US3745233A - Fire retardant cable - Google Patents
Fire retardant cable Download PDFInfo
- Publication number
- US3745233A US3745233A US00274496A US3745233DA US3745233A US 3745233 A US3745233 A US 3745233A US 00274496 A US00274496 A US 00274496A US 3745233D A US3745233D A US 3745233DA US 3745233 A US3745233 A US 3745233A
- Authority
- US
- United States
- Prior art keywords
- film
- tape
- cable
- scrim
- adhesive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/003—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
- B29C70/0035—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/028—Net structure, e.g. spaced apart filaments bonded at the crossing points
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/08—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
- H01B3/084—Glass or glass wool in binder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/48—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials
- H01B3/50—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials fabric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/18—Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
- H01B7/182—Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/18—Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
- H01B7/1855—Sheaths comprising helical wrapped non-metallic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/18—Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
- H01B7/1875—Multi-layer sheaths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2309/00—Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
- B29K2309/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2405/00—Adhesive articles, e.g. adhesive tapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
Definitions
- a fire-retardant insulating tape wrap having high tensile strength particularly for use in a service entrance cable includes a glass scrim backing to which a continuous polyester film is adhered using a synthetic rubber laminate adhesive which is applied to the film. After the tape is wrapped about the conductors, a continuous polyester sheath is extruded in situ over the wrapped conductors to provide a continuous outer jacket for the cable. The tape is made by coating the adhesive onto the film under relatively low application pressure. Then the film and scrim are brought together in a drying oven with the scrim being under relatively high lengthwise tension and the film being under lesser lengthwise tension.
- This invention relates to electrical cable. It relates more particularly to fire-retardant insulation in sheet and tape form for cables which are exposed to the elements and which must be able to withstand rough usage, e.g. a service entrance cable.
- Exterior cable of this type have to satisfy the stringent test requirements of the Underwriters Laboratories, Inc.
- service entrance cable which is the cable which conducts electricity from overhead power lines into a users house, must pass the UL 300 amp. test. This test is described in detail in U.S. Pat. No. 3,602,636 and will not be detailed here.
- These cables must also pass other tests concerning their fire resistance, heat resistance, abrasion resistance, strength, etc.
- the most prevalent type of service entrance cable in use today employs conductors wrapped with a layer of polyethylene terephthalate which is, in turn, surrounded by braided in situ fiber sheath impregnated and covered with asphalt and then lacquered.
- the unvulcanized barrier layer is not completely continuous; it contains pinholes which provide passages for air or moisture which adversely affect the dielectric strength of the cable insulation.
- the unvulcanized rubber-coated glass cloth is applied to the conductors in the form of tape which is unwound from a roll.
- the barrier layer tends to pick of from the cloth as the tape is unwound from the roll and it also undergoes a certain amount of cold flow. These factors further adversely affect the overall insulating characteristics of the cable.
- a similar tape employing a fiberglass substrate impregnated with polymerized chloroprene disclosed in U.S. Pat. No. 3,649,744 has many of the same disadvantages.
- this invention aims to provide a tape for insulating a cable such as a service entrance cable which is relatively easy to make in uniform quality lots.
- a further object of the invention is to provide a bedding and binding tape which is relatively economical to manufacture.
- Yet another object of the invention is to provide a service entrance cable tape which satisfies all of the UL tests.
- a further object of the invention is to provide an improved fire-retardant cable tape.
- Still another object of the invention is to provide a cable tape which has a relatively high tensile strength.
- Another object is to provide a method of making tape having one or more of the above characteristics.
- Still another object is to provide a service entrance cable employing one or more layers of such tape between the cable conductors and the cable outer jacket.
- the invention accordingly comprises the several steps and the relation of such steps with each of the others and the features of construction, combination of elements and arrangement of parts which will be exemplified in the construction hereinafter set forth and the scope of the invention will be indicated in the claims.
- the present cable tape has a backing composed of an open weave glass fiber scrim.
- a thin, continuous polyester film is bonded to the scrim using a fire-retardant synthetic rubber laminate adhesive.
- the adhesive is coated onto the polyester film under relatively low application pressure and then the film and scrim are brought together while in a drying oven, the scrim being under relatively high lengthwise tension and the coated film being under a lesser tension, with the result that the scrim and film adhere tenaciously to one another.
- the tape When the tape leaves the drying oven, it has a continuous outer surface which is substantially free of pinholes or other discontinuities. Moreover, the tape surface is relatively smooth. Consequently, even after it has been in roll form for a relatively long time, the tape may be pulled from the roll without pickof of the film from the scrim.
- the tape is wound about the clustered electrical conductors with conventional filler material being provided if need be to fill the spaces between the conductors so that the cable assures a generally round cross section.
- an outer resinous jacket is extruded in situ over the taped conductors, thereby forming a second continuous barrier or film around the conductors.
- the present cable has several distinct advantages over its conventional counterparts as exemplified by the cables described in the aforesaid patents.
- the present product is ligher in weight. This means that it is easier to handle and can be shipped at a lower cost. The main reason for this is because the polyester film and adhesive coating thereon is thinner and less dense than the relatively heavy unvulcanized rubber or neoprene barrier coating calendered on the prior tapes.
- the utilization of the laminate adhesive also improves the fire-resistance characteristics of the cable.
- the application of the adhesive to the film to bond it to the scrim makes the overall laminate fire-retardant.
- the subject cable insulation also has a relatively high tensile strength as compared with prior products. It is believed that this is due primarily to two factors. First, the tape components do not require high lamination pressures. It has been found that the glass fibers in scrim tend to crack when subjected to high pressures such as those encountered during a typical calendering operation. These cracks tend to lower the tensile strength of the fibers. Secondly, the utilization of the relatively low viscosity adhesive as the bonding agent provides a lubricant which seems to wick up between the individual fibers in the scrim, thereby reducing the tendency of the fibers to abraid one another under stress.
- FIG. 1 is a fragmentary perspective view with parts cut away of a service entrance cable embodying the present invention.
- FIG. 2 is a scrap view with parts broken away showing the bedding and binding tape in the FIG. 1 cable in greater detail.
- Cable is comprised of a cluster, herein three, of insulated stranded conductors 12.
- Special cable insulation tape 14 to be described presently is helically wrapped about the clustered conductors 12 with the adjacent turns of the tape overlapping one another.
- a filler 16 composed of asbestos fibers or other such material is wrapped along with conductors 12 so that it fills the spaces between the conductors, thereby giving the cable a cross section which is essentially round.
- a waterproof resinous material such as polyvinyl chloride, neoprene, or the like
- tape 14 is comprised of a 20 X 10 open weave glass fiber cloth or scrim 22.
- Suitable adhesive materials include acrylic, acrylic-polyvinyl chloride copolymers and polyurethane.
- a particularly desirable adhesive is composed of carboxyl-modified acrylonitrile-butadiene copolymer, chlorinated paraffin resin and a nonresinous filler.
- the relatively low viscosity adhesive 26 is coated onto the polyester film using a conventional coating roll set for minimum applied pressure. Then the coated film and scrim 22 are gradually brought together in a drying oven so that the two become bonded together. During this bonding process, the coated film and scrim are not pressed together with any great amount of force. Rathenthe scrim 22 and coated film 24 are maintained under different lengthwise tensions which causes the two to be urged together in the drying oven with the result that they become firmly bonded to one another.
- the polyester film 24 is on the order of 0.5 mil thick and the adhesive layer is only on the order of 0.2 to 0.3 mil in thickness. Therefore, the thickness and, hence, weight of the tape as a whole are less than those of conventional service entrance cable tape incorporating a natural or synthetic rubber barrier layer which is calendered directly onto the scrim.
- the polyester film 24 therein is substantially continuous and devoid of pinholes and presents a continuous, smooth surface so that the tape 14 can be served from a roll without the film adhering to itself and picking off from the scrim. Consequently, when the tape 14 is wrapped on the conductor as shown in FIG. 1, it constitutes a substantially continuous membrane all around the tape from one end of the tape to the other. Finally, after the jacket 18 is applied, the conductors are shielded be double continuous membranes.
- the scrim 22 When the film 24 is bonded to the scrim 22 by way of the intervening layer of adhesive 26, relatively little bonding pressure is applied. Rather, as pointed out above, the scrim 22 is maintained under a higher tension than the film in the drying oven. Therefore, the two layers are urged together without the glass fibers in the scrim being cracked by excessive pressure. As a result, the scrim as a whole maintains its original tensile strength. Also, by virtue of the low viscosity adhesive working up between the glass fibers 22a in the scrim, the tensile strength of the tape is actually enhanced because the adhesive seems to form a buffer between the individual fibers 22a, reducing their tendency to abrade one another. The net result is a superior insulating, bedding and binding tape which can be made at a lower cost than prior comparable products and which, when incorporated into an exterior cable system, enables the latter to easily pass all of the UL tests for such cables.
- Table I below compares pertinent characteristics of the present tape 14 with those of conventional tapes as typified by those in the aforementioned US. Pat. No. 3,602,636.
Landscapes
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Insulating Bodies (AREA)
- Insulated Conductors (AREA)
- Adhesive Tapes (AREA)
- Laminated Bodies (AREA)
- Installation Of Indoor Wiring (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27449672A | 1972-07-24 | 1972-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3745233A true US3745233A (en) | 1973-07-10 |
Family
ID=23048436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00274496A Expired - Lifetime US3745233A (en) | 1972-07-24 | 1972-07-24 | Fire retardant cable |
Country Status (9)
Country | Link |
---|---|
US (1) | US3745233A (it) |
JP (1) | JPS4993463A (it) |
BE (1) | BE802684A (it) |
CA (1) | CA994225A (it) |
DE (1) | DE2337556A1 (it) |
FR (1) | FR2199608B1 (it) |
GB (1) | GB1433640A (it) |
IT (1) | IT991841B (it) |
NL (1) | NL7309993A (it) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3914495A (en) * | 1972-07-24 | 1975-10-21 | Chase Corp | Fire retardant insulating tape wrap |
US4151366A (en) * | 1977-06-30 | 1979-04-24 | General Electric Company | Flame resistant, insulated multi-conductor electric cable |
US4892683A (en) * | 1988-05-20 | 1990-01-09 | Gary Chemical Corporation | Flame retardant low smoke poly(vinyl chloride) thermoplastic compositions |
EP0526081A1 (en) * | 1991-07-23 | 1993-02-03 | BICC Public Limited Company | Electric and communications cables |
US5388584A (en) * | 1994-04-15 | 1995-02-14 | Hewlett-Packard Company | Method and apparatus for prevention of fluid intrusion in a probe shaft |
US5593524A (en) * | 1994-11-14 | 1997-01-14 | Philips; Peter A. | Electrical cable reinforced with a longitudinally applied tape |
US5817982A (en) * | 1996-04-26 | 1998-10-06 | Owens-Corning Fiberglas Technology Inc. | Nonlinear dielectric/glass insulated electrical cable and method for making |
US6127632A (en) * | 1997-06-24 | 2000-10-03 | Camco International, Inc. | Non-metallic armor for electrical cable |
EP1132927A2 (de) * | 2000-03-10 | 2001-09-12 | Beiersdorf Aktiengesellschaft | Verwendung eines Klebebandes als Bandagierungsband für Kabel |
WO2003007315A1 (en) * | 2001-07-13 | 2003-01-23 | Superior Telecommunications Inc. | Communication cables containing fire resistant fibers |
US20040038605A1 (en) * | 2002-01-24 | 2004-02-26 | Hooper Douglas L. | Material and process for self-regulating temperature, wickability, flame- , biological-agent-, and soil-resistant controlled yarn, substrate or fabric |
US7316518B2 (en) * | 1995-11-06 | 2008-01-08 | Japan Recom Ltd. | Closure for cable connection |
US20130068497A1 (en) * | 2009-12-23 | 2013-03-21 | Paul Cinquemani | Flexible electrical cable with resistance to external chemical agents |
US20140326480A1 (en) * | 2013-05-01 | 2014-11-06 | Sumitomo Electric Industries, Ltd. | Insulated electric cable |
CN109280405A (zh) * | 2018-08-15 | 2019-01-29 | 扬州腾飞电缆电器材料有限公司 | 一种高阻燃耐火包带及其制备方法 |
CN110828034A (zh) * | 2019-11-15 | 2020-02-21 | 安徽省飞翔特种电缆有限公司 | 一种推焦机耐特高温移动电缆 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04111265U (ja) * | 1991-03-18 | 1992-09-28 | 株式会社芝浦製作所 | 回転電機の軸電流防止装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2620851A (en) * | 1949-07-09 | 1952-12-09 | Owens Corning Fiberglass Corp | Inorganic sheet material |
US3186866A (en) * | 1962-08-17 | 1965-06-01 | Syncoglas N V | Glass fiber reinforced plastic and method |
US3406248A (en) * | 1966-10-27 | 1968-10-15 | Anaconda Wire & Cable Co | Cable with extruded covering having fibrous interlayer |
US3425865A (en) * | 1965-06-29 | 1969-02-04 | Cerro Corp | Insulated conductor |
US3602636A (en) * | 1969-11-06 | 1971-08-31 | Reynolds Metals Co | Wrapped service entrance cable |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1177472A (en) * | 1968-01-01 | 1970-01-14 | British Insulated Callenders | Improvements in Electric Cables. |
-
1972
- 1972-07-24 US US00274496A patent/US3745233A/en not_active Expired - Lifetime
-
1973
- 1973-07-18 NL NL7309993A patent/NL7309993A/xx unknown
- 1973-07-23 BE BE133773A patent/BE802684A/xx unknown
- 1973-07-23 CA CA177,115A patent/CA994225A/en not_active Expired
- 1973-07-23 IT IT69212/73A patent/IT991841B/it active
- 1973-07-23 FR FR7326882A patent/FR2199608B1/fr not_active Expired
- 1973-07-24 GB GB3528373A patent/GB1433640A/en not_active Expired
- 1973-07-24 DE DE19732337556 patent/DE2337556A1/de active Pending
- 1973-07-24 JP JP48083528A patent/JPS4993463A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2620851A (en) * | 1949-07-09 | 1952-12-09 | Owens Corning Fiberglass Corp | Inorganic sheet material |
US3186866A (en) * | 1962-08-17 | 1965-06-01 | Syncoglas N V | Glass fiber reinforced plastic and method |
US3425865A (en) * | 1965-06-29 | 1969-02-04 | Cerro Corp | Insulated conductor |
US3406248A (en) * | 1966-10-27 | 1968-10-15 | Anaconda Wire & Cable Co | Cable with extruded covering having fibrous interlayer |
US3602636A (en) * | 1969-11-06 | 1971-08-31 | Reynolds Metals Co | Wrapped service entrance cable |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3914495A (en) * | 1972-07-24 | 1975-10-21 | Chase Corp | Fire retardant insulating tape wrap |
US4151366A (en) * | 1977-06-30 | 1979-04-24 | General Electric Company | Flame resistant, insulated multi-conductor electric cable |
US4892683A (en) * | 1988-05-20 | 1990-01-09 | Gary Chemical Corporation | Flame retardant low smoke poly(vinyl chloride) thermoplastic compositions |
EP0526081A1 (en) * | 1991-07-23 | 1993-02-03 | BICC Public Limited Company | Electric and communications cables |
US5310964A (en) * | 1991-07-23 | 1994-05-10 | Bicc Public Limited Company | Electric and communication cables |
AU662550B2 (en) * | 1991-07-23 | 1995-09-07 | Prysmian Cables & Systems Limited | Electric and communications cables |
US5388584A (en) * | 1994-04-15 | 1995-02-14 | Hewlett-Packard Company | Method and apparatus for prevention of fluid intrusion in a probe shaft |
US5593524A (en) * | 1994-11-14 | 1997-01-14 | Philips; Peter A. | Electrical cable reinforced with a longitudinally applied tape |
US7316518B2 (en) * | 1995-11-06 | 2008-01-08 | Japan Recom Ltd. | Closure for cable connection |
US5817982A (en) * | 1996-04-26 | 1998-10-06 | Owens-Corning Fiberglas Technology Inc. | Nonlinear dielectric/glass insulated electrical cable and method for making |
US6127632A (en) * | 1997-06-24 | 2000-10-03 | Camco International, Inc. | Non-metallic armor for electrical cable |
EP1132927A3 (de) * | 2000-03-10 | 2003-04-09 | Tesa AG | Verwendung eines Klebebandes als Bandagierungsband für Kabel |
EP1132927A2 (de) * | 2000-03-10 | 2001-09-12 | Beiersdorf Aktiengesellschaft | Verwendung eines Klebebandes als Bandagierungsband für Kabel |
WO2003007315A1 (en) * | 2001-07-13 | 2003-01-23 | Superior Telecommunications Inc. | Communication cables containing fire resistant fibers |
US20040038605A1 (en) * | 2002-01-24 | 2004-02-26 | Hooper Douglas L. | Material and process for self-regulating temperature, wickability, flame- , biological-agent-, and soil-resistant controlled yarn, substrate or fabric |
US9424962B2 (en) * | 2009-12-23 | 2016-08-23 | Prysmian S.P.A. | Flexible electrical cable with resistance to external chemical agents |
US20130068497A1 (en) * | 2009-12-23 | 2013-03-21 | Paul Cinquemani | Flexible electrical cable with resistance to external chemical agents |
US9905338B2 (en) * | 2013-05-01 | 2018-02-27 | Sumitomo Electric Industries, Ltd. | Insulated electric cable |
US20140326480A1 (en) * | 2013-05-01 | 2014-11-06 | Sumitomo Electric Industries, Ltd. | Insulated electric cable |
US10262774B2 (en) | 2013-05-01 | 2019-04-16 | Sumitomo Electric Industries, Ltd. | Insulated electric cable |
US10468157B2 (en) | 2013-05-01 | 2019-11-05 | Sumitomo Electric Industries, Ltd. | Insulated electric cable |
US10861621B2 (en) | 2013-05-01 | 2020-12-08 | Sumitomo Electric Industries, Ltd. | Insulated electric cable |
US11295875B2 (en) | 2013-05-01 | 2022-04-05 | Sumitomo Electric Industries, Ltd. | Insulated electric cable |
US11742112B2 (en) | 2013-05-01 | 2023-08-29 | Sumitomo Electric Industries, Ltd. | Insulated electric cable |
CN109280405A (zh) * | 2018-08-15 | 2019-01-29 | 扬州腾飞电缆电器材料有限公司 | 一种高阻燃耐火包带及其制备方法 |
CN109280405B (zh) * | 2018-08-15 | 2021-01-12 | 扬州腾飞电缆电器材料有限公司 | 一种高阻燃耐火包带及其制备方法 |
CN110828034A (zh) * | 2019-11-15 | 2020-02-21 | 安徽省飞翔特种电缆有限公司 | 一种推焦机耐特高温移动电缆 |
Also Published As
Publication number | Publication date |
---|---|
FR2199608B1 (it) | 1977-05-13 |
BE802684A (fr) | 1973-11-16 |
JPS4993463A (it) | 1974-09-05 |
GB1433640A (en) | 1976-04-28 |
IT991841B (it) | 1975-08-30 |
DE2337556A1 (de) | 1974-02-07 |
CA994225A (en) | 1976-08-03 |
FR2199608A1 (it) | 1974-04-12 |
NL7309993A (it) | 1974-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3745233A (en) | Fire retardant cable | |
US4675475A (en) | Electrical cable with reinforcement | |
CA2095388C (en) | Fiberglass cloth resin tape insulation | |
EP1188166B1 (en) | Insulated electrical conductor | |
US2454625A (en) | Insulated electrical conductor and method of fabricating the same | |
US4626619A (en) | Water impervious rubber or plastic insulated power cable | |
US3602636A (en) | Wrapped service entrance cable | |
US3914495A (en) | Fire retardant insulating tape wrap | |
CA1070789A (en) | Radiation resistant cable and method of making same | |
US2851515A (en) | Compression resistant electric cable | |
US3560320A (en) | Insulating material | |
JPH0480524B2 (it) | ||
US4868035A (en) | Electrical insulating materials made partly or wholly of polyester film | |
US3980807A (en) | Polyurethane jacketing of metal sheathed cable | |
US3149019A (en) | Flexible resinous insulating sheet structure | |
JP4015694B2 (ja) | 耐火性ワイヤ | |
US3183142A (en) | Reinforced resinous structural material | |
EP0024631A1 (en) | Electric cable with improved water-block | |
US3855051A (en) | Thermal barrier tape | |
US2231606A (en) | Electrical cable | |
JPS6345694Y2 (it) | ||
US2120095A (en) | Insulated electrical cable | |
US2251262A (en) | Nonmetallic sheathed conductor | |
JPS638032Y2 (it) | ||
US327492A (en) | Electric cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHASE CORPORATION Free format text: MERGER;ASSIGNOR:COLUMBIA CHASE CORPORATION (MERGED INTO);REEL/FRAME:004988/0788 Effective date: 19881014 |
|
AS | Assignment |
Owner name: SOUTH SHORE BANK, MASSACHUSETTS Free format text: SECURITY INTEREST;ASSIGNOR:CHASE CORPORATION;REEL/FRAME:005178/0114 Effective date: 19890421 |