US3760479A - Method of fabricating a venturi in the passage of a tube - Google Patents

Method of fabricating a venturi in the passage of a tube Download PDF

Info

Publication number
US3760479A
US3760479A US00125129A US3760479DA US3760479A US 3760479 A US3760479 A US 3760479A US 00125129 A US00125129 A US 00125129A US 3760479D A US3760479D A US 3760479DA US 3760479 A US3760479 A US 3760479A
Authority
US
United States
Prior art keywords
tube
passage
set forth
orifice
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00125129A
Inventor
F Simmons
H Rey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BURGESS PRODUCTS Inc
Acme Burgess Inc
Original Assignee
Burgess Vibrocrafters Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Burgess Vibrocrafters Inc filed Critical Burgess Vibrocrafters Inc
Application granted granted Critical
Publication of US3760479A publication Critical patent/US3760479A/en
Assigned to ACME BURGESS, INC. reassignment ACME BURGESS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE AS OF 5/27/8O Assignors: BURGESS VIBROCRAFTERS, INC.
Assigned to ACME BURGESS, INC. reassignment ACME BURGESS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). 5-09-80 Assignors: BURGESS VIBROCRAFTERS, INC.
Assigned to BURGESS PRODUCTS INC. reassignment BURGESS PRODUCTS INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE DATE: 02/28/85 Assignors: ACME BURGESS, INC., A DE. CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • A01M7/0092Adding active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49403Tapping device making

Definitions

  • the present invention was devised for producing parts of a sprayer of a type that is fastened to the end of a garden hose to aspirate a treating solution from a container and mix the solution with the water from the garden hose.
  • the aspiration takes place by means of a Venturi in the sprayer.
  • Such sprayers are designed so as to mix predetermined proportions of the aspirated liquid with the water flowing through the garden hose.
  • the user of the sprayer will know the dosage of weed killer, pesticide, etc., that is being applied through the use of the sprayer.
  • the specific proportions are achieved by the configuration of the Venturi; that is, with a Venture of one design the proportions may be one in 100, while with another design they may be five or in. 100, etc. To achieve the desired proportions requires substantial accuracy in the manufacture of the Venturi.
  • the principal object of the present invention is to provide an alternative procedure for making the Venturi in such sprayer nozzles. Not only does the present invention achieve a substantial reduction in cost of manufacture, but the manufacturing procedure is not an art and may be performed by a relatively inexperienced worker while still achieving the required accuracy in the operation of the finished sprayer. As a matter of fact, if tests should show that the parts being produced were outside the range desired, it is a very simple matter to correct the manufacturing operation to bring the product back within the required tolerance range.
  • FIG. 1 is a section through a sprayer nozzle produced in accordance with the present invention with a diagrammatic illustration of the use of the nozzle;
  • FIG. 2 is a longitudinal section illustrating the process of manufacture of the Venturi;and f FIG. 3 is a section viewed at line 3-3 of FIG. 2.
  • a sprayer somewhat diagrammatically illustrated in FIG. 1, comprises an outer body part 10 and an inner body part 11.
  • the inner body part defines a passage 12, the upstream end of which communicates with a source 13 of water under pressure, as, for example, a garden hose.
  • Means are provided, as, for example, the threaded connection 14 to prevent the force of the water from separating the two body parts.
  • At the downstream end of passage 12 are other devices, not shown, for causing the water from the passage to achieve the desired spray or stream discharge.
  • passage 12 Intermediate the ends of passage 12 is a Venturi formed by an inwardly projecting step 16 and an opening or orifice 17 at the downstream end of the step. Opening 116 communicates between passage 12 and an annular slot 18 on the outside of body part 11. Externally of body part 10 is a tubular boss 19. A hole 20 extends through boss 19 and the wall of body part 10 to communicate with slot 18. A hose 21 is frictionally secured to boss 19 and extends into a container 22 of liquid 23 to be aspirated into passage 12. At each side of slot 18 are other slots 24 and 25, respectively. These latter two slots hold Q rings 26 which are in compression between body parts 10 and 11 to seal off slot 18.
  • the opening 12 is cylindrical and the base of slot 18 V is circular in cross section and relatively thin compared to the thickness of the remaining walls about the opening 18.
  • Anvil 30 is inserted .into opening 12.
  • Anvil 30 is cylindrical except that it has a flat 31 on one side.
  • the cylindrical part is slightly smaller than the diameter of passage 12 so that it can be inserted freely into and removed from the passage.
  • the flat-31 slopes down towards the distal end of the anvil.
  • the other end of the anvil is supplied with threads 32 to mate with correspondinginternal threads on a barrel stop 33.
  • the stop 33 abuts the end of body part 11 and thereby determines just what part of the flat 31 is immediately opposite slot 18.
  • the anvil has a handle 34 with suitable marking, i.e., projection 35, thereon to identify which side of the anvil the flat 31 is on.
  • a punch 37 is employed. This punch is rectangular in cross section and is thin enough to be received within slot 18 with the walls 18a of the slot guiding the tool for proper positioning. In the opposite dimension (as seen in FIG. 3), it is wide enough to extend across passage 12.
  • the punch has a flat bottom 38, a relatively large flat 39 on the side that will be over orifice 17, and a relatively small flat 40 on the opposite side.
  • the punch 37 When oriented as shown in FIG. 2, the punch 37 is inserted into slot 18 with the flat bottom 38 against the wall immediately opposite the flat 31 of the anvil. Preferably, the opening 17 will already have been formed, but it could be formed after the step is made.
  • the punch is then forced toward the anvil, as by means of a blow on the punch, to cause the metal to cold flow down against the flat 31 of the anvil to thereby define the step 16, as illustrated in FIG. 1. If, by performance checking, it is determined that the step 16 projects too far into the passage 12, the stop 23 on the anvil is adjusted so that the portion of flat 31 adjacent opening 17 is closer to the wall of the passage than before. Conversely, by moving the stop 23 to the left in FIG.
  • the flat 31 will be moved away from the inner wall of the body part 1 1 so that when the cold flow occurs the step 16 will extend farther into the passage 12 than before.
  • a high degree of accuracy can be obtained so far as the extent of the projection of the step into the passageway is concerned. This is important because it gives good control over the proportioning of the liquid 23 with regard to the amount of water from source 13.
  • the body part 11 is formed of metal and a cold flow procedure is employed to form the step 16.
  • the body part 11 could be formed of a theremoplastic and the punch 37 heated. In such case, the thermoplastic would be softened as the punch was pressed against it sufficiently to force the softened plastic against the anvil to define the step.
  • a method of forming a Venturi in a portion of a tube having an internal passage through which fluid is to flow in a given direction comprising the steps of:
  • a method as set forth in claim 1 including the steps of forming two walls on the exterior of said tube and spaced from each other in the direction of the length of the tube a distance at least as great as the length of said portion, one of said walls being formed closer to said orifice than is the other of said walls, said deforming taking place after said walls are formed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Nozzles (AREA)

Abstract

A Venturi is formed in a portion of the passage of a metal tube by drilling an opening in the downstream part of the tube wall at that portion and deforming the metal at the upstream part of the wall inwardly by a cold flow of the metal so as to define a step in that portion with the opening at the downstream end of that step.

Description

United States Patent [191 11] 3,760,479 Simmons Sept. 25, 1973 [54] METHOD OF FABRICATING A VENTURI IN 3,468,147 9/1969 Davies 72/370 X I H PASSAGE OF A TUBE 2,065,915 12/1936 Weston 29/157 C 2,714,244 8/1955 Shepard 29/157 C [75] Inventor: Frank A. Simmons, Hato Rey, PR. [73] Assignee: Burgess Vibrocrafters, Inc., FOREIGN PATENTS OR APPLICATIONS Grayslake, Germany [22] Filed: 1971 Primary Examiner-Charles W. Lanham [21] App], No.1 125,129 Assistant ExaminerD. C. Reiley, III I Attorney-Darbo, Robertson & Vandenburgh 52 us. c|....'. 29/157 (2, 72/370 [51] Int. Cl B23p 17/00 [57] ABSTRACT [58] Field of Search 29/157 C; 7722/337607, A Venturi is formed in a portion of the passage of a metal tube by drilling an opening in the downstream part of the tube wall at that portion and deforming the [56] References cued metal at the upstream part of the wall inwardly by a UNITED STATES PATENTS cold flow of the metal so as to define a step in that por- 1,264,854 4/1918 Possons 29/157 C tion with the opening at the downstream end of that 1,762,313 6/1930 Snow et al. 29/157 C X step. 2,290,965 7/1942 Hodapp et al. 72/370 X 2,507,859 5/1950 Keller 72/370 6 Claims, 3 Drawing Figures WAT E R vUNDER I PRESSURE g7 r w 12 S RCE i -*i :5
IIIIII/l/I/l/a BACKGROUND AND SUMMARY OF THE INVENTION The present invention was devised for producing parts of a sprayer of a type that is fastened to the end of a garden hose to aspirate a treating solution from a container and mix the solution with the water from the garden hose. The aspiration takes place by means of a Venturi in the sprayer.
Such sprayers are designed so as to mix predetermined proportions of the aspirated liquid with the water flowing through the garden hose. Thus, the user of the sprayer will know the dosage of weed killer, pesticide, etc., that is being applied through the use of the sprayer. The specific proportions are achieved by the configuration of the Venturi; that is, with a Venture of one design the proportions may be one in 100, while with another design they may be five or in. 100, etc. To achieve the desired proportions requires substantial accuracy in the manufacture of the Venturi.
One of the past practices for Venturi manufacture has been to define a step in the Venturi tube by two concentric openings of different diameters, the step being at the plane where the two openings meet. Merely drilling two such openings through a body part did not produce sufficient accuracy to consistently produce Venturies having the desired mixing proportion. It has been necessary to ream at least one of the openings, and often both, to achieve sufficient accuracy in the opening sizes. Even so, the process of reaming required considerable skill and experience to consistently come up with parts having the desired mixing capabilities. It was, you might say, an art to produce such parts. v
This method of manufacture was inherentlyexpensive. Such expense was particularly undesirable because the overall sprayers are a relatively inexpensive item; that is, purchasers would not buy the item at a particularly greater price. They would use some alternative method of achieving the same result rather than buy the more expensive sprayer.
The principal object of the present invention is to provide an alternative procedure for making the Venturi in such sprayer nozzles. Not only does the present invention achieve a substantial reduction in cost of manufacture, but the manufacturing procedure is not an art and may be performed by a relatively inexperienced worker while still achieving the required accuracy in the operation of the finished sprayer. As a matter of fact, if tests should show that the parts being produced were outside the range desired, it is a very simple matter to correct the manufacturing operation to bring the product back within the required tolerance range.
Further objects and advantages will be apparent from the following. 1
' DESCRIP'T ION OF THE DRAWINGS FIG. 1 is a section through a sprayer nozzle produced in accordance with the present invention with a diagrammatic illustration of the use of the nozzle;
FIG. 2 is a longitudinal section illustrating the process of manufacture of the Venturi;and f FIG. 3 is a section viewed at line 3-3 of FIG. 2.
DESCRIPTION OF SPECIFIC EMBODIMENT The following disclosure is offered for public dissemination in return for the grant of a patent. Although it is detailed to ensure adequacy and aid understanding, this is not intended to prejudice that purpose of a patent which is to cover each new inventive concept therein no matter how others may later disguise it by variations in form or additions or further improvements. The claims at the end hereof are intended as the chief aid toward this purpose, as it is these that meet the requirement of pointing out the parts, improvements, or combinations in which the inventive concepts are found.
A sprayer, somewhat diagrammatically illustrated in FIG. 1, comprises an outer body part 10 and an inner body part 11. The inner body part defines a passage 12, the upstream end of which communicates with a source 13 of water under pressure, as, for example, a garden hose. Means are provided, as, for example, the threaded connection 14 to prevent the force of the water from separating the two body parts. At the downstream end of passage 12 are other devices, not shown, for causing the water from the passage to achieve the desired spray or stream discharge.
Intermediate the ends of passage 12 is a Venturi formed by an inwardly projecting step 16 and an opening or orifice 17 at the downstream end of the step. Opening 116 communicates between passage 12 and an annular slot 18 on the outside of body part 11. Externally of body part 10 is a tubular boss 19. A hole 20 extends through boss 19 and the wall of body part 10 to communicate with slot 18. A hose 21 is frictionally secured to boss 19 and extends into a container 22 of liquid 23 to be aspirated into passage 12. At each side of slot 18 are other slots 24 and 25, respectively. These latter two slots hold Q rings 26 which are in compression between body parts 10 and 11 to seal off slot 18.
As the water from source 18 flows downstream (to the right in FIG. 1) and over step 16'the flow over the step produces a low pressure at orifice 17. This low pressure causes an aspiration of the liquid 23 up through hose 21, opening 20 and orifice 17 where the liquid enters passage 12 and intermingles with the water from a source 13.
When the innerbody part 11 is first manufactured, it is annular in configuration as best seen in FIGS. 2 and 3. The opening 12 is cylindrical and the base of slot 18 V is circular in cross section and relatively thin compared to the thickness of the remaining walls about the opening 18. To produce the Venturi an anvil 30 is inserted .into opening 12. Anvil 30 is cylindrical except that it has a flat 31 on one side. The cylindrical part is slightly smaller than the diameter of passage 12 so that it can be inserted freely into and removed from the passage. The flat-31 slopes down towards the distal end of the anvil. The other end of the anvil is supplied with threads 32 to mate with correspondinginternal threads on a barrel stop 33. In use, the stop 33 abuts the end of body part 11 and thereby determines just what part of the flat 31 is immediately opposite slot 18. The anvil has a handle 34 with suitable marking, i.e., projection 35, thereon to identify which side of the anvil the flat 31 is on. A punch 37 is employed. This punch is rectangular in cross section and is thin enough to be received within slot 18 with the walls 18a of the slot guiding the tool for proper positioning. In the opposite dimension (as seen in FIG. 3), it is wide enough to extend across passage 12. The punch has a flat bottom 38, a relatively large flat 39 on the side that will be over orifice 17, and a relatively small flat 40 on the opposite side.
When oriented as shown in FIG. 2, the punch 37 is inserted into slot 18 with the flat bottom 38 against the wall immediately opposite the flat 31 of the anvil. Preferably, the opening 17 will already have been formed, but it could be formed after the step is made. The punch is then forced toward the anvil, as by means of a blow on the punch, to cause the metal to cold flow down against the flat 31 of the anvil to thereby define the step 16, as illustrated in FIG. 1. If, by performance checking, it is determined that the step 16 projects too far into the passage 12, the stop 23 on the anvil is adjusted so that the portion of flat 31 adjacent opening 17 is closer to the wall of the passage than before. Conversely, by moving the stop 23 to the left in FIG. 2, the flat 31 will be moved away from the inner wall of the body part 1 1 so that when the cold flow occurs the step 16 will extend farther into the passage 12 than before. Thus, a high degree of accuracy can be obtained so far as the extent of the projection of the step into the passageway is concerned. This is important because it gives good control over the proportioning of the liquid 23 with regard to the amount of water from source 13.
In the illustrated embodiment,.the body part 11 is formed of metal and a cold flow procedure is employed to form the step 16. Alternatively, the body part 11 could be formed of a theremoplastic and the punch 37 heated. In such case, the thermoplastic would be softened as the punch was pressed against it sufficiently to force the softened plastic against the anvil to define the step.
I claim:
1. A method of forming a Venturi in a portion of a tube having an internal passage through which fluid is to flow in a given direction, comprising the steps of:
forming an orifice in a downstream part of the wall of said tube, and thereafter permanently deforming only the material of the tube which is immediately upstream from said orifice by effecting inward flow of the material toward the center of the passage in order to produce a step immediately upstream from said orifice.
2. A method as set forth in claim 1, wherein the material of the tube is metal and the permanent deformation is produced by cold flowing the metal by the application of external pressure.
3. A method as set forth in claim 2, wherein the passage is partially blocked in said area during the deformation step so as to limit the extent of the inward flow of the material, and after the inward flow ceases the blockage is removed.
4. A method as set forth in claim 3, wherein the metal is staked against an anvil.
5. A method as set forth in claim 1, wherein the passage is partially blocked in said area during the deformation step so as to limit the extent of the inward flow of the material, and after the inward flow ceases the blockage is removed.
6. A method as set forth in claim 1 including the steps of forming two walls on the exterior of said tube and spaced from each other in the direction of the length of the tube a distance at least as great as the length of said portion, one of said walls being formed closer to said orifice than is the other of said walls, said deforming taking place after said walls are formed.

Claims (6)

1. A method of forming a Venturi in a portion of a tube having an internal passage through which fluid is to flow in a given direction, comprising the steps of: forming an orifice in a downstream part of the wall of said tube, and thereafter permanently deforming only the material of the tube which is immediately upstream from said orifice by effecting inward flow of the material toward the center of the passage in order to produce a step immediately upstream from said orifice.
2. A method as set forth in claim 1, wherein the material of the tube is metal and the permanent deformation is produced by cold flowing the metal by the application of external pressure.
3. A method as set forth in claim 2, wherein the passage is partially blocked in said area during the deformation step so as to limit the extent of the inward flow of the material, and after the inward flow ceases the blockage is removed.
4. A method as set forth in claim 3, wherein the metal is staked against an anvil.
5. A method as set forth in claim 1, wherein the passage is partially blocked in said area during the deformation step so as to limit the extent of the inward flow of the material, and after the inward flow ceases the blockage is removed.
6. A method as set forth in claim 1 including the steps of forming two walls on the exterior of said tube and spaced from each other in the direction of the length of the tube a distance at least as great as the length of said portion, one of said walls being formed closer to said orifice than is the other of said walls, said deforming taking place after said walls are formed.
US00125129A 1971-03-17 1971-03-17 Method of fabricating a venturi in the passage of a tube Expired - Lifetime US3760479A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12512971A 1971-03-17 1971-03-17

Publications (1)

Publication Number Publication Date
US3760479A true US3760479A (en) 1973-09-25

Family

ID=22418316

Family Applications (1)

Application Number Title Priority Date Filing Date
US00125129A Expired - Lifetime US3760479A (en) 1971-03-17 1971-03-17 Method of fabricating a venturi in the passage of a tube

Country Status (1)

Country Link
US (1) US3760479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121328A (en) * 1975-07-16 1978-10-24 Arbrook, Inc. Method of manufacturing a nebulization-humidification nozzle
US20080010962A1 (en) * 2004-08-03 2008-01-17 Iannello Joseph P Mower deck cleaning and lubricating device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1264854A (en) * 1916-12-04 1918-04-30 American Stove Co Method of forming screw-threaded openings in gas-stove manifolds and the like.
US1762313A (en) * 1926-06-14 1930-06-10 Diamond Power Speciality Boiler cleaner
US2065915A (en) * 1934-11-08 1936-12-29 Gen Fire Extinguisher Co Method for forming branch nozzles on pipes
DE653067C (en) * 1934-11-21 1937-11-13 Ver Oberschlesische Huettenwer Process for the production of hollow axles for railway vehicles
US2290965A (en) * 1940-04-09 1942-07-28 Tube Turns Manufacture of t's
US2507859A (en) * 1947-10-13 1950-05-16 Ladish Drop Forge Co Method of making pipe fittings
US2714244A (en) * 1951-10-11 1955-08-02 Metallizing Engineering Co Inc Method for the production of spray tube orifices for irrigating devices
US3468147A (en) * 1966-10-18 1969-09-23 Fred Davies Pipe-fitting tools

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1264854A (en) * 1916-12-04 1918-04-30 American Stove Co Method of forming screw-threaded openings in gas-stove manifolds and the like.
US1762313A (en) * 1926-06-14 1930-06-10 Diamond Power Speciality Boiler cleaner
US2065915A (en) * 1934-11-08 1936-12-29 Gen Fire Extinguisher Co Method for forming branch nozzles on pipes
DE653067C (en) * 1934-11-21 1937-11-13 Ver Oberschlesische Huettenwer Process for the production of hollow axles for railway vehicles
US2290965A (en) * 1940-04-09 1942-07-28 Tube Turns Manufacture of t's
US2507859A (en) * 1947-10-13 1950-05-16 Ladish Drop Forge Co Method of making pipe fittings
US2714244A (en) * 1951-10-11 1955-08-02 Metallizing Engineering Co Inc Method for the production of spray tube orifices for irrigating devices
US3468147A (en) * 1966-10-18 1969-09-23 Fred Davies Pipe-fitting tools

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121328A (en) * 1975-07-16 1978-10-24 Arbrook, Inc. Method of manufacturing a nebulization-humidification nozzle
US20080010962A1 (en) * 2004-08-03 2008-01-17 Iannello Joseph P Mower deck cleaning and lubricating device
US7628003B2 (en) * 2004-08-03 2009-12-08 Iannello Joseph P Mower deck cleaning and lubricating device

Similar Documents

Publication Publication Date Title
US3191869A (en) Spraying device having restricted orifice and expansion chamber construction
KR910001898B1 (en) Variable dilution ratio hose-end sprayer
US20210323009A1 (en) Gas-liquid two-phase flow atomizing nozzle
US7201336B2 (en) Liquid spray gun with non-circular horn air outlet passageways and apertures
US4392617A (en) Spray head apparatus
US4971249A (en) Airless spray tip retainer/diffuser
WO2016055115A1 (en) Atomizer nozzle
US2518709A (en) Mixing and dispensing device
DE2039957A1 (en) Spray nozzle and process for their manufacture and assembly
US3341168A (en) Apparatus for the controlled distribution of liquids
US3059860A (en) Atomizing nozzle assembly
DE69109578T2 (en) Nozzle with built-in valve.
US2745701A (en) Spray nozzle orifice approach
US3760479A (en) Method of fabricating a venturi in the passage of a tube
US3971408A (en) Sprayer nozzle construction
JPS6380836A (en) Mixer for fluidized fluid
US3140052A (en) Spray nozzle comprising a base member and a cap
US4813609A (en) Spray nozzle
KR100426923B1 (en) Arrangement in a Spray Tube Mouthpiece
US3014666A (en) Atomizers
US3861194A (en) Sprayer nozzle construction
US2399182A (en) Spray drying device
US2767022A (en) Sprayer nozzle assembly
EP0641604A2 (en) Spraying device for liquid container
US3685743A (en) Spray guns

Legal Events

Date Code Title Description
AS Assignment

Owner name: ACME BURGESS, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:BURGESS VIBROCRAFTERS, INC.;REEL/FRAME:003836/0231

Effective date: 19800509

AS Assignment

Owner name: ACME BURGESS, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:BURGESS VIBROCRAFTERS, INC.;REEL/FRAME:004588/0249

Effective date: 19860714

Owner name: BURGESS PRODUCTS INC.

Free format text: CHANGE OF NAME;ASSIGNOR:ACME BURGESS, INC., A DE. CORP.;REEL/FRAME:004592/0504

Effective date: 19850128