1965-10-14 | 1968-11-19 | Dow Chemical Co | Roof construction and method thereof |
US3466222A (en) * | 1967-07-26 | 1969-09-09 | Lexsuco Inc | Fire retardant insulative structure and roof deck construction comprising the same |
US3616173A (en) * | 1967-08-29 | 1971-10-26 | Georgia Pacific Corp | Fire resistant wallboard |
-
0
- BE BE786217D patent/BE786217A/en unknown
-
1971
- 1971-07-14 US US00162486A patent/US3763614A/en not_active Expired - Lifetime
-
1972
- 1972-06-16 CA CA144,957A patent/CA953870A/en not_active Expired
- 1972-06-21 AU AU43725/72A patent/AU459657B2/en not_active Expired
- 1972-06-30 FR FR7223706A patent/FR2145481B1/fr not_active Expired
- 1972-07-03 NL NL7209308A patent/NL7209308A/xx not_active Application Discontinuation
- 1972-07-04 CH CH1001472A patent/CH550297A/en not_active IP Right Cessation
- 1972-07-12 NO NO2499/72A patent/NO136654C/en unknown
- 1972-07-12 GB GB3264072A patent/GB1370872A/en not_active Expired
- 1972-07-13 JP JP6964572A patent/JPS5641779B1/ja active Pending
- 1972-07-13 SE SE7209255A patent/SE384240B/en unknown
- 1972-07-14 AT AT611472A patent/AT322163B/en not_active IP Right Cessation
- 1972-08-14 DE DE2234052A patent/DE2234052A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2861525A (en) * | 1956-01-30 | 1958-11-25 | Lexsuco Inc | Fire retardant roof vapor barrier and securement means |
US3411256A (en) * | 1965-10-14 | 1968-11-19 | Dow Chemical Co | Roof construction and method thereof |
US3466222A (en) * | 1967-07-26 | 1969-09-09 | Lexsuco Inc | Fire retardant insulative structure and roof deck construction comprising the same |
US3616173A (en) * | 1967-08-29 | 1971-10-26 | Georgia Pacific Corp | Fire resistant wallboard |
Cited By (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3882475A (en) * | 1972-12-04 | 1975-05-06 | Robert J Moore | Control of roofing procedure |
US3868296A (en) * | 1973-04-27 | 1975-02-25 | Gen Electric | Plastic wall construction as a wall unit |
US3892899A (en) * | 1973-07-19 | 1975-07-01 | Paul P Klein | Roof construction |
US3965633A (en) * | 1974-04-04 | 1976-06-29 | Decks, Incorporated | Insulated roofing structure and method |
US4189886A (en) * | 1974-07-01 | 1980-02-26 | W. R. Grace & Co. | Ventilated insulated roofing system |
US4045934A (en) * | 1975-04-11 | 1977-09-06 | The Dow Chemical Company | Roof and method of preparation |
US4019296A (en) * | 1975-12-12 | 1977-04-26 | The Dow Chemical Company | Facade clad buildings and method |
DE2705032A1 (en) * | 1976-03-01 | 1977-09-08 | Armstrong Cork Co | BUILDING ELEMENT, IN PARTICULAR PARTITION WALL, CEILING OR ROOF CONSTRUCTION |
US4282050A (en) * | 1978-08-11 | 1981-08-04 | Isola Fabrikker A/S | Procedure for covering roofs |
US4274238A (en) * | 1978-08-23 | 1981-06-23 | Southern Chemicals Limited | Roof structure |
US4425746A (en) | 1979-01-02 | 1984-01-17 | Bonaguidi Orland H | Inverted roof system |
US4272936A (en) * | 1979-01-02 | 1981-06-16 | Bonaguidi Orland H | Inverted roof system |
US4242406A (en) * | 1979-04-30 | 1980-12-30 | Ppg Industries, Inc. | Fiber reinforced composite structural laminate composed of two layers tied to one another by embedded fibers bridging both layers |
US4288951A (en) * | 1979-11-14 | 1981-09-15 | Scientific Applications Incorporated | Auxiliary insulated roof system |
US4449336A (en) * | 1980-06-19 | 1984-05-22 | Kelly Thomas L | Fire barrier reservoir |
US4441295A (en) * | 1981-04-30 | 1984-04-10 | Kelly Thomas L | Grid system adhering technique and method of practicing same |
US4628653A (en) * | 1981-07-10 | 1986-12-16 | Fabcon, Inc. | Insulated concrete panel |
US4736561A (en) * | 1981-12-14 | 1988-04-12 | Loadmaster Systems, Inc. | Roof deck construction |
US4609305A (en) * | 1982-08-23 | 1986-09-02 | 501 Beheermaatschappij H.D. Groeneveld B.V. | Floor for use in off-shore technique and ship building |
US4674245A (en) * | 1984-03-19 | 1987-06-23 | Diversitech Corporation | Roof walkway panel |
US4530193A (en) * | 1984-07-16 | 1985-07-23 | Minnesota Diversified Products, Inc. | Built-up roof structure and method of preparing roof structure |
WO1986001245A1 (en) * | 1984-08-10 | 1986-02-27 | The Dow Chemical Company | Lightweight roofing system |
GB2177135A (en) * | 1984-08-10 | 1987-01-14 | Dow Chemical Co | Lightweight roofing system |
US4677800A (en) * | 1984-08-10 | 1987-07-07 | The Dow Chemical Company | Lightweight roofing system |
US4521478A (en) * | 1984-08-20 | 1985-06-04 | Hageman John P | In situ roofing composite and method |
US4602396A (en) * | 1984-09-13 | 1986-07-29 | Richard Fraige | Waterbed flotation system with vapor barrier |
US4712349A (en) * | 1984-12-24 | 1987-12-15 | The Dow Chemical Company | Protected membrane roof system for high traffic roof areas |
US4707961A (en) * | 1985-07-19 | 1987-11-24 | Loadmaster Systems, Inc. | Composite roof/roof deck assembly with polymeric membrane |
US4783942A (en) * | 1985-10-18 | 1988-11-15 | Loadmaster Systems, Inc. | Composite roof deck assembly with polymeric membrane adhered to fiberglass mat |
US4747247A (en) * | 1986-09-19 | 1988-05-31 | The Dow Chemical Company | Roof system |
US4947603A (en) * | 1987-09-16 | 1990-08-14 | Alois Goertz | Unitary foam/gravel roof |
US4804578A (en) * | 1988-07-27 | 1989-02-14 | Old Reliable Wholesale, Inc. | Insulated roof board |
US5069950A (en) * | 1990-04-11 | 1991-12-03 | Old Reliable Wholesale, Inc. | Insulated roof board |
US5768841A (en) * | 1993-04-14 | 1998-06-23 | Swartz & Kulpa, Structural Design And Engineering | Wallboard structure |
US5584153A (en) * | 1994-03-29 | 1996-12-17 | Loadmaster Systems, Inc. | Composite roof system with an improved anchoring mechanism |
US6128879A (en) * | 1995-10-24 | 2000-10-10 | Cpi Packaging, Inc. | Insulation barrier |
WO1999002794A1 (en) | 1997-07-09 | 1999-01-21 | Bridgestone/Firestone, Inc. | Metal roof sealing system and method |
US5950383A (en) * | 1997-07-09 | 1999-09-14 | Bridgestone Corporation | Metal roof sealing system and method |
WO1999022935A1 (en) * | 1997-11-03 | 1999-05-14 | Raphael Heifetz | Sealing sheet assembly for construction surfaces and methods of making and applying same |
US6427404B1 (en) * | 1998-12-22 | 2002-08-06 | Palisades Atlantic Corporation | Base sheet for retrofitting existing roofing |
US6941715B2 (en) * | 1999-07-02 | 2005-09-13 | John Potter | Prefabricated modular building component |
US6833188B2 (en) * | 2001-03-16 | 2004-12-21 | Blaine K. Semmens | Lightweight cementitious composite material |
US20020129745A1 (en) * | 2001-03-16 | 2002-09-19 | Semmens Blaine K. | Lightweight cementitious composite material |
US20130231019A1 (en) * | 2001-04-09 | 2013-09-05 | Jeffrey T. Dinkel | Asymmetrical Concrete Backerboard |
US20040107662A1 (en) * | 2002-02-01 | 2004-06-10 | Georgeau Philip C. | Roofing system and method |
US8701367B2 (en) * | 2002-02-01 | 2014-04-22 | Chem Link, Inc. | Roofing system and method |
US20060096211A1 (en) * | 2002-05-23 | 2006-05-11 | Stefaan Verheyen | Compact roof-covering system |
US7591112B2 (en) | 2002-05-23 | 2009-09-22 | Umicore | Compact roof-covering system |
US20140260074A1 (en) * | 2004-11-09 | 2014-09-18 | Johns Manville | Roofing systems and methods |
US7607271B2 (en) * | 2004-11-09 | 2009-10-27 | Johns Manville | Prefabricated multi-layer roofing panel and system |
US9404261B2 (en) * | 2004-11-09 | 2016-08-02 | Johns Manville | Roofing systems and methods |
US10087634B2 (en) | 2004-11-09 | 2018-10-02 | Johns Manville | Roofing systems and methods |
US20060096213A1 (en) * | 2004-11-09 | 2006-05-11 | Griffin Christopher J | Prefabricated multi-layer roofing panel and system |
US9909317B2 (en) | 2004-11-09 | 2018-03-06 | Johns Manville | Roofing systems and methods |
US8056301B2 (en) | 2004-12-23 | 2011-11-15 | Specialty Hardware L.P. | Method of framing a building shear wall structure compatible with conventional interior or exterior finishing materials and subsurface panel for use therewith |
US20060150573A1 (en) * | 2004-12-23 | 2006-07-13 | Elliott Albert C Jr | Method of framing a building shear wall structure compatible with conventional interior or exterior finishing materials and subsurface panel for use therewith |
US20110214387A1 (en) * | 2005-02-01 | 2011-09-08 | Brandt Gregory A | High density polyurethane and polyisocyanurate construction boards and composite boards |
US20110214373A1 (en) * | 2005-02-01 | 2011-09-08 | Brandt Gregory A | High density polyurethane and polyisocyanurate construction boards and composite boards |
US20120167510A1 (en) * | 2005-02-01 | 2012-07-05 | Brandt Gregory A | High density polyurethane and polyisocyanurate construction boards and composite boards |
US20120167509A1 (en) * | 2005-02-01 | 2012-07-05 | Brandt Gregory A | High density polyurethane and polyisocyanurate construction boards and composite boards |
US7908810B2 (en) | 2005-06-30 | 2011-03-22 | United States Gypsum Company | Corrugated steel deck system including acoustic features |
US20070000198A1 (en) * | 2005-06-30 | 2007-01-04 | United States Gypsum Company | Corrugated steel deck system including acoustic features |
EP1739246A1 (en) * | 2005-06-30 | 2007-01-03 | United States Gypsum Company | Corrugated steel deck system including acoustic features |
US7601282B2 (en) | 2005-10-24 | 2009-10-13 | Johns Manville | Processes for forming a fiber-reinforced product |
US20070092708A1 (en) * | 2005-10-24 | 2007-04-26 | Gleich Klaus F | Processes for forming a fiber-reinforced product |
US20070130864A1 (en) * | 2005-11-29 | 2007-06-14 | Semmens Blaine K | Roofing system |
US20070130862A1 (en) * | 2005-11-29 | 2007-06-14 | Semmens Blaine K | Roofing system and apparatus for applying rolled roofing material |
US8555589B2 (en) * | 2005-11-29 | 2013-10-15 | Mos, Llc | Roofing system |
WO2009094075A1 (en) * | 2008-01-24 | 2009-07-30 | Carlisle Intangible Company | Ballasted storm water retention system |
US20090188172A1 (en) * | 2008-01-24 | 2009-07-30 | Carlisle Intangible Company | Ballasted storm water retention system |
US8726612B2 (en) | 2008-04-29 | 2014-05-20 | Steven G. Lomske | Modular panel |
US20090293398A1 (en) * | 2008-05-27 | 2009-12-03 | Eren Tumer H | System for Creating a Decking/Flooring and a method for Installing Same |
US8186117B2 (en) * | 2008-05-27 | 2012-05-29 | Eren Tumer H | System for creating a decking/flooring and a method for installing same |
ES2396320A1 (en) * | 2010-01-15 | 2013-02-20 | Elena CORRES ÁLVAREZ | Forged system built in dry. (Machine-translation by Google Translate, not legally binding) |
US8656675B2 (en) | 2010-02-17 | 2014-02-25 | Sealed Air Corporation (Us) | Alkaline and heat resistant foam composite and floor underlayment |
US8484922B2 (en) * | 2010-02-17 | 2013-07-16 | Sealed Air Corporation (Us) | Alkaline and heat resistant foam composite and floor underlayment |
US20110197543A1 (en) * | 2010-02-17 | 2011-08-18 | Sealed Air Corporation (Us) | Alkaline and Heat Resistant Foam Composite and Floor Underlayment |
US8621798B2 (en) | 2010-12-27 | 2014-01-07 | Lionel E. Dayton | Construction insulating panel |
US20120324802A1 (en) * | 2011-01-28 | 2012-12-27 | Vass Technologies S.R.L. | Modular roof system for a building |
US8869478B2 (en) * | 2011-01-28 | 2014-10-28 | Vass Technologies S.R.L. | Modular roof system for a building |
US10053870B2 (en) * | 2014-12-04 | 2018-08-21 | Posco | Building material |
USD843019S1 (en) * | 2017-02-16 | 2019-03-12 | Huntsman International Llc | Foam board with facer |
USD844859S1 (en) * | 2017-02-16 | 2019-04-02 | Huntsman International Llc | Foam board with facer |
USD854193S1 (en) * | 2017-02-16 | 2019-07-16 | Huntsman International Llc | Foam board with facer |
US20220403662A1 (en) * | 2019-06-30 | 2022-12-22 | Pittsburgh Corning Europe Nv | Inverted roof |
Also Published As
Publication number | Publication date |
---|---|
SE384240B (en) | 1976-04-26 |
AU459657B2 (en) | 1975-04-10 |
DE2234052A1 (en) | 1973-02-01 |
FR2145481B1 (en) | 1974-12-27 |
GB1370872A (en) | 1974-10-16 |
BE786217A (en) | 1973-01-15 |
NL7209308A (en) | 1973-01-16 |
AU4372572A (en) | 1974-01-03 |
JPS5641779B1 (en) | 1981-09-30 |
NO136654B (en) | 1977-07-04 |
NO136654C (en) | 1977-10-12 |
FR2145481A1 (en) | 1973-02-23 |
AT322163B (en) | 1975-05-12 |
CH550297A (en) | 1974-06-14 |
CA953870A (en) | 1974-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3763614A (en) | Roof construction | |
US3411256A (en) | Roof construction and method thereof | |
US4120131A (en) | Building structure | |
US4492064A (en) | Insulated roof construction | |
US4114335A (en) | Sheet metal structural shape and use in building structures | |
US4090336A (en) | Insulated roofing structure | |
US3466222A (en) | Fire retardant insulative structure and roof deck construction comprising the same | |
US4274239A (en) | Building structure | |
US4559263A (en) | Cement-foam composite board | |
US3965633A (en) | Insulated roofing structure and method | |
US4747247A (en) | Roof system | |
US4351138A (en) | Roof construction and method thereof | |
US3694306A (en) | Fire-resistant asbestos vapor barrier system | |
US3962841A (en) | Insulated decking structure and method | |
CA1051682A (en) | Building deck construction | |
US3345246A (en) | Leveling base sheet for reroofing | |
USRE31007E (en) | Roof construction and method thereof | |
US4267678A (en) | Insulated roof structure | |
CA1190376A (en) | Heat-insulating covering applied against walls of buildings and a method of application of said covering | |
US3832812A (en) | Fire retardant insulated modular building panels | |
US3965641A (en) | Sheet metal structural shape and use in insulated decking structure and method | |
JPH09195441A (en) | Manufacture of lightweight heat insulating waterproof panel | |
US3712832A (en) | Roof structure | |
US2422010A (en) | Roof | |
RU2824603C1 (en) | Monolithic roof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PS | Patent suit(s) filed |