US3748065A - Gas compressor construction - Google Patents

Gas compressor construction Download PDF

Info

Publication number
US3748065A
US3748065A US00202977A US3748065DA US3748065A US 3748065 A US3748065 A US 3748065A US 00202977 A US00202977 A US 00202977A US 3748065D A US3748065D A US 3748065DA US 3748065 A US3748065 A US 3748065A
Authority
US
United States
Prior art keywords
base
casing
fluid
compressor
inlet fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00202977A
Inventor
K Pilarczyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elliott Turbomachinery Co Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3748065A publication Critical patent/US3748065A/en
Assigned to ELLIOTT TURBOMACHINERY CO., INC. reassignment ELLIOTT TURBOMACHINERY CO., INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CARRIER CORPORATION, A CORP OF DEL.
Assigned to FIRST NATIONAL BANK OF CHICAGO, THE reassignment FIRST NATIONAL BANK OF CHICAGO, THE LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: ELLIOT TURBOMACHINERY CO., INC.
Assigned to CONTINENTAL BANK N.A. reassignment CONTINENTAL BANK N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELLIOTT TURBOMACHINERY CO., INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger

Definitions

  • a gas compression machine having a base, a rotor assembly, casing means for the rotor assembly mounted on the base, inlet fluid housing means separate from said casing means, a telescopic connection between the housing means and casing, a resilient seal interposed at the location of the telescopic connection.
  • drive means also connected to the casing, the base being subdivided into a gas intercooler section and a lubricant accommodating section.
  • FIG. 1 is a perspective view of a multi-stage centrifugal compressor
  • FIG. 2 is a schematic flow diagram showing the relationship of the compressor stages and intercoolers
  • FIG. 3 is a partial cross-section side elevation view, with the cross-sections being taken in a vertical plane passing through the axes of rotation of the compressor rotor and drive assembly;
  • FIG. 4 is a partial cross-section and exploded view of a portion of the structure as shown'in FIG. 1;
  • valve member 16 with the interposition of a suitable linkage 17.
  • the inlet valve mechanism 15, 16, 17 is conventional per se for throttling the inlet fluid on partial load and for density control in a known manner.
  • the diaphram control is provided with a'pressure feedback tube 18 for this purpose.
  • the multi-stage impeller rotor and fluid guide structure is contained within the one piece cast casing 4, which casing is provided with an axially through cylindrical bore 19, a downwardly facing planar surface 20 engaging the correspondingly planar upper surface of the top wall 21 of the base 1, and with an upwardly extending boss 22 that is bored 1 for fluid communication with the outlet of the last com-
  • FIG. 5 is a cross-sectional view takenon line 5-5 in FIG. 3 showing the air discharge manifold of the intercoolers.
  • the drive assembly for the compressor may be of any type, but preferably employs the electric motor 8 that drives a gear set within the gear housing 6.
  • the drive structure may be of the type mentioned in one of applicants previously identified 1 applications wherein the structure is set forth in detail.
  • the front wall 23 is provided with oppositely opening doors 24, which lead to a control and auxiliary component compartment having therein the inlet and outlet water couplings for the intercoolers.
  • the supply 25 andoutlet 26 waterpipes for the intercoolers extend permanently through the side wall 27 and are provided at their outer ends with suitable couplings to be connected during in- FIG. 2 wherein'the impeller of a first stage 28 passes fluid downwardly through a first intercooler 29. Thereafter, the fluid passes through the second stage impeller 30, which directs it downwardly through the second intercooler 31. F inally, the fluid passes upwardly and through the third stage impeller 32 for discharge to the point of use.
  • the impellers 28, 32, 30 form an integral rotor drivingly connected with a spur helical pinion gear 33 that is driven by means of a drive helical gear 34 mounted on a parallel axisgear drive input shaft 35.
  • the inlet connection is shown in more detail in FIG. 3.
  • a cylindrical mounting portion 36 of the inlet housing 2 is telescopically received over a. cylindrical mounting portion 37 with the interposition of an O-ring 38. From the drawing, it is seen that the adjacent cylindrical surfaces of mounting portions 36, 37 are radially spaced from each other so that the O-ring 38 provides the only engaging connection between the inlet housing 2 and the compressor casing 4, while sealing these structures.
  • the inlet housing 2 is independently supported on the base 1 to prevent transmittal of inlet housing vibration, canting, axial movement, radial movement and rotational movement to the compressor casing 4.
  • the complete compressor may be supplied to a user and the user .may rigidly couple his inlet fluid pipes directly to the inlet housing 2, without fear that forces relating to the coupling and inlet pipes will be transmitted to the compressor casing. Further, the.
  • the removable barrel structure of the compressor includes separate shrouds, diffusers, and annular fluid guide elements all received in a stacked relationship within the cylindrical bore 19 of the one piece compressor casing 4.
  • the compressor casing 4 is provided with integrally cast passages extending between the barrel assembly and the base 1. Particularly, a first passage 39 extends between the bore 19 and the'planar surface to conduct fluid from the discharge of the first stage, second passage 40 extends from the bore 19 to the planar surface 20 to conduct the fluid into the third stage inlet, third passage 41 extends from the bore 19 to the planar surface 20 to conduct fluid discharged from the second stage and fourth passage 42 extends from the bore19 to the planar surface 20 to conduct fluid to the inlet of the second stage.
  • the base 1 is provided with a top wall 21, opposed side walls 27 and 43, opposed front and back walls 23 and 44, and a bottom wall 45, which together form a substantially closed main chamber containing the intercooler structure.
  • the top wall 21 is provided with a plurality of passages, also shown in FIG. 4, extending between the passages 39-42 and the intercooler main chamber.
  • the top plate 21 is provided with holes 46 that align with passages 39, holes 47 that align with passage 42, hole 48 that aligns with passage 40 and hole 49 that aligns with passage 41.
  • Two parallel partition walls 50 which are parallel to the walls 27, 43, extend completely from the top wall 21 to the bottom wall and extend from the front wall 23 to the back wall 44 to form a central manifold chamber 51.
  • Additional partition walls 52 subdivide the manifold chamber into three aligned subchambers, with the outside subchambers 53 being in fluid communication between the holes 47 in the top wall and correspondingly aligned holes in the left-hand partition wall 50, and with the inside subchamber 54 being in fluid communication between the hole 48 and a hole 55 in the right-hand partition wall as shown in FIG. 3.
  • the main intercooler chamber is further divided into a first intercooler chamber to the left of the partition walls 50 and a second intercooler chamber 56 to the right of the partition walls 50, as seen in FIG. 3.
  • Identical and interchangeable parallel tube fluid heat exchangers 57 are mounted on shelves 58 within their respective intercooler chambers 55, 56 so that they may be horizontally slid into and out of the base 1 after the releasably secure back wall 44 is removed.
  • the pipes 25, 26 are provided with releasable couplings 59 for uncoupling the heat exchangers, without affecting the location of the pipes 25, 26.
  • the baffles 60 formed in the nozzle type passages 61 constitute separators that willtake the cooled fluid from the heat exchangers having condensed droplets therein, accelerate this cooled fluid and substantially reverse the flow of the accelerated cooled fluid to separate the condensate. Further, moisture will be removed from this separated fluid by means of demister 62. Thereafter, the relatively dry fluid will pass through respective holes in the partition walls 50 so that the fluid from the intercooler chamber 55 will pass into the submanifold chambers 53 and fluid from the intercooler 56 will pass into the submanifold chamber 54. It is noted that the left-hand passage 61 is substantially larger than the right-hand passage 61 as shown in F K].
  • the base 1 is provided with an oil sump 63, which is in direct communication with the interior of the gear housing 6.
  • the compressor base of the present invention separately and rigidly mounts a rigid compressor casing and a rigid fluid inlet casing, and provides a telescopic coupling therebetween having only a flexible interengagement by means of the O- ring 38.
  • the users rigid fluid inlet pipes may be rigidly connected directly to the fluid inlet casing 2 for support thereof, without fear that the stresses produced by the rigid supply coupling will be transmitted to the compressor casing 4.
  • any vibrations, thermal expansion, settling, misalignment, etc. associated with the user's fluid supply pipes will be transmitted only to the heavy rigid base and not transmitted directly to the compressor casing.
  • this O-ring seal 38 and flexible coupling will accommodate misalignment and tolerances as between the casings 2 and 4, as well as preventing force transmittal therebetween because of the considerable radial spacing between the telescoping cylindrical portions 36, 37.
  • the inlet casing may be advantageously used for a conventional type of inlet valve, without fear that forces associated with the inlet valve will be transmitted to the compressor casing.
  • the compressor casing is of a one-piece cast construction with integral fluid passages between stages communicating between each stage and intercoolers within the base, respectively, so that no bulky, costly and cumbersome external piping connections are required.
  • the base has a top compressor supporting wall that is provided with integral passages aligned respectively in fluid communication with the compressor casing integral passages so that fluid is conducted from the first and second stages downwardly into the intercooler chambers and upwardly from the intercooler chambers into the second and third stages.
  • the base is further of a compact construction in that it requires very little extra room over that of the plan view dimensions associated with the compressor casing and inlet fluid casing, with respect to its enclosure for housing intercoolers, centrifugal separators, and demisters.
  • the intercoolers are identical and the demisters are identical to provide for interchangeability and inexpensive manufacture.
  • the separators are formed by baffles that are identical although assembled in mirror image fashion. The fluid flows downwardly through the intercoolers through a restricted passage formed by the separator baffles so that the cooled fluid approaches or reaches sonic velocity before it is sharply and reversely guided upwardly through the demisters, so that during this reversal, droplets of condensate will be discharged downwardly where they will be collected and removed if desired.
  • the fluid moving upwardly through demisters is further directed upwardly through submanifold chambers located centrally between the two intercooler chambers for discharge through the top wall of the base.
  • Construction of the base is rigid and relatively inexpensive in that it is of welded steel fabrication employing only planar sheets-and plates, with the partition walls forming the submanifold chambers considerably contributing to the rigidity of the entire structure by providing cross bracing.
  • the portion of the base under the drive mechanism, particularly an electric motor and gear train, is of relatively shallow construction due to the greater height of these components and forms a sump for the oil lubrication system.
  • this sump is in direct communication with the gear housing.
  • the intercoolers are mounted within their respective intercooler chambers by means of shelves so that they may be slid horizontally in one direction out of the base, after the removal of the adjacent releasably mounted wall.
  • the wall opposite from the releasably mounted wall is provided with access means so that rigid cooling liquid supply and exhaust pipes may be quickly coupled and uncoupled from the intercoolers.
  • the demisters are mounted on respective shelves to be horizontally slid out of their respective intercooler'chambers in .the' same'dire'ction as the heat exchangers, for purposes of repair, replacement or thelike.
  • a compressor comprising a rigid base; a compressor rotor; casing means-cooperating with said compressor rotor to form at least one compression stage and being rigidly mounted on said base; inlet fluid housing means being rigidly mounted on said base separately from said casing means; said inlet fluid housing means having fluid supply pipe coupling means and a cylindrical portion forming a discharge passage downstream from said coupling means; said casing means having a cylindrical portion forming an inlet fluid passage up-' stream from said compressor rotor; said inlet fluid housing means and easing means cylindrical portions being telescopically overlapped; resilient annular seal means providing the sole contacting connection between said inlet fluid housing means and said casing means, and forming a tight sealed connection between said cylindrical portions; drive casing means rigidly mounted on said base on the opposite side of said casing means from said inlet fluid housing means, and having therein a gear reduction train; said train having an input shaft with an axis of rotation parallel to said compressor rotor and extending outwardly from said drive casing means in a

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A gas compression machine having a base, a rotor assembly, casing means for the rotor assembly mounted on the base, inlet fluid housing means separate from said casing means, a telescopic connection between the housing means and casing, a resilient seal interposed at the location of the telescopic connection, drive means also connected to the casing, the base being subdivided into a gas intercooler section and a lubricant accommodating section.

Description

United States Patent 1 1' Pilarczyk 1 1 3,748,065 1 51 July 24, 1973 5 4 1 COMPRESSOR cous'rnucnou W [76] Inventor: Karol Pilarezyk, 6 Pepper Lane,
Loudonville, N.Y.
22 Filed: Nov. 29, 1971 21 Appl. 140.; 202,977
Related U.S. Application Data [62] Division of Ser. No. 44,034, June 8, 1970, Pat. No.
[52] U.S. Cl 417/423, 415/179, 415/122, 417/374 [51] Int. Cl F04b 17/00 Field-o1 Search 415/179, 147, 160, 415/199 R, 219 C, 36, 122; 417/423, 360, 3, 374, 375
[56] References Cited UNITED STATES PATENTS 2,606,713 8/1952 Bauger 415/160 2,849,960 9/1958 Olmstead et a1.... 415/201 2,857,849 10/1958 Pettillo 415/199 R 2,916,198 12/1959 Weisel 417/360 3,203,352 8/1965 Schafranek 417/423 3,145,913 8/1964 Dolz 415/36 3,150,820 9/1964 .lekat et a1. 417/360 FOREIGN PATENTS OR APPLICATIONS 536,590 2/1922 France 417/423 1,905,375 10/1969 Germany 415/213 A Primary Examiner-Henry F. Raduazo Attorney-Harry G. Martin, Jr. and J. Raymond .Qu in I 57 ABSTRACT A gas compression machine having a base, a rotor assembly, casing means for the rotor assembly mounted on the base, inlet fluid housing means separate from said casing means, a telescopic connection between the housing means and casing, a resilient seal interposed at the location of the telescopic connection. drive means also connected to the casing, the base being subdivided into a gas intercooler section and a lubricant accommodating section.
1 Claim, 5 Drawing Figures Patented July 24, 1973 3,748,065
3 Sheets-Sheet l KKKKKKK KKKKKKXK Patented July 24, 1973 3 Sheets-Sheet 2 Patented July 24, 1973 3,748,065
3 Sheets-Sheet 5 1 GAS COMPRESSOR CONSTRUCTION This application is a division of patent application Ser. No. 44,034 entitledflcompressor Base And Intercoolers, Karol Pilarczyk, inventor, filed June 8, 1970.
BACKGROUND OF THE INVENTION lntercooler structure has heretofore been one of the largest components of a multi-stage compressor, which not only increases the cost of the compressor but of more importance increases the space required for mounting the compressor unit. The intercooler structure of the patent to Schierl, U.S. Pat. No. 3,001,692, issued Sept. 26, I961, overcomes some of the problems in the prior art but still employs a rather large base in comparison to the size of the heat exchangers used and employs a considerable amount of piping between stages and waste space within the base.
The air connections for the Olmstead et al. patent, U.S. Pat. No. 2,849,960, issued Sept. 2, 1958, have'advantages with respect to force transmittal, but present a rather complicated structure that must be assembled at the use location and does not provide any rigid support for the adjacent piping extending away from the pump.
CROSS-REFERENCE TO RELATED APPLICATIONS The features of the invention of this application may be used in combination with the features of the inventions in applicants following related applications of the same filing date and assignee as the present application, the disclosures of which are incorporatedherein in theirentirety by reference: Compressor Barrel Assembly, Ser. No. 44,446; Compressor Power Recovery, Ser. No. 44,463 now issued as U.S. Pat. No. 3,680,973; Interchangeable Compressor Drive, Ser. No. 44,403 202,849, a continuation application of Ser. No. 44,403 nowabandoned; Method of- Changing Capacity Of Fluid Reaction Device Ser. No. 44,263 now issued as U.S. Pat. No. 3,664,001.
BRIEF DESCRIPTION o THE DRAWING Further objects, features and advantages in the present invention will beco'memore clear from the following detailed description ofa preferred embodiment as shown in the'attached drawing, in which:
FIG. 1 is a perspective view of a multi-stage centrifugal compressor; v
FIG. 2 is a schematic flow diagram showing the relationship of the compressor stages and intercoolers;
FIG. 3 is a partial cross-section side elevation view, with the cross-sections being taken in a vertical plane passing through the axes of rotation of the compressor rotor and drive assembly;
FIG. 4 is a partial cross-section and exploded view of a portion of the structure as shown'in FIG. 1; and
. valve member 16, with the interposition of a suitable linkage 17. The inlet valve mechanism 15, 16, 17 is conventional per se for throttling the inlet fluid on partial load and for density control in a known manner. The diaphram control is provided with a'pressure feedback tube 18 for this purpose. The multi-stage impeller rotor and fluid guide structure is contained within the one piece cast casing 4, which casing is provided with an axially through cylindrical bore 19, a downwardly facing planar surface 20 engaging the correspondingly planar upper surface of the top wall 21 of the base 1, and with an upwardly extending boss 22 that is bored 1 for fluid communication with the outlet of the last com- FIG. 5 is a cross-sectional view takenon line 5-5 in FIG. 3 showing the air discharge manifold of the intercoolers.
DETAILED DESCRIPTION OF THE DRAWING pressor stage. As will be described later, a resilient coupling for vibration and load isolation is provided between the fluid inlet housing 2 and the compressor casing 4. A
The drive assembly for the compressor may be of any type, but preferably employs the electric motor 8 that drives a gear set within the gear housing 6. Particularly, the drive structure may be of the type mentioned in one of applicants previously identified 1 applications wherein the structure is set forth in detail.
Welded steel fabrication is'used for constructing the base 1, preferably from stock sheet and plate steel. The front wall 23 is provided with oppositely opening doors 24, which lead to a control and auxiliary component compartment having therein the inlet and outlet water couplings for the intercoolers. The supply 25 andoutlet 26 waterpipes for the intercoolers extend permanently through the side wall 27 and are provided at their outer ends with suitable couplings to be connected during in- FIG. 2 wherein'the impeller of a first stage 28 passes fluid downwardly through a first intercooler 29. Thereafter, the fluid passes through the second stage impeller 30, which directs it downwardly through the second intercooler 31. F inally, the fluid passes upwardly and through the third stage impeller 32 for discharge to the point of use. The impellers 28, 32, 30 form an integral rotor drivingly connected with a spur helical pinion gear 33 that is driven by means of a drive helical gear 34 mounted on a parallel axisgear drive input shaft 35.
The inlet connection is shown in more detail in FIG. 3. A cylindrical mounting portion 36 of the inlet housing 2 is telescopically received over a. cylindrical mounting portion 37 with the interposition of an O-ring 38. From the drawing, it is seen that the adjacent cylindrical surfaces of mounting portions 36, 37 are radially spaced from each other so that the O-ring 38 provides the only engaging connection between the inlet housing 2 and the compressor casing 4, while sealing these structures. Thus, the inlet housing 2 is independently supported on the base 1 to prevent transmittal of inlet housing vibration, canting, axial movement, radial movement and rotational movement to the compressor casing 4. Thus, the complete compressor may be supplied to a user and the user .may rigidly couple his inlet fluid pipes directly to the inlet housing 2, without fear that forces relating to the coupling and inlet pipes will be transmitted to the compressor casing. Further, the.
stresses due to tightening of the connections between the inlet casing and fluid supply pipes will not be transferred to the compressor casing.
The removable barrel structure of the compressor includes separate shrouds, diffusers, and annular fluid guide elements all received in a stacked relationship within the cylindrical bore 19 of the one piece compressor casing 4. The compressor casing 4 is provided with integrally cast passages extending between the barrel assembly and the base 1. Particularly, a first passage 39 extends between the bore 19 and the'planar surface to conduct fluid from the discharge of the first stage, second passage 40 extends from the bore 19 to the planar surface 20 to conduct the fluid into the third stage inlet, third passage 41 extends from the bore 19 to the planar surface 20 to conduct fluid discharged from the second stage and fourth passage 42 extends from the bore19 to the planar surface 20 to conduct fluid to the inlet of the second stage. The base 1 is provided with a top wall 21, opposed side walls 27 and 43, opposed front and back walls 23 and 44, and a bottom wall 45, which together form a substantially closed main chamber containing the intercooler structure. The top wall 21 is provided with a plurality of passages, also shown in FIG. 4, extending between the passages 39-42 and the intercooler main chamber. Particularly, the top plate 21 is provided with holes 46 that align with passages 39, holes 47 that align with passage 42, hole 48 that aligns with passage 40 and hole 49 that aligns with passage 41.
Two parallel partition walls 50, which are parallel to the walls 27, 43, extend completely from the top wall 21 to the bottom wall and extend from the front wall 23 to the back wall 44 to form a central manifold chamber 51. Additional partition walls 52 subdivide the manifold chamber into three aligned subchambers, with the outside subchambers 53 being in fluid communication between the holes 47 in the top wall and correspondingly aligned holes in the left-hand partition wall 50, and with the inside subchamber 54 being in fluid communication between the hole 48 and a hole 55 in the right-hand partition wall as shown in FIG. 3. In this manner, the main intercooler chamber is further divided into a first intercooler chamber to the left of the partition walls 50 and a second intercooler chamber 56 to the right of the partition walls 50, as seen in FIG. 3. Identical and interchangeable parallel tube fluid heat exchangers 57 are mounted on shelves 58 within their respective intercooler chambers 55, 56 so that they may be horizontally slid into and out of the base 1 after the releasably secure back wall 44 is removed. For this purpose, the pipes 25, 26 are provided with releasable couplings 59 for uncoupling the heat exchangers, without affecting the location of the pipes 25, 26.
It is seen from FIG. 3, that fluid discharged respectively from the first stage and the second stage will pass through passages 39, 41 and holes 46, 49 downwardly into intercooler chambers 55, 56 to pass through their corresponding heat exchangers 57. Thereafter, the thus cooled fluid will be directed by baffle plates 66 through vertically extending restricted nozzle type passages 61 where the flow of fluid will approach sonic velocity. The high speed fluid then passes through a sharp acute angle and upwardly through demisters 62. Thus, it is seen that the baffles 60 formed in the nozzle type passages 61 constitute separators that willtake the cooled fluid from the heat exchangers having condensed droplets therein, accelerate this cooled fluid and substantially reverse the flow of the accelerated cooled fluid to separate the condensate. Further, moisture will be removed from this separated fluid by means of demister 62. Thereafter, the relatively dry fluid will pass through respective holes in the partition walls 50 so that the fluid from the intercooler chamber 55 will pass into the submanifold chambers 53 and fluid from the intercooler 56 will pass into the submanifold chamber 54. It is noted that the left-hand passage 61 is substantially larger than the right-hand passage 61 as shown in F K]. 3, which difference is proportional to the difference in volume of fluid handled by the two intercoolers due to compression. For this same reason, two submanifold chambers 53 are provided for returning fluid to the second stage, while only one submanifold chamber is provided for returning fluid to the third stage.
Beneath the drive assembly 8, 6, the base 1 is provided with an oil sump 63, which is in direct communication with the interior of the gear housing 6.
From the above, it is seen that the compressor base of the present invention separately and rigidly mounts a rigid compressor casing and a rigid fluid inlet casing, and provides a telescopic coupling therebetween having only a flexible interengagement by means of the O- ring 38. With this coupling, the users rigid fluid inlet pipes may be rigidly connected directly to the fluid inlet casing 2 for support thereof, without fear that the stresses produced by the rigid supply coupling will be transmitted to the compressor casing 4. Also, any vibrations, thermal expansion, settling, misalignment, etc. associated with the user's fluid supply pipes will be transmitted only to the heavy rigid base and not transmitted directly to the compressor casing. Further, this O-ring seal 38 and flexible coupling will accommodate misalignment and tolerances as between the casings 2 and 4, as well as preventing force transmittal therebetween because of the considerable radial spacing between the telescoping cylindrical portions 36, 37. Further, the inlet casing may be advantageously used for a conventional type of inlet valve, without fear that forces associated with the inlet valve will be transmitted to the compressor casing.
The compressor casing is of a one-piece cast construction with integral fluid passages between stages communicating between each stage and intercoolers within the base, respectively, so that no bulky, costly and cumbersome external piping connections are required. For this purpose, the base has a top compressor supporting wall that is provided with integral passages aligned respectively in fluid communication with the compressor casing integral passages so that fluid is conducted from the first and second stages downwardly into the intercooler chambers and upwardly from the intercooler chambers into the second and third stages.
The base is further of a compact construction in that it requires very little extra room over that of the plan view dimensions associated with the compressor casing and inlet fluid casing, with respect to its enclosure for housing intercoolers, centrifugal separators, and demisters. The intercoolers are identical and the demisters are identical to provide for interchangeability and inexpensive manufacture. Also, the separators are formed by baffles that are identical although assembled in mirror image fashion. The fluid flows downwardly through the intercoolers through a restricted passage formed by the separator baffles so that the cooled fluid approaches or reaches sonic velocity before it is sharply and reversely guided upwardly through the demisters, so that during this reversal, droplets of condensate will be discharged downwardly where they will be collected and removed if desired. The fluid moving upwardly through demisters is further directed upwardly through submanifold chambers located centrally between the two intercooler chambers for discharge through the top wall of the base. Construction of the base is rigid and relatively inexpensive in that it is of welded steel fabrication employing only planar sheets-and plates, with the partition walls forming the submanifold chambers considerably contributing to the rigidity of the entire structure by providing cross bracing.
The portion of the base under the drive mechanism, particularly an electric motor and gear train, is of relatively shallow construction due to the greater height of these components and forms a sump for the oil lubrication system. Preferably this sump is in direct communication with the gear housing.
The intercoolers are mounted within their respective intercooler chambers by means of shelves so that they may be slid horizontally in one direction out of the base, after the removal of the adjacent releasably mounted wall. The wall opposite from the releasably mounted wall is provided with access means so that rigid cooling liquid supply and exhaust pipes may be quickly coupled and uncoupled from the intercoolers. In a like manner, the demisters are mounted on respective shelves to be horizontally slid out of their respective intercooler'chambers in .the' same'dire'ction as the heat exchangers, for purposes of repair, replacement or thelike.
While a preferred embodiment of the present invention has been specifically described with respect to specific advantageous features, it is to be realized that the invention, in its broader aspects, includes further modifications, embodiments and variations.
What is claimed is: p
l. A compressor comprising a rigid base; a compressor rotor; casing means-cooperating with said compressor rotor to form at least one compression stage and being rigidly mounted on said base; inlet fluid housing means being rigidly mounted on said base separately from said casing means; said inlet fluid housing means having fluid supply pipe coupling means and a cylindrical portion forming a discharge passage downstream from said coupling means; said casing means having a cylindrical portion forming an inlet fluid passage up-' stream from said compressor rotor; said inlet fluid housing means and easing means cylindrical portions being telescopically overlapped; resilient annular seal means providing the sole contacting connection between said inlet fluid housing means and said casing means, and forming a tight sealed connection between said cylindrical portions; drive casing means rigidly mounted on said base on the opposite side of said casing means from said inlet fluid housing means, and having therein a gear reduction train; said train having an input shaft with an axis of rotation parallel to said compressor rotor and extending outwardly from said drive casing means in a direction opposite from said rotor; an electric motor rigidly mounted on said base; coupling means drivingly connected between said input shaft and said electric motor; said base being subdivided into an intercooler chamber and an adjacent oil sump chamber; said oil sump chamber extending below said drive casing means, coupling means and electric motor; and said drive casing means openingfreely downwardly into said sump chamber. I

Claims (1)

1. A compressor comprising a rigid base; a compressor rotor; casing means cooperating with said compressor rotor to form at least one compression stage and being rigidly mounted on said base; inlet fluid housing means being rigidly mounted on said base separately from said casing means; said inlet fluid housing means having fluid supply pipe coupling means and a cylindrical portion forming a discharge passage downstream from said coupling means; said casing means having a cylindrical portion forming an inlet fluid passage upstream from said compressor rotor; said inlet fluid housing means and casing means cylindrical portions being telescopically overlapped; resilient annular seal means providing the sole contacting connection between said inlet fluid housing means and said casing means, and forming a tight sealed connection between said cylindrical portions; drive casing means rigidly mounted on said base on the opposite side of said casing means from said inlet fluid housing means, and having therein a gear reduction train; said train having an input shaft with an axis of rotation parallel to said compressor rotor and extending outwardly from said drive casing means in a direction opposite from said rotor; an electric motor rigidly mounted on said base; coupling means drivingly connected between said input shaft and said electric motor; said base being subdivided into an intercooler chamber and an adjacent oil sump chamber; said oil sump chamber extending below said drive casing means, coupling means and electric motor; and said drive casing means opening freely downwardly into said sump chamber.
US00202977A 1970-06-08 1971-11-29 Gas compressor construction Expired - Lifetime US3748065A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4403470A 1970-06-08 1970-06-08
US20297771A 1971-11-29 1971-11-29

Publications (1)

Publication Number Publication Date
US3748065A true US3748065A (en) 1973-07-24

Family

ID=26721108

Family Applications (1)

Application Number Title Priority Date Filing Date
US00202977A Expired - Lifetime US3748065A (en) 1970-06-08 1971-11-29 Gas compressor construction

Country Status (1)

Country Link
US (1) US3748065A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909154A (en) * 1974-09-05 1975-09-30 Carrier Corp Centrifugal compressor
US5980218A (en) * 1996-09-17 1999-11-09 Hitachi, Ltd. Multi-stage compressor having first and second passages for cooling a motor during load and non-load operation
WO2008025938A1 (en) * 2006-08-30 2008-03-06 Compair Uk Limited Improvements in compressors units
US20150330409A1 (en) * 2014-05-14 2015-11-19 Ingersoll-Rand Company Air compressor system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR536590A (en) * 1921-06-09 1922-05-05 Acec Improvement in the construction of centrifugal pumps, turbines and fans
US2606713A (en) * 1948-04-26 1952-08-12 Snecma Adjustable inlet device for compressors
US2849960A (en) * 1954-02-23 1958-09-02 Goulds Pumps Pump construction
US2857849A (en) * 1953-11-13 1958-10-28 Joseph R Smylie Motor driven pumping units
US2916198A (en) * 1956-06-18 1959-12-08 Zenas V Weisel Turbo-compressor apparatus
US3145913A (en) * 1961-11-03 1964-08-25 Dolz Heinrich Multi-stage turbo-compressors
US3150820A (en) * 1962-07-20 1964-09-29 Worthington Corp Turbine compressor unit
US3203352A (en) * 1962-05-24 1965-08-31 Schafranek Gustav Multiple pump assembly
DE1905375A1 (en) * 1968-04-18 1969-10-23 Wissenschaftlich Tech Zentrum Centrifugal pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR536590A (en) * 1921-06-09 1922-05-05 Acec Improvement in the construction of centrifugal pumps, turbines and fans
US2606713A (en) * 1948-04-26 1952-08-12 Snecma Adjustable inlet device for compressors
US2857849A (en) * 1953-11-13 1958-10-28 Joseph R Smylie Motor driven pumping units
US2849960A (en) * 1954-02-23 1958-09-02 Goulds Pumps Pump construction
US2916198A (en) * 1956-06-18 1959-12-08 Zenas V Weisel Turbo-compressor apparatus
US3145913A (en) * 1961-11-03 1964-08-25 Dolz Heinrich Multi-stage turbo-compressors
US3203352A (en) * 1962-05-24 1965-08-31 Schafranek Gustav Multiple pump assembly
US3150820A (en) * 1962-07-20 1964-09-29 Worthington Corp Turbine compressor unit
DE1905375A1 (en) * 1968-04-18 1969-10-23 Wissenschaftlich Tech Zentrum Centrifugal pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909154A (en) * 1974-09-05 1975-09-30 Carrier Corp Centrifugal compressor
US5980218A (en) * 1996-09-17 1999-11-09 Hitachi, Ltd. Multi-stage compressor having first and second passages for cooling a motor during load and non-load operation
WO2008025938A1 (en) * 2006-08-30 2008-03-06 Compair Uk Limited Improvements in compressors units
US8167584B2 (en) 2006-08-30 2012-05-01 Gardner Denver Deutschland Gmbh Modular compressor unit
US20150330409A1 (en) * 2014-05-14 2015-11-19 Ingersoll-Rand Company Air compressor system
US10047766B2 (en) * 2014-05-14 2018-08-14 Ingersoll-Rand Company Air compressor system

Similar Documents

Publication Publication Date Title
US3644054A (en) Compressor base and intercoolers
US3835918A (en) Compressor base and intercoolers
KR100427431B1 (en) Screw compressor
US5947711A (en) Rotary screw air compressor having a separator and a cooler fan assembly
US3001692A (en) Multistage compressors
US3802795A (en) Multi-stage centrifugal compressor
KR100487591B1 (en) Turbo compressor
US5494403A (en) Full-circumferential flow pump
JP2007332826A (en) Centrifugal compressor
US4087197A (en) Gas compressor, and for use with a gas compressor: gear housing and gas-handling assembly, and heat exchanging assembly
US3424372A (en) Centrifugal gaseous medium compressor
US3748065A (en) Gas compressor construction
US3658442A (en) Compressor
US4111609A (en) Multistage gas compressor
JP4048078B2 (en) Turbo compressor
JPH0893685A (en) Turbo-compressor
US3476485A (en) Multistage centrifugal compressor
US4295794A (en) Selective mode multi-stage vacuum pump
CN103062054B (en) Rotor vortex combined type compressor and there is its air-conditioning system
GB2024328A (en) Multi-stage centrifugal compressor
US3717418A (en) Compressor barrel assembly
CN108561308B (en) Oilless vortex air compressor with cooling device
JPS5848756B2 (en) screw fluid machine
JP3480009B2 (en) Centrifugal compressor
CN1869449B (en) Blower

Legal Events

Date Code Title Description
AS Assignment

Owner name: ELLIOTT TURBOMACHINERY CO., INC., A CORP OF DELAWA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED.;ASSIGNOR:CARRIER CORPORATION, A CORP OF DEL.;REEL/FRAME:004499/0922

Effective date: 19851220

AS Assignment

Owner name: FIRST NATIONAL BANK OF CHICAGO, THE,ILLINOIS

Free format text: LICENSE;ASSIGNOR:ELLIOT TURBOMACHINERY CO., INC.;REEL/FRAME:004940/0562

Effective date: 19871109

Owner name: FIRST NATIONAL BANK OF CHICAGO, THE, ONE FIRST NAT

Free format text: LICENSE;ASSIGNOR:ELLIOT TURBOMACHINERY CO., INC.;REEL/FRAME:004940/0562

Effective date: 19871109

AS Assignment

Owner name: CONTINENTAL BANK N.A.

Free format text: SECURITY INTEREST;ASSIGNOR:ELLIOTT TURBOMACHINERY CO., INC.;REEL/FRAME:005258/0092

Effective date: 19891212