US3753024A - Glow lamp with nickel-plated electrodes - Google Patents
Glow lamp with nickel-plated electrodes Download PDFInfo
- Publication number
- US3753024A US3753024A US00236399A US3753024DA US3753024A US 3753024 A US3753024 A US 3753024A US 00236399 A US00236399 A US 00236399A US 3753024D A US3753024D A US 3753024DA US 3753024 A US3753024 A US 3753024A
- Authority
- US
- United States
- Prior art keywords
- nickel
- electrodes
- electrode
- steel
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J17/00—Gas-filled discharge tubes with solid cathode
- H01J17/02—Details
- H01J17/04—Electrodes; Screens
- H01J17/06—Cathodes
- H01J17/066—Cold cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2893/00—Discharge tubes and lamps
- H01J2893/0064—Tubes with cold main electrodes (including cold cathodes)
- H01J2893/0065—Electrode systems
- H01J2893/0066—Construction, material, support, protection and temperature regulation of electrodes; Electrode cups
Definitions
- ABSTRACT E a 313/217 3 13/2
- a g ow discharge device is provided with nickel-Plated 58]
- the nickel piating thickness and steel c o c 5 composition vary within certain limits.
- the invention relates generally to glow discharge devices. More particularly, it relates to electrodes used in the glow discharge device.
- nickel-plated steel was used as an electrode material. This use is more fully described in Walker U.S. Pat. No. 1,803,985. Although nickel-plated steel electrodes are an improvement over solid nickel electrodes, a certain amount of impurities continued to be present in the electrode. These impurities were a product of the type of steel and the absence of thickness control of the nickel plating.
- an object of the invention to provide a nickel-plated steel electrode with a minimum of impurities.
- a further object of the invention is to provide an electrode which requires less degasification processmg.
- a low carbon steel is plated with nickel.
- the thickness of the nickel is controlled within the range of 0.00005 and 0.0026 of an inch. The minimum thickness gives an operable electrode without burning off the nickel coating, and the maximum thickness of the nickel has a negligible absorption of impurities.
- FIG. 1 is a front elevation of a glow lamp embodying the invention.
- FIG. 2 is an enlarged perspective view partially in section of an electrode of the invention.
- a glow lamp is comprised of an envelope l1, electrodes 12 and 13 and lead-in conductors 14 and 15 which are hermetically sealed in the envelope and pinch seal 16. After glow lamp 10 is exhausted, it is filled with a gas such as neon, argon, xenon or mixtures thereof and tipped off as shown at 17.
- the lamp may also contain a phosphor coating 18 for transforming ultraviolet energy into visible light energy.
- the electrodes of the invention may be used in many types of glow lamps without a phosphor.
- electrode 12 is made up of a steel core 19 and a thin film of nickel 20.
- the most preferred core material is steel of a high degree of purity such as a low carbon steel having 99.9 percent by weight of iron and 0.015 percent or less by weight of carbon.
- One advantage of using steel as the core material as compared to a pure nickel electrode is that it takes approximately one-half the power to heat the electrode.
- Another advantage of using the preferred steel is that the impurities such as sulfur and carbon are minimized thereby minimizing the possibility of lamp contamination.
- Nickel surface 20 is a high purity thin film of nickel deposited by electroplating nickel on the steel core 19. Unlike a solid nickel electrode which contains many impurities, the plated nickel is of a high degree of purity and smoothness because of the nature of electroplating. Only nickel ions are transferred to the core material thereby leaving behind other impurities and irregularities.
- the thickness of nickel surface 20 is critical to the manufacture of an improved nickel-plated electrode.
- the thickness of coating 20 must be within a range of 0.00005 as a minimum, and 0.0026 inch as a maximum. If the thickness of the plated nickel'were less than 0.00005 inch, the nickel would be consumed and deposited upon the bulb wall in a relatively short period of time. This would render the lamp unsatisfactory for operation.
- the plating thickness exceeds the maximum of 0.0026 inch, not only does the electroplating process of the electrode become expensive, the nickel thickness begins to behave as those it were a solid nickel electrode and begins to absorb various gaseous impurities. Consequently, it would be necessary to degas and process the electrode as though it were solid nickel.
- a preferred range of thickness between the minimum-maximum range is 0.00007 to 0.00009. This range gives the best results; however, other thicknesses within the minimum-maximum range do give an improved electrode.
- a glow discharge device comprising a sealed envelope, a fill gas, and a plurality of electrodes wherein the improvement comprises that the electrodes are nickelplated steel, said steel having an iron content of at least 99.9 percent by weight, and said nickel thickness varying between 0.00005 inch and 0.0026 inch.
Landscapes
- Discharge Lamp (AREA)
Abstract
A glow discharge device is provided with nickel-plated steel electrodes. The nickel plating thickness and steel composition vary within certain limits.
Description
United States Patent [191 Vicai Aug; 14, 1973 GLOW LAMP WITH NICKEL-PLATED [56] References Cited ELECTRODES UNITED STATES PATENTS [75] Inventor: Egon Vicai, Richmond Heights, Ohio 1,803,985 5/1931 Walker 313/210 gn e Gem"! El c my 3,238,408 3/1966 7 Kayatt 313/210 Schenectady Primary Examiner-Roy Lake [22] Filed: Mar. 20, 1972 Assistant Examiner-Darwin R. l-lostetter [2]] App]. No: 236.399 Attorney-Emil F. Sos, Jr. et a1.
[57] ABSTRACT E a 313/217 3 13/2 A g ow discharge device is provided with nickel-Plated 58] F 217 218 steei'electrodes'. The nickel piating thickness and steel c o c 5 composition vary within certain limits.
3 Claims, 2 Drawing Figures 1 GLOW LAMP WITH NICKEL-PLATED ELECTRODES BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates generally to glow discharge devices. More particularly, it relates to electrodes used in the glow discharge device.
2. Description of the Prior Art The use of solid nickel electrodes is well known in the glow lamp art. One of the disadvantages of using solid nickel as an electrode material is that nickel of any appreciable thickness absorbs various gases. These gases must be removed beforethe nickel electrode is sealed in the glow lamp device envelope. Degasification of the impurities takes place through the heating of the electrodes and simultaneous evacuation of the glow lamp envelope. Furthermore, the amount of power required to heat the solid nickel electrode during the degasifying is relatively high when compared to a metal such as steel.
In an attempt to alleviate this situation, nickel-plated steel was used as an electrode material. This use is more fully described in Walker U.S. Pat. No. 1,803,985. Although nickel-plated steel electrodes are an improvement over solid nickel electrodes, a certain amount of impurities continued to be present in the electrode. These impurities were a product of the type of steel and the absence of thickness control of the nickel plating.
SUMMARY OF THE INVENTION It is, therefore, an object of the invention to provide a nickel-plated steel electrode with a minimum of impurities. A further object of the invention is to provide an electrode which requires less degasification processmg.
In accordance with one aspect of the invention, a low carbon steel is plated with nickel. The thickness of the nickel is controlled within the range of 0.00005 and 0.0026 of an inch. The minimum thickness gives an operable electrode without burning off the nickel coating, and the maximum thickness of the nickel has a negligible absorption of impurities.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a front elevation of a glow lamp embodying the invention; and
FIG. 2 is an enlarged perspective view partially in section of an electrode of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1 of the drawing, a glow lamp is comprised of an envelope l1, electrodes 12 and 13 and lead-in conductors 14 and 15 which are hermetically sealed in the envelope and pinch seal 16. After glow lamp 10 is exhausted, it is filled with a gas such as neon, argon, xenon or mixtures thereof and tipped off as shown at 17. The lamp may also contain a phosphor coating 18 for transforming ultraviolet energy into visible light energy. However, the electrodes of the invention may be used in many types of glow lamps without a phosphor.
As shown in FIG. 2, electrode 12 is made up of a steel core 19 and a thin film of nickel 20. The most preferred core material is steel of a high degree of purity such as a low carbon steel having 99.9 percent by weight of iron and 0.015 percent or less by weight of carbon. In lamp processing, it is necessary to degas the electrodes and evacuate the gases from the lamp envelope. This is accomplished by resistance heating the electrodes. One advantage of using steel as the core material as compared to a pure nickel electrode is that it takes approximately one-half the power to heat the electrode. Another advantage of using the preferred steel is that the impurities such as sulfur and carbon are minimized thereby minimizing the possibility of lamp contamination.
It has been determined that the thickness of nickel surface 20 is critical to the manufacture of an improved nickel-plated electrode. The thickness of coating 20 must be within a range of 0.00005 as a minimum, and 0.0026 inch as a maximum. If the thickness of the plated nickel'were less than 0.00005 inch, the nickel would be consumed and deposited upon the bulb wall in a relatively short period of time. This would render the lamp unsatisfactory for operation.
On the other hand, if the plating thickness exceeds the maximum of 0.0026 inch, not only does the electroplating process of the electrode become expensive, the nickel thickness begins to behave as those it were a solid nickel electrode and begins to absorb various gaseous impurities. Consequently, it would be necessary to degas and process the electrode as though it were solid nickel. A preferred range of thickness between the minimum-maximum range is 0.00007 to 0.00009. This range gives the best results; however, other thicknesses within the minimum-maximum range do give an improved electrode.
What I claim as new and desire to secure by Letters Patent of the United States is:
l. A glow discharge device comprising a sealed envelope, a fill gas, and a plurality of electrodes wherein the improvement comprises that the electrodes are nickelplated steel, said steel having an iron content of at least 99.9 percent by weight, and said nickel thickness varying between 0.00005 inch and 0.0026 inch.
2. A glow discharge device as claimed in claim 1 wherein said nickel thickness varies between 0.00007 and 0.00009 inch.
3. A glow discharge device as claimed in claim 1 wherein the carbon content of the steel is in the range of 0.000 percent to 0.015 percent by weight.
Claims (2)
- 2. A glow discharge device as claimed in claim 1 wherein said nickel thickness varies between 0.00007 and 0.00009 inch.
- 3. A glow discharge device as claimed in claim 1 wherein the carbon content of the steel is in the range of 0.000 percent to 0.015 percent by weight.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US23639972A | 1972-03-20 | 1972-03-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3753024A true US3753024A (en) | 1973-08-14 |
Family
ID=22889328
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00236399A Expired - Lifetime US3753024A (en) | 1972-03-20 | 1972-03-20 | Glow lamp with nickel-plated electrodes |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3753024A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3908252A (en) * | 1972-09-12 | 1975-09-30 | Philips Corp | Discharge tube provided with an electrode comprising nickel and aluminum |
| US5220575A (en) * | 1989-04-04 | 1993-06-15 | Doduco Gmbh + Dr. Eugen Durrwachter | Electrode for pulsed gas lasers |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1803985A (en) * | 1925-07-20 | 1931-05-05 | Gen Electric Vapor Lamp Co | Electrode |
| US3238408A (en) * | 1962-09-27 | 1966-03-01 | Philip J Kayatt | Flicker glow lamps |
-
1972
- 1972-03-20 US US00236399A patent/US3753024A/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1803985A (en) * | 1925-07-20 | 1931-05-05 | Gen Electric Vapor Lamp Co | Electrode |
| US3238408A (en) * | 1962-09-27 | 1966-03-01 | Philip J Kayatt | Flicker glow lamps |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3908252A (en) * | 1972-09-12 | 1975-09-30 | Philips Corp | Discharge tube provided with an electrode comprising nickel and aluminum |
| US5220575A (en) * | 1989-04-04 | 1993-06-15 | Doduco Gmbh + Dr. Eugen Durrwachter | Electrode for pulsed gas lasers |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3153169A (en) | Discharge lamp | |
| ES2025500A6 (en) | Low watt metal halide lamp. | |
| US2697183A (en) | High-pressure electric discharge lamp | |
| US3740605A (en) | High pressure mercury vapor discharge lamp | |
| GB955076A (en) | Improvements in gas discharge lamps | |
| US2103038A (en) | Gaseous electric arc discharge lamp device | |
| JPS5650047A (en) | Short arc discharge lamp | |
| US3753024A (en) | Glow lamp with nickel-plated electrodes | |
| US3867660A (en) | Double chamber arc tube for high intensity discharge lamp | |
| US3054922A (en) | Intermediate pressure wall stabilized gas lamp | |
| US3134920A (en) | Sodium-vapor discharge lamp with a nondiscoloring envelope | |
| JPH0721981A (en) | Metal halide lamp | |
| US2761087A (en) | Electric discharge lamp | |
| US3439209A (en) | Positive column gas discharge lamp employing an alloy of two metals with impedance-free terminal connections | |
| GB1389620A (en) | Discharge tube provided with an electrode comprising nickel and aluminium | |
| US20030085655A1 (en) | Low-pressure mercury discharge lamp | |
| US2030437A (en) | Electric discharge device | |
| US2330042A (en) | Long life high pressure lamp | |
| JPS5650046A (en) | Electrode for electric-discharge lamp | |
| US1879158A (en) | Glow discharge lamp | |
| US4209726A (en) | Low-pressure sodium vapor discharge lamp | |
| US2240327A (en) | Glass composition | |
| US2488727A (en) | Electrode for electric discharge devices | |
| GB863468A (en) | Improvements in or relating to low pressure electric discharge lamps | |
| US2039978A (en) | Electric discharge lamp |