US3748866A - Method and apparatus for chilling mold elements - Google Patents
Method and apparatus for chilling mold elements Download PDFInfo
- Publication number
- US3748866A US3748866A US00136861A US3748866DA US3748866A US 3748866 A US3748866 A US 3748866A US 00136861 A US00136861 A US 00136861A US 3748866D A US3748866D A US 3748866DA US 3748866 A US3748866 A US 3748866A
- Authority
- US
- United States
- Prior art keywords
- coolant
- heat exchanger
- die elements
- loop
- trichlorofluoromethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000002826 coolant Substances 0.000 claims abstract description 150
- 239000007788 liquid Substances 0.000 claims abstract description 40
- 239000004033 plastic Substances 0.000 claims abstract description 21
- 229920003023 plastic Polymers 0.000 claims abstract description 21
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 claims description 15
- 229940029284 trichlorofluoromethane Drugs 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 7
- 238000001704 evaporation Methods 0.000 claims description 5
- 238000010137 moulding (plastic) Methods 0.000 claims description 4
- 230000008016 vaporization Effects 0.000 claims description 3
- 238000001816 cooling Methods 0.000 abstract description 11
- 238000000071 blow moulding Methods 0.000 abstract description 4
- 239000012530 fluid Substances 0.000 description 12
- 238000005057 refrigeration Methods 0.000 description 8
- 239000003507 refrigerant Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- SGVQWMHGPNLWSW-UHFFFAOYSA-N chloro(difluoro)methane;1-chloro-1,1,2,2,2-pentafluoroethane Chemical compound FC(F)Cl.FC(F)(F)C(F)(F)Cl SGVQWMHGPNLWSW-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B9/00—Blowing glass; Production of hollow glass articles
- C03B9/30—Details of blowing glass; Use of materials for the moulds
- C03B9/38—Means for cooling, heating, or insulating glass-blowing machines or for cooling the glass moulded by the machine
- C03B9/3875—Details thereof relating to the side-wall, body or main part of the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/007—Tempering units for temperature control of moulds or cores, e.g. comprising heat exchangers, controlled valves, temperature-controlled circuits for fluids
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B9/00—Blowing glass; Production of hollow glass articles
- C03B9/30—Details of blowing glass; Use of materials for the moulds
- C03B9/38—Means for cooling, heating, or insulating glass-blowing machines or for cooling the glass moulded by the machine
- C03B9/3808—Selection or characteristics of the cooling, heating or insulating medium, e.g. gas composition, moisture content, cryogenic state
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B9/00—Blowing glass; Production of hollow glass articles
- C03B9/30—Details of blowing glass; Use of materials for the moulds
- C03B9/38—Means for cooling, heating, or insulating glass-blowing machines or for cooling the glass moulded by the machine
- C03B9/3816—Means for general supply, distribution or control of the medium to the mould, e.g. sensors, circuits, distribution networks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C3/00—Other direct-contact heat-exchange apparatus
- F28C3/005—Other direct-contact heat-exchange apparatus one heat-exchange medium being a solid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
Definitions
- ABSTRACT This disclosure relates to a method and apparatus for continuously chilling or cooling mold parts which are subjected to heated products, such as the die elements of a plastic blow molding apparatus. More particularly, the disclosed method and apparatus is adapted to maintain a predetermined mold chilling temperature to permit rapid forming of plastic articles and reduce the dwell time of the plastic article within the mold.
- the disclosed apparatus includes a heat exchangerevaporator, a first liquid coolant loop communicating with the heat exchanger and the mold parts to be cooled, wherein low viscosity liquid coolant is pumped through the heat exchanger and the mold parts to chill the mold parts, and a second coolant loop communicating with the evaporator within the heat exchanger and including a compressor, condenser and expansion valve.
- the coolant in the second coolant loop is evaporated by the expansion valve, within the evaporator of the heat exchanger, to absorb heat from and chill the coolant within the first coolant loop.
- This invention relates generally to refrigeration systems, including the process of chilling mold parts and a chilling or refrigeration apparatus.
- the method and apparatus of this invention utilizes a two refrigerant loop system, wherein a low viscosity liquid coolant is pumped through the die element of the mold to be chilled, which has been cooled in a heat exchanger which forms the common link between the loops.
- the second loop is preferably a vapor-liquid refrigeration system, wherein the coolant is vaporized within the common heat exchanger.
- the method and apparatus of this invention is capable of maintaining stable temperature operations in a plastic blow-molding apparatus, for example, producing 5,000 plastic bottles per hour from two pair of cooperating die elements.
- the lower the temperature of the die elements of a mold the faster the plastic in contact with the die faces will cool, permitting greater production rates.
- a plot of the cooling time versus temperature indicates that the time of cooling increases exponentially with the temperature of the die face. Lowering of the mold temperature from 40 Fahrenheit to -40 Fahrenheit, for example, cuts the cooling time by about 30 percent, permitting a corresponding increase in the production rate.
- the method of chilling the die elements of this invention includes circulating a low viscosity, low temperature fluid coolant under pressure through the molds at a temperature low enough to maintain stable operation, circulating the low viscosity fluid from the molds to a heat exchanger, wherein the temperature of the fluid coolant is reduced by a second coolant, evaporating the second coolant within the heat exchanger to transfer the heat absorbed by the low viscosity coolant to the second coolant, and circulating the second coolant to a condenser wherein the coolant is condensed, cooled and recirculated to the heat exchanger for evaporation.
- the apparatus of this invention includes a heat exchanger having an evaporator, a first coolant loop communicating with the heat exchanger and the die elements of the mold, and a pump adapted to circulate a liquid coolant under pressure through the heat exchanger and the die elements.
- a second coolant loop is provided which communicates with the evaporator of the heat exchanger, a condenser adapted to condense the coolant within the second coolant loop and an expansion valve adapted to vaporized the coolant within the second coolant loop, within the evaporator.
- the low viscosity coolant within the first coolant loop is preferably circulated in the liquid state under pressure from the heat exchanger, through the die elements of the mold, and the heat absorbed thereby is transferred to the coolant in the second coolant loop.
- the method and apparatus of this invention combines the advantages of the liquid and the liquid-vapor coolant systems and avoids many of the problems of each system.
- the method and apparatus of this invention is also capable of maintaining a stable temperature in the die elements of a molding apparatus and avoids the problem of uneven cooling inherent in the liquid-vapor refrigeration systems.
- FIGURE is a schematic illustration of one embodiment of the apparatus for chilling mold elements of this invention.
- the method and apparatus of this invention is adapted to chill the die elements of a molding apparatus, such as shown at 20 in the FIGURE.
- the refrigeration or cooling system of this invention is particularly adapted to chilling a mold apparatus having a high production rate, wherein the temperature of the coolant must be maintained at a relatively low temperature to maintain the stability of the system.
- the mold apparatus disclosed in the FIGURE is a conventional plastic blow molding apparatus, which might be utilized for example in the production of plastic bottles.
- the mold halves 22 and 24 each receive and retain a die element 26 and 28, respectively.
- the die elements are urged together and apart by a pair of piston elements or rams 30 and 32. It will be understood however, that the method and apparatus of this invention is suitable for chilling various types of mold apparatus and is not limited to the particular blow molding apparatus disclosed.
- the apparatus of this invention includes a first coolant loop 34 which is adapted to pump a low viscosity coolant, at a low temperature, through the mold apparatus 20 to cool the die elements 26 and 28.
- the first ratus through line 40 and mold coolant inlet lines 42.
- the die elements 26 and 28 may be provided with coolant channels as disclosed in the above referenced patent, or a plurality of baffles may be provided on the rearward surface of the die element, opposite the mating surfaces, to provide the requisite heat transfer characteristics.
- the coolant leaves the mold apparatus through outlets 44.
- a pair of flexible bellows-like sections 46 are provided to permit opening and closing of the mold sections 22 and 24.
- the coolant is then returned to the pump 54 through lines 48, 50 and 52, where the coolant is recycled to the heat exchanger 36.
- the pump may be a conventional commercially available liquid centrifugal pump,or the like.
- a reserve tank 56 is provided in this embodiment to replenish any losses of the coolant in the system, through line 58, and drain line 64 is provided to permit emptying of the system.
- the drain line may be provided with a manual valve 62 and a reservoir 66.
- a suitable low viscosity coolant for the first loop of the chilling apparatus disclosed in the FIGURE is Refrigerant 11', which is a standard of the American Society of Heating, Refrigerating and Air Conditioning Engineers (Standard 34-66).
- the chemical formulation for Refrigerant 1 1 is CCl F which is sold by the Du Pont de Nemours Corporation under the trade name of Freon.
- the coolant utilized in the first coolant loop is preferably a low viscosity coolant, which is capable of being pumped through the system at the low temperatures required.
- the coolant is pumped through the first coolant loop 34 in the liquid state, and therefore the temperature must be maintained below the vaporization temperature of the coolant, at the pressure maintained in the fluid lines.
- a low viscosity coolant may be characterized as a liquid coolant having a viscosity near one centipoise at the temperature of operation.
- Refrigerant 11 for example, has a viscosity of 0.9 centipoise at minus 40 Fahrenheit. It will be understood however, that any coolant which has the desired characteristics may be utilized in the chilling apparatus of this invention.
- the second coolant loop 68 of the mold chilling apparatus of this invention is adapted to lower the temperature of the coolant in the first coolant loop 34, as described above.
- the coolant vapor from the evaporator coil 38 is utilized in the suction line heat exchanger 70 to cool the liquid coolant received through line 1 18, as will be described hereinbelow.
- the coolant vapor is received in the suction line heat exchanger through line 72.
- the suction line heat exchanger 70 communicates with a filter 74 through line 76.
- the filter 74 may be a conventional coolant vapor filter, and is adapted to filter out foreign material from the vapor including dirt and other debris from the heat exchangers 36 and 70.
- the filter communicates with the two-stage compressor 78 through line 80.
- the two-stage compressor illustrated in the FIGURE is a conventional refrigeration compressor, which is adapted to increase the pressure of the coolant vapor sufficiently to permit condensing of the vapor at a later stage.
- the compressor includes a first stage 82 which communicates with the second stage 84 through line 86.
- a common drive shaft 88 is provided between the compressor units.
- An oil separator 90 is provided in the second loop to remove anyoil received through line 92 from the second stage of the compressor 84.
- a conventional In this embodiment, a conventional.
- high pressure control 94 is provided, which is merely a shut off valve to stop the operation of the compressor in the event the pressure in the system increased beyond a predetermined limit.
- An oil return line 96 is provided between the oil separator and the second stage 84 of the compressor. It will be understood that the oil separator 90 may be any conventional type of oil separator.
- a condenser 98 communicates with the oil separator 90 through line 100, wherein the coolant vapor is condensed to a liquid.
- the temperature of the liquid cool ant leaving the condenser is generally between and Fahrenheit. The increase in temperature is of course caused by the increase in pressure.
- the fluid coolant is then received in a subcooler 102, through line 106.
- the subcooler may be a conventional shelltube heat exchanger having an evaporator 104 therein. A portion of the fluid coolant in this embodiment is channeled through line 108 and vaporized by the thermostatic expansion valve 110 in the evaporator 104.
- a valve 112 controls the volume of fluid channeled through line 108 to maintain the desired temperature of the fluid coolant leaving the subcooler through line 118.
- a suitable valve would be a conventional solenoid on-off valve, which is manually controlled to maintain the temperature of the liquid coolant within the predetermined temperature limits.
- an automatic solenoid valve may be provided having a thermocouple control, which controls the flow of liquid coolant through line 108 to maintain the predetermined temperature of the coolant leaving the subcooler 102.
- Line 114 communicates with the evaporator 104 in the subcooler and returns the coolant vapor to the first stage of the compressor 82.
- the liquid coolant in line 118 is further cooled by the suction line heat exchanger 70, wherein the vapor received from the heat exchanger 36 at between minus 50 and minus 60 Fahrenheit is received in heat exchange relation with the liquid coolant.
- the suction line heat exchanger 70 may also be a conventional shell-tube heat exchanger, as described above.
- the liquid coolant, whose temperature is now about 0 Fahrenheit, is vaporized in the heat exchanger evaporator coil 38 by the thermostatic expansion valve 120, through line 124.
- a valve 122 is provided to control the rate of flow of the liquid coolant to maintain a predetermined temperature of the liquid coolant in the first coolant loop, as described above.
- the thermostatic expansion valves 120 and 110 may be conventional refrigeration system expansion valves which are commercially available.
- the valve 122 may be a manually operated solenoid valve similar to the valve 112 described hereinabove, or an automatic solenoid valve may be utilized.
- a suitable coolant for the second loop 68 of the mold chilling apparatus of this invention is Refrigerant 502, which is also standard of the American Society of Heating, Refrigerating and Air Conditioning Engineers and is commercially available from Du Pont de Nemours Corporation under the trade name Freon.
- the individual elements of the mold chilling apparatus of this invention including the compressor, heat exchangers, valves, condenser, oil separator, filter, pump and the like, have not been described herein in detail because each of these elements are well known in the art and are commercially available. Reference may also be made to the above referenced patent. Further, no claim is made herein to the specific details of the construction of these elements.
- the method of continuously chilling the die elements 26 and 28 should be obvious from the above description of the mold chilling apparatus. Briefly, it includes circulating a low viscosity fluid coolant, such as Refrigerant 11, under pressure through the molds 22 and 24 at a temperature low enough to maintain the chilling temperature of the molds.
- a low viscosity fluid coolant such as Refrigerant 11
- the temperature of the fluid coolant may be between minus 40 and minus 60 Fahrenheit, however, it will be understood that the preferred temperature will depend upon the type of molding apparatus and the rate of production.
- the liquid coolant in the first coolant loop 34 is then circulated to the heat exchanger 36, wherein the temperature of the fluid coolant is reduced by the coolant in the second coolant loop 68.
- the coolant in the second coolant loop is evaporated in the evaporator coil 38 in the heat exchanger 36, transferring the heat absorbed by the low viscosity fluid coolant in the first coolant loop to the coolant in the second coolant loop.
- the coolant vapor in the second coolant loop is circulated to the compressor 78 and the condenser 98 wherein it is condensed, cooled and recirculated to the heat exchanger 36.
- the liquid coolant in the second coolant loop is also cooled in stages by the subcooler 102 and the suction line heat exchanger 70.
- the method of continuously cooling or chilling the die elements 26 and 28 of this invention does not require a particular liquid-vapor refrigeration system, such as shown by the second loop 68 of the FIGURE.
- This embodiment is shown to illustrate a refrigeration system which is capable of cooling the liquid coolant in the first coolant loop 34 to a temperature low enough to maintain the temperature stability of the disclosed mold apparatus. Therefore, other suitable refrigeration systems may also be used depending upon the temperature requirements of the system.
- a heat exchanger having an evaporator therein, a first continuous coolant loop having trichlorofluoromethane coolant therein communicating with said heat exchanger and the surfaces of said die elements opposite the die forming faces which are cyclicly heated to a high temperature over short time intervals, and a second coolant loop having a relatively volatile coolant therein communicating with said heat exchanger, a condenser adapted to condense the volatile coolant within said second coolant loop and an expansion valve means adapted to vaporize the volatile coolant within said evaporator, whereby the coolant within said first coolant loop is circulated and remains in the liquid state under pressure from said heat exchanger to repeatedly chill said die elements, and the heat of said molten plastic material is first absorbed by the trichlorofluoromethane coolant circulated in said first coolant loop and is later absorbed by the second relatively volatile cool
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13686171A | 1971-04-23 | 1971-04-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3748866A true US3748866A (en) | 1973-07-31 |
Family
ID=22474712
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00136861A Expired - Lifetime US3748866A (en) | 1971-04-23 | 1971-04-23 | Method and apparatus for chilling mold elements |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US3748866A (it) |
| BE (1) | BE781458A (it) |
| CA (1) | CA972914A (it) |
| DE (1) | DE2208287C3 (it) |
| ES (1) | ES399917A1 (it) |
| FR (1) | FR2134413B1 (it) |
| GB (1) | GB1380773A (it) |
| IT (1) | IT952148B (it) |
| NL (1) | NL7202922A (it) |
| ZA (1) | ZA721970B (it) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3859812A (en) * | 1974-03-08 | 1975-01-14 | Richard B Pavlak | Methods and apparatus for treating machine tool coolants |
| US3957111A (en) * | 1972-11-30 | 1976-05-18 | Kawasaki Jukogyo Kabushiki Kaisha | Apparatus for cooling solids of high temperature |
| US5873253A (en) * | 1997-04-03 | 1999-02-23 | Camphous; Catherine M. | Method and apparatus for cooling parts that are being worked |
| US6018141A (en) * | 1996-04-19 | 2000-01-25 | Thermion Systems International | Method for heating a tooling die |
| US6547019B2 (en) * | 2001-01-16 | 2003-04-15 | Kawasaki Jukogyo Kabushiki Kaisha | Reserve tank for engine coolant and straddle-type all terrain vehicle equipped with the reserve tank |
| US20080128112A1 (en) * | 2006-11-29 | 2008-06-05 | Wyatt William G | Methods and apparatus for electronic cooling unit with unique features |
| US20100170659A1 (en) * | 2009-01-08 | 2010-07-08 | Maguire Stephen B | Molding apparatus and method with heat recovery |
| US7964129B1 (en) * | 1998-06-11 | 2011-06-21 | Malcolm Barry James | Temperature control method and apparatus |
| US9234685B2 (en) * | 2012-08-01 | 2016-01-12 | Thermo King Corporation | Methods and systems to increase evaporator capacity |
| TWI594864B (zh) * | 2011-11-17 | 2017-08-11 | Nax Co Ltd | Molding temperature control system |
| EP3311974A1 (de) * | 2016-10-18 | 2018-04-25 | Arburg GmbH + Co KG | Anordnung zum wärmeaustausch und/oder zur temperierung von maschinenkomponenten |
| CN109128121A (zh) * | 2018-10-30 | 2019-01-04 | 苏州奥天诚机械有限公司 | 用于液态金属凝固的冷却结构 |
| CN113165230A (zh) * | 2018-12-03 | 2021-07-23 | 菲茨控股公司 | 用于现场制造热塑性夹层板的压机 |
| US11975462B2 (en) | 2017-02-16 | 2024-05-07 | Billio Pty Ltd | Cooling system for moulds |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE9305296U1 (de) * | 1993-01-05 | 1994-02-10 | Fasti, Farrag & Stipsits Ges.M.B.H., Bregenz, Vorarlberg | Vorrichtung zur Herstellung von angekühlter Preßluft |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2058924A (en) * | 1934-09-28 | 1936-10-27 | Kelvinator Corp | Refrigerating medium |
| US2931192A (en) * | 1957-11-15 | 1960-04-05 | Vilter Mfg Co | Fishing boat refrigeration |
| US3127753A (en) * | 1960-01-04 | 1964-04-07 | George A Tinnerman | Method of chilling die elements of molding apparatus |
-
1971
- 1971-04-23 US US00136861A patent/US3748866A/en not_active Expired - Lifetime
-
1972
- 1972-02-02 CA CA133,758A patent/CA972914A/en not_active Expired
- 1972-02-18 ES ES399917A patent/ES399917A1/es not_active Expired
- 1972-02-22 DE DE2208287A patent/DE2208287C3/de not_active Expired
- 1972-03-06 NL NL7202922A patent/NL7202922A/xx not_active Application Discontinuation
- 1972-03-07 IT IT48821/72A patent/IT952148B/it active
- 1972-03-22 ZA ZA721970A patent/ZA721970B/xx unknown
- 1972-03-30 BE BE781458A patent/BE781458A/xx unknown
- 1972-04-21 GB GB1861372A patent/GB1380773A/en not_active Expired
- 1972-04-21 FR FR7214274A patent/FR2134413B1/fr not_active Expired
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2058924A (en) * | 1934-09-28 | 1936-10-27 | Kelvinator Corp | Refrigerating medium |
| US2931192A (en) * | 1957-11-15 | 1960-04-05 | Vilter Mfg Co | Fishing boat refrigeration |
| US3127753A (en) * | 1960-01-04 | 1964-04-07 | George A Tinnerman | Method of chilling die elements of molding apparatus |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3957111A (en) * | 1972-11-30 | 1976-05-18 | Kawasaki Jukogyo Kabushiki Kaisha | Apparatus for cooling solids of high temperature |
| US3859812A (en) * | 1974-03-08 | 1975-01-14 | Richard B Pavlak | Methods and apparatus for treating machine tool coolants |
| US6018141A (en) * | 1996-04-19 | 2000-01-25 | Thermion Systems International | Method for heating a tooling die |
| US5873253A (en) * | 1997-04-03 | 1999-02-23 | Camphous; Catherine M. | Method and apparatus for cooling parts that are being worked |
| US7964129B1 (en) * | 1998-06-11 | 2011-06-21 | Malcolm Barry James | Temperature control method and apparatus |
| US20110232856A1 (en) * | 1998-06-11 | 2011-09-29 | Malcolm Barry James | Temperature control method and apparatus |
| US6547019B2 (en) * | 2001-01-16 | 2003-04-15 | Kawasaki Jukogyo Kabushiki Kaisha | Reserve tank for engine coolant and straddle-type all terrain vehicle equipped with the reserve tank |
| US20080128112A1 (en) * | 2006-11-29 | 2008-06-05 | Wyatt William G | Methods and apparatus for electronic cooling unit with unique features |
| US20100170659A1 (en) * | 2009-01-08 | 2010-07-08 | Maguire Stephen B | Molding apparatus and method with heat recovery |
| US20140138055A1 (en) * | 2009-01-08 | 2014-05-22 | Stephen B. Maguire | Molding apparatus and method with heat recovery |
| US9868228B2 (en) * | 2009-01-08 | 2018-01-16 | Stephen B. Maguire | Molding apparatus and method with heat recovery |
| TWI594864B (zh) * | 2011-11-17 | 2017-08-11 | Nax Co Ltd | Molding temperature control system |
| US9234685B2 (en) * | 2012-08-01 | 2016-01-12 | Thermo King Corporation | Methods and systems to increase evaporator capacity |
| EP3311974A1 (de) * | 2016-10-18 | 2018-04-25 | Arburg GmbH + Co KG | Anordnung zum wärmeaustausch und/oder zur temperierung von maschinenkomponenten |
| US11975462B2 (en) | 2017-02-16 | 2024-05-07 | Billio Pty Ltd | Cooling system for moulds |
| CN109128121A (zh) * | 2018-10-30 | 2019-01-04 | 苏州奥天诚机械有限公司 | 用于液态金属凝固的冷却结构 |
| CN113165230A (zh) * | 2018-12-03 | 2021-07-23 | 菲茨控股公司 | 用于现场制造热塑性夹层板的压机 |
| CN113165230B (zh) * | 2018-12-03 | 2023-07-21 | 菲茨控股公司 | 用于现场制造热塑性夹层板的压机 |
Also Published As
| Publication number | Publication date |
|---|---|
| DE2208287C3 (de) | 1980-01-31 |
| ZA721970B (en) | 1973-04-25 |
| FR2134413A1 (it) | 1972-12-08 |
| IT952148B (it) | 1973-07-20 |
| DE2208287A1 (de) | 1972-11-09 |
| DE2208287B2 (de) | 1979-06-13 |
| BE781458A (fr) | 1972-10-02 |
| CA972914A (en) | 1975-08-19 |
| GB1380773A (en) | 1975-01-15 |
| NL7202922A (it) | 1972-10-25 |
| ES399917A1 (es) | 1975-06-16 |
| FR2134413B1 (it) | 1976-10-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3748866A (en) | Method and apparatus for chilling mold elements | |
| US9127873B2 (en) | Temperature controlled compartment and method for a refrigerator | |
| EP0859545B1 (en) | Apparatus and method for cooling a product | |
| WO1997039297A1 (en) | Multi-stage cooling system for commercial refrigeration | |
| US5743023A (en) | Method and apparatus for controlling freeze drying process | |
| CN1165734C (zh) | 商用制冷系统的运行方法 | |
| EP0194629B1 (en) | Refrigerant cooled plastics moulding | |
| US2133966A (en) | Method and apparatus for controlling refrigerating machines | |
| US3257818A (en) | Cooling system | |
| US2080358A (en) | Refrigerating apparatus | |
| US2146796A (en) | Refrigerating apparatus | |
| JP7174502B2 (ja) | 多段冷凍サイクルを用いた温度調節装置及びそれを用いた温度調節方法 | |
| US2046894A (en) | Refrigerating apparatus | |
| US2292692A (en) | Liquid refrigerating unit | |
| US2308079A (en) | Refrigerating apparatus | |
| US3881323A (en) | Viscosity regulated cooling system | |
| US6418748B1 (en) | Machinery cooling system | |
| KR102035633B1 (ko) | 금형 냉각장치 | |
| US2016056A (en) | Liquid circulating system | |
| US2008628A (en) | Defroster for refrigerators | |
| US2133961A (en) | Refrigeration apparatus | |
| KR20250015766A (ko) | Cda를 활용한 칠러 시스템 | |
| US1779409A (en) | Refrigerating apparatus | |
| US4459812A (en) | Method and apparatus for liquid freezing | |
| CN105799100A (zh) | 冷热一体模温机 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: OWENS-ILLINOIS PLASTIC PRODUCTS INC., ONE SEAGATE, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE APRIL 15, 1987;ASSIGNOR:OWENS-ILLINOIS, INC.;REEL/FRAME:004875/0962 Effective date: 19870323 Owner name: OWENS-ILLINOIS PLASTIC PRODUCTS INC., A CORP. OF D Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-ILLINOIS, INC.;REEL/FRAME:004875/0962 Effective date: 19870323 |