US3743003A - Making investment shell molds inhibited against reaction with molten reactive and refractory casting metals - Google Patents

Making investment shell molds inhibited against reaction with molten reactive and refractory casting metals Download PDF

Info

Publication number
US3743003A
US3743003A US00149485A US3743003DA US3743003A US 3743003 A US3743003 A US 3743003A US 00149485 A US00149485 A US 00149485A US 3743003D A US3743003D A US 3743003DA US 3743003 A US3743003 A US 3743003A
Authority
US
United States
Prior art keywords
inhibitor
mold
molybdenum
tungsten
former comprises
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00149485A
Inventor
R Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Selmet Inc
Original Assignee
Rem Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rem Metals Corp filed Critical Rem Metals Corp
Application granted granted Critical
Publication of US3743003A publication Critical patent/US3743003A/en
Assigned to SELMET, INC. reassignment SELMET, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: REM METALS CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/165Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents in the manufacture of multilayered shell moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns

Definitions

  • This invention relates to methods for making investment shell molds for the high integrity, precision cast ing of reactive and refractory metals, and to the molds prepared by such methods.
  • a disposable pattern is dip coated in a liquid suspension of columbium, molybdenum, tantalum or tungsten powder mold material and a metal oxide binder.
  • the dip coated pattern is stuccoed with at least one of these metal powders, after which it is dried.
  • Additional dip coats and stucco coats of predetermined composition are applied in number sufficient to build up a finished mold of the desired composition and strength.
  • the pattern is removed and the mold fired. It then is ready to receive molten titanium or other reactive and refractory casting metals.
  • the foregoing method of making a shell mold is highly useful and has the important advantage of producing a high integrity mold of precise dimensions.
  • the highly reactive molten metal poured into the mold may react chemically with the mold material and/or the metal oxide binder to produce a defective casting.
  • a zirconium dioxide binder may be reduced by molten titanium with the production of zirconium suboxides and oxygen.
  • the latter reacts with the molten titanium, causing alpha phase stabilization and resulting in the production of a defective casting with an embrittled surface.
  • the zirconium suboxide products some of which are gases at the casting temperature, have the potential of producing porosity in the casting.
  • the desired result may be obtained by including in at least the face dip coat slurry a proportion of a tungsten or molybdenum compound which is reducible to the free metal, and thereafter firing the green mold in an atmosphere of hydrogen, thereby forming a metallic coating on the metal oxide binder and mold material of the mold face coat.
  • This provides a physical barrier against reaction of the mold face coat constituents with molten titanium or other reactive or refractory metal subsequently introduced into the mold. This, in turn, inhibits the conversion of such constituents to undesired gases and other products, which, if produced, would degrade the casting.
  • the method of the invention is applicable to the manufacturing of molds useful in the high integrity precision casting of the reactive and refractory metals including zirconium, hafnium, molybdenum, columbium, tantalum and titanium.
  • the method makes use of a pattern which may be made of any of the disposable materials customarily employed in the manufacture of investment shell molds. Thus it may be made by conventional techniques from waxes, plastics, or other materials which readily are removed from the mold after its formation.
  • Each pattern is made by injecting the selected pattern 2 material in the fluid condition into a die, permitting it to solidify, removing it from the die and, if desired, gating the resulting pattern to a central sprue to form a pattern cluster.
  • the method of the invention is included in the procedure for making investment shell molds by subjecting the pattern cluster to an investment cycle which includes the steps of dipping the cluster into an agitated slurry of the mold material, draining, stuccoing (optionally) while still wet with particulate mold material in a fluidized bed or by sprinkling, and drying to a solvent content of preferably less than 20 percent by volume.
  • the dipping, draining, stuccoing and drying sequence is repeated a desired number of times to produce a laminated investment shell mold of the desired thickness and strength.
  • the coats of mold-forming material thus applied in general are of three categories:
  • the first coat is termed the face coat. It constitutes the inner face of the mold and is in direct contact with the molten metal poured therein.
  • a single dip coatstucco coat combination normally comprises the face coat.
  • the second category of coats termed the adjacent face coats, comprise alternate dip coats and stucco coats applied in sequence on top of the face coat. There may be any desired or necessary number of such coats.
  • the third class of coats applied in making the herein described molds are those which, during use of the molds, normally do not come in direct contact with the molten casting metal, or with the vapor produced thereform. These are termed back-up coats and comprise alternate dip coats and stucco coats applied in sufficient number to add the required strength to the mold. There normally may be a total of twelve or more adjacent face and back-up coats applied to the pattern in building up a mold.
  • the disposable pattern is removed from the mold shell by a method such as melting or solvent treatment.
  • the mold is dried in an oven to remove low temperature volatiles.
  • it is cured by firing in a hydrogencontaining atmosphere at a temperature sufficiently elevated to remove high temperature volatiles, and provide adequate bonding.
  • the mold In use of the mold, it is heated and filled with molten metal by gravity, pressure or centrifugal force. After cooling, the mold is removed from the resulting casting, the casting removed from the sprue and finished in the usual manner.
  • the foreging sequence is modified by covering the particles of metal oxide binder and mold material at the mold interface with a metallic coating. This forms a barrier which serves the important function of inhibiting the above noted undesirable reactions between the molten casting metal and the mold face coat constituents when the molten metal is introduced into the mold.
  • At least the face coat of the mold is prepared by dipping the pattern in a slurry having the following general composition:
  • the method of the invention is applicable to the preparation of molds having face coats containing as primary constituents a variety of finely divided mold materials.
  • such materials may comprise finely divided oxides characterized by having high melting points and the high stability resulting from having high free energies of formation.
  • oxides are zirconium dioxide, aluminum oxide and magnesium oxide.
  • Metallic molybdenum and tungsten in the form of their finely divided powders are particularly well suited for use as primary face coat mold materials in the compositions of the present invention. This is because of their lack of a normal tendency to form castingdamaging intermediate metallic compounds with the various reactive and refractory casting metals, and their freedom from a tendency to react with such metals to form gases which might contaminate the castings.
  • Such metal powders may be used singly or admixed with each other. They may be used in the form of the pure metals, their alloys, or their unalloyed mixtures. They are employed in finely divided, graded condition, having a particle size, for example, in the range of from below 400 mesh to mesh U.S. Sieve Series, i.e. having a particle size of from 0.1 to 4000 microns.
  • the metal oxide binders employed in the face coat of the presently described systems in general comprise certain refractory metal oxides, or compounds pyrolyzable to such oxides. These are used in the liquid state, in a dissolved condition, or as solids suspended or dispersed in aqueous or other liquid media.
  • binders which are oxides of the group 3 and group 4 metals in the Mendeleevian periodic chart (as set forth on page 30 of Advanced Inorganic Chemistry by F. G. Cotton and G. Wilkinson; Interscience Publishers, 1962), which have a free energy of formation at 1000I(, greater than 69 kilocalories per gram atom of oxygen in the oxide, which melt after pyrolyzation at a temperature of more than l000l(, which bond upon pyrolyzation and which provide a high temperature bond for the mold material particles.
  • Preferred binders of this class are the oxides, or the compounds which form oxides upon pyrolysis, of zirconium, thorium, hafnium, yttrium, and gadolinium.
  • Illustrative of compounds which form such oxides upon pyrolysis are the polymeric carboxylates, such as diacetato zirconic acid (zirconium acetate); the basic oxyhalogenides; the metal-organic compounds, particularly the alkoxides; the alkoxide alcoholates; the oxide alkoxide alcoholates; the polymeric alkoxides; and the oxide alkoxides; the hydrolyzed alkoxides; the halogenated alkoxides, and the hydrolyzed halogenated alkoxides; of zirconium, thorium, hafnium, yttrium and gadolinium.
  • the foreging are converted to metal oxide binders which normally mature and cure below the sintering temperature of the mold material components of the facing and adjacent facing systems, and thus normally ideally serve the purposes of the invention.
  • binders which may be employed comprise various phosphates such as magnesium phosphate and such conventional binders as calcium aluminate and sodium silicate. All of these binders, however must meet the minimum free energy of formation requirement of at least 69 kilocalories per gram atom of contained oxygen at I000K. and the minimum melting point require- 5 ment of I00OK. after pyrolyzation.
  • the third major constituent of the mold face coat slurry is an inhibitor having the ability to inhibit the deleterious reactions which may occur between some molten reactive and refractory metals cast in the mold with the various face coat mold materials and metal oxide binders employed in making the mold.
  • the inhibiting materials useful for this purpose belong to the class of compounds which are susceptible to reduction in the hydrogen environment of the mold firing furnace to form a coating of metal on the particles of metal oxide binder and mold material.
  • This coating is not necessarily completely continuous, since gaseous products are formed during its deposition. However, any discontinuities are in the form of tiny openings which are so small as to be substantially impenetratable by the molten casting metal because of the surface tension properties of the latter.
  • the coating accordingly acts as a physical barrier which retards attack on the binder and mold material by the molten casting metal. It also acts as a close proximity heat sink.
  • the inhibitor should have a sufficiently low free energy of formation so that it may be reduced to elemental metal rapidly by hydrogen.
  • the oxides of molybdenum and tungsten including molybdenum dioxide, molybdenum trioxide, tungsten dioxide, and tungsten trioxide.
  • the acids of tungsten and molybdenum and the salts thereof include molybdic acid, tungstic acid, ammonium metatungstate, and ammonium paratungstate.
  • tungsten and molybdenum containing other metals there also may be employed double salts of tungsten and molybdenum containing other metals.
  • Such compounds are lanthanum metatungstate and yttrium metatungstate. It should be noted, however, that such double compounds are only partially reducible by hydrogen to elemental metal.
  • lanthanum metatungstate is employed as an inhibitor, the tungsten oxide component is reduced'to metallic tungsten in the desired manner. The lanthanum oxide component, however, is not thus reduced, but remains innocuously as lanthanum oxide.
  • a third class of inhibitor-formers comprises the alkoxides and halogenated alkoxides of molybdenum and tungsten. These are prepared by reacting the corresponding metal halides with an alcohol having, for example, from 1 to 5 carbon atoms.
  • Important examples for the present purposes are molybdenum ethoxide ethylate, tungsten ethoxide ethylate, molybdenum chlorethoxide ethylate, tungsten trichloro diethoxide ethylate, and tungsten trichloro dimethoxide.
  • inhibitor-formers useful for the present purpose comprise the halides and oxyhalides of molybdenum and tungsten.
  • the chlorides and oxychlorides are of significance. Examples are molybdenum pentachloride, molybdenum oxytrichloride, dimolybdenum oxyoctachloride, dimolybdenum trioxypentachloride, molybdenum dioxydichloride, molybdenum oxytetrachloride, tungsten hexachloride, tungsten dioxydichloride, and tungsten oxytetrachloride.
  • inhibitor-formers may be used singly or in combination with each other in the formulation of the face coat slurries employed in the method of the present invention.
  • Another principle constituent of the face coat slurry comprises a liquid vehicle for the aforementioned materials, i.e. the mold material, the binder, and the inhibitor-former.
  • vehicle may comprise water, or various organic solvents, especially the lower aliphatic alcohols having fewer than four carbonatoms, i.e. methyl alcohol, ethyl alcohol, and the propyl alcohols. Admixtures of water and other water soluble organic solvents also may be employed.
  • binders, inhibitorformers and suspension or dispersion vehicles of the above described systems there may be employed a suitable quantity of conventional additives such as suspension agents, green strength promoters, plasticizers, wetting agents, anti-foaming agents, deflocculants, and coating driers.
  • the relative proportions of the constituents employed in the face coat slurry are somewhat variable, depending upon particular applications.
  • the metal oxide binder normally is employed in an amount of from 0.01 to 50.0 percent by weight of the mold material slurry.
  • the tungsten-or molybdenum-forming inhibitor is employed in at least the amount required for forming the coating of inhibiting metal on the metal oxide binder particles and the face coat mold material.
  • the liquid vehicle is employed in amount sufficient to impart the desired viscosity to the dip coat slurry. Suitable viscosities lie within the broad range of 50750 centistokes at room temperature.
  • a preferred method of preparing the face coat dip slurry comprises first mixing the metaloxide binder with the selected liquid vehicle and then dissolving or suspending the metal-forming inhibitor in the resulting mixture.
  • the finely divided mold material next is mixed in, as are any supplemental materials which are to be included in the mix.
  • the resulting composition then is agitated until a slurry of uniform composition is obtained.
  • the pattern In the application of the face coat dip slurry, the pattern first is treated with a suitable solvent, as required to remove any die release agent which may be present on its surface. It then is immersed with agitation in the face coat dip slurry and rotated to insure complete coverage. After a dwell period of from 5 to 60 seconds, it is withdrawn and, typically, drained for 10 to 60 seconds.
  • the wet pattern assembly then normally is stuccoed with finely divided molybdenum or tungsten having a mesh size of about 60 to (United States Sieve Series).
  • it may be stuccoed with an oxide of a metal such as zirconium, hafnium, thorium, yttrium or gadolinium, or with a selected face coat mold material.
  • the dip coated and stuccoed pattern assembly then is air dried until the coat has a solvent content of below about 20 percent by volume. If desired, gel drying or vacuum drying techniques also may be employed supplemental to, or in lieu of, air drying.
  • the dried assembly next is treated with superimposed alternating dip coats and stucco coats of predetermined composition and number until a mold of the desired size and strength has been fabricated. Thereafter, the mold is heated to fluidize and remove the disposable pattern which thus has been invested to form the mold. In next must be oven dried and cured.
  • the mold is oven dried in either air or a nonoxidizing atmosphere at from 500K. to 650K. for 4 to 8 hours. This removes most of the low temperature volatiles.
  • the mold is placed in a furnace and treated with hydrogen gas for reduction of the inhibitor-former to metallic molybdenum or tungsten.
  • the treatment with hydrogen gas preferably is effectuated in a purging environment of the latter in order to sweep out of the vicinity of the mold water vapor which usually is formed as a product of the action between the inhibitor-former and gaseous hydrogen.
  • water vapor if permitted to remain in contact with the mold, would react with the metal interface in an undesirable manner.
  • the hydrogen gas should be employed in an amount which is at least the stoichiometric amount required for reducing the inhibitor-former. This is desirable since, at least in the case of certain inhibitor-formers, a residue of the same left at the mold interface would cause the occurrence of undesirable side reactions between the mold and the casting metal poured therein.
  • the mold is heated in the hydrogen environment at a temperature and time sufficient to reduce substantially completely the inhibitor-forming compound. In the usual case, it requires heating the mold at a temperature of from 900K. to 2500K. for a time of from 2 to 4 hours. In order to prevent mold distortion or sagging, it is desirable that the final mold curing temperature be below the melting temperature of any of the mold materials which at this stage of the process still are present in the mold.
  • the molds may be vacuum processed at high temperature in known manner.
  • the heat curing in the presence of hydrogen effects reduction of the inhibitor-former to metallic molybdenum and/or tungsten.
  • This forms a metallic barrier at the mold interface and effectively covers the particles of face coat mold material and oxide binder. It thus inhibits reaction between the mold constituents and the reactive and refractory molten metals subsequently cast therein.
  • the dip slurries were prepared by adding the inhibitor-forming components and the binder components to the slurry vehicle and agitating them until a solution or a fine dispersion was obtained. The mold material then was added and the mixing continued until a uniform mixture resulted.
  • a pattern was dipped and stuccoed alternately with the compositions until the finished mold was produced.
  • the pattern then was removed by melting or solvent treatment, after which the mold was baked at from 500 K. to 650 K. for from 4 to 8 hours to remove low temperature volatiles. Thereafter, the mold was cured in a purging atmosphere of hydrogen at 9002500K. for from 2 to 4 hours.
  • the metal thus formed covered the surfaces of the binder and mold material components of the face coat, thereby forming a barrier capable of inhibiting subsequent reaction of these mold components with molten metallic titanium, zirconium, or other reactive and refractory metals subsequently cast in the mold.
  • inhibited molds for casting reactive and refractory metals using as inhibitor-forming components of the mold face coat one or a mixture of the following materials: tungsten dioxide, tungsten trioxide, molybdenum dioxide, molybdenum trioxide, tungstic acid, molybdic acid, ammonium metatungstate, lanthanum metatungstate, molybdenum chloroethoxide ethylate, tungsten triehloro diethoxide ethylate, molybdenum pentachloride, molybdenum oxytrichloride, dimolybdenum oxyoetachloride, dimolybdenum trioxypentachloride, molybdenum dioxydichloride, molybdenum oxytetrachloride, tungsten hexachloride, tungsten dioxydichloride, and tungsten oxytetrachloride.
  • inhibitorformer comprising at least one member of the group consisting of the compounds of tungsten and molybdenum which are reducible by hydrogen to metallic tungsten and molybdenum respectivcly,
  • the hydrogen being used in at least the stoichiometric amount required to reduce the inhibitorformer to the corresponding metal and thereby coat the mold interface with a metallic coating functioning, when a molten refractory and reactive metal is cast in the mold, as a barrier layer which shields the mold constituents from the casting metal and thereby inhibits the occurrence of undesirable side reactions therebetween.
  • inhibitorformer comprises at least one member of the group consisting of the oxides of tungsten and molybdenum.
  • inhibitorformer comprises molybdenum oxide.
  • inhibitorformer comprises at least one member of the group consisting of tungstic acid, molybdic acid and the salts thereof.
  • inhibitorformer comprises molybdic acid
  • inhibitorformer comprises ammonium metatungstate.
  • inhibitorformer comprises lanthanum metatungstate.
  • inhibitorformer comprises at least one member of the group consisting of the alkoxides and halogenated alkoxides of tungsten and molybdenum.
  • inhibitorformer comprises molybdenum chloroethoxide ethylate.
  • the inhibitorformer comprises tungsten chloroethoxide ethylate.
  • inhibitorformer comprises at least one member of the group consisting of the halides and oxyhalides of tungsten and molybdenum.
  • inhibitorformer comprises tungsten oxychloride.
  • inhibitorformer comprises molybdenum chloride.
  • inhibitorformer comprises molybdenum oxychloride.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

An investment shell mold inhibited against reaction with molten titanium, zirconium and other reactive and refractory metals cast therein is made by investing a pattern with successive dip coats and stucco coats. The first dip coat includes a tungsten and/or molybdenum compound inhibitor-former which is reducible by hydrogen to metallic tungsten or molybdenum. After removal of the pattern, the green mold is dried and then pyrolyzed in an atmosphere of hydrogen under conditions predetermined to convert the inhibitor-former to metallic condition. This creates on the mold interface a coating of metallic molybdenum or tunsten which serves as a physical barrier, inhibiting reaction of a molten reactive or refractory metal subsequently cast in the mold, with the mold material and binder particles of the latter.

Description

o 1 United States Patent 11 1 1111 3, Brown 1 July 3, 1973 MAKING INVESTMENT SHELL MOLDS I INHIBITED AGAINST REACTION WITH Primary Examiner-J. Spencer Overholser MOLTEN REACTIVE AND REFRACTORY Assistant E.raminer-John E. Roethel CASTING METALS Attorney-Eugene D. Farley [75] Inventor: Robert A. Brown, Albany, Oreg.
[73] Assignee: Rem Metals Corporation, Albany, [57] ABSTRACT Oreg- An investment shell mold inhibited against reaction [22] Filed: June 3, 1971 with molten titanium, zirconium and other reactive and refractory metals cast therein is made by investing a 1 1 p N011 149,485 pattern with successive dip coats and stucco coats. The first dip coat includes a tungsten and/or molybdenum 52 us. c1 164/16, 106/389 106/3835, inhibitor-mm which is reducible by 1 17/52 164,/25 [64/72 drogen to metallic tungsten or molybdenum. After re- [51] Int. Cl. B2 2c 9/12 moval of the pattern the green mold is dried and 158 Field of Search l64/25.26 12, 16, PYmIYZed an atmosphere of hydrogen under 164/24 3 72. 7/52. 1 9 3 2 7 3 35 tions predetermined [0 convert the inhibitor-former l0 R metallic condition. This creates on the mold interface [56] References Cited a coating of metallic molybdenum or tunsten which UNITED STATES PATENTS serves as a physical barrier, inhibiting reaction of a v molten reactive or refractory metal subsequently cast 1,772,490 8/1930 Kelley 117/52 X in the mold, wih the mold material and binder particles 3 I58,9l2 12/1964 Schwerkert ..1 164/25 of the latter FOREIGN PATENTS OR APPLICATIONS 868,258 4/1971 Canada 164/25 25 1 Drawmg DISPOSABLE PAT"ERN DIP COAT WITH A SLURRY COMPRISING:
I. LIQUID VEHICLE.
2, FINELY DIVIDED MOLD MATERIAL.
3. BINDER.
4, AS AN INHIBITOR- COM POUND REDU MOLYBDENUM.
SUPERIMPOSE ALTERNATI N6 DIP PREDETERMINED COMPOSITION AND DRAIN STUCCO DRY COA
REMOVE NUMBER I'S AND STUCCO COATS OF ATTERN PAIENIEDJUL3 I973 3 743. 003
DISPOSABLE PATTERN DIP COAT WITH A SLURRY COMPRISING:
' I. LIQUID VEHICLE.
2. FINELY DIVIDED MOLD MATERIAL.
3. BINDER.
4. As AN INHIBITOR-FORMER, A TUNGSTEN 0R MOLYBDENUM COMPOUND REDUCIBLE BY HYDROGEN TO TUNGSTEN OR MOLYBDENUM.
DRAI N STUCCO DRY SUPERIMPOSE ALTERNATING DIP COATS AND STUCCO COATS OF PREDETERMINED COMPOSITION AND NUMBER.
REMOVE PATTERN FINISHED MOLD ROBERT A. BROWN INVENTOR MAKING INVESTMENT SHELL MOLDS INHIBITED AGAINST REACTION WITII MOLTEN REACTIVE AND REFRACTORY CASTING METALS This invention relates to methods for making investment shell molds for the high integrity, precision cast ing of reactive and refractory metals, and to the molds prepared by such methods.
In one method of making investment shell molds (Brown et al. U.S. Pat. No. 3,422,880), a disposable pattern is dip coated in a liquid suspension of columbium, molybdenum, tantalum or tungsten powder mold material and a metal oxide binder. The dip coated pattern is stuccoed with at least one of these metal powders, after which it is dried.
Additional dip coats and stucco coats of predetermined composition are applied in number sufficient to build up a finished mold of the desired composition and strength. The pattern is removed and the mold fired. It then is ready to receive molten titanium or other reactive and refractory casting metals.
The foregoing method of making a shell mold is highly useful and has the important advantage of producing a high integrity mold of precise dimensions. However, under certain conditions, the highly reactive molten metal poured into the mold may react chemically with the mold material and/or the metal oxide binder to produce a defective casting.
For example, if a zirconium dioxide binder is used in the fabrication of the mold, it may be reduced by molten titanium with the production of zirconium suboxides and oxygen. The latter reacts with the molten titanium, causing alpha phase stabilization and resulting in the production of a defective casting with an embrittled surface. Also, the zirconium suboxide products, some of which are gases at the casting temperature, have the potential of producing porosity in the casting.
It is the object of the present invention to provide a method which overcomes this problem and which produces a mold free from the above noted defects.
It is the essence of the present invention that the desired result may be obtained by including in at least the face dip coat slurry a proportion of a tungsten or molybdenum compound which is reducible to the free metal, and thereafter firing the green mold in an atmosphere of hydrogen, thereby forming a metallic coating on the metal oxide binder and mold material of the mold face coat. This provides a physical barrier against reaction of the mold face coat constituents with molten titanium or other reactive or refractory metal subsequently introduced into the mold. This, in turn, inhibits the conversion of such constituents to undesired gases and other products, which, if produced, would degrade the casting.
Considering the foregoing in greater detail:
The method of the invention is applicable to the manufacturing of molds useful in the high integrity precision casting of the reactive and refractory metals including zirconium, hafnium, molybdenum, columbium, tantalum and titanium.
The method makes use of a pattern which may be made of any of the disposable materials customarily employed in the manufacture of investment shell molds. Thus it may be made by conventional techniques from waxes, plastics, or other materials which readily are removed from the mold after its formation. Each pattern is made by injecting the selected pattern 2 material in the fluid condition into a die, permitting it to solidify, removing it from the die and, if desired, gating the resulting pattern to a central sprue to form a pattern cluster.
As indicated in the flow plan, comprising the single figure of the drawings, the method of the invention is included in the procedure for making investment shell molds by subjecting the pattern cluster to an investment cycle which includes the steps of dipping the cluster into an agitated slurry of the mold material, draining, stuccoing (optionally) while still wet with particulate mold material in a fluidized bed or by sprinkling, and drying to a solvent content of preferably less than 20 percent by volume. The dipping, draining, stuccoing and drying sequence is repeated a desired number of times to produce a laminated investment shell mold of the desired thickness and strength.
The coats of mold-forming material thus applied in general are of three categories:
The first coat is termed the face coat. It constitutes the inner face of the mold and is in direct contact with the molten metal poured therein. A single dip coatstucco coat combination normally comprises the face coat.
The second category of coats, termed the adjacent face coats, comprise alternate dip coats and stucco coats applied in sequence on top of the face coat. There may be any desired or necessary number of such coats.
The third class of coats applied in making the herein described molds are those which, during use of the molds, normally do not come in direct contact with the molten casting metal, or with the vapor produced thereform. These are termed back-up coats and comprise alternate dip coats and stucco coats applied in sufficient number to add the required strength to the mold. There normally may be a total of twelve or more adjacent face and back-up coats applied to the pattern in building up a mold.
After completion of the investment procedure, the disposable pattern is removed from the mold shell by a method such as melting or solvent treatment. The mold is dried in an oven to remove low temperature volatiles. Next, it is cured by firing in a hydrogencontaining atmosphere at a temperature sufficiently elevated to remove high temperature volatiles, and provide adequate bonding.
In use of the mold, it is heated and filled with molten metal by gravity, pressure or centrifugal force. After cooling, the mold is removed from the resulting casting, the casting removed from the sprue and finished in the usual manner.
In accordance with the present invention, the foreging sequence is modified by covering the particles of metal oxide binder and mold material at the mold interface with a metallic coating. This forms a barrier which serves the important function of inhibiting the above noted undesirable reactions between the molten casting metal and the mold face coat constituents when the molten metal is introduced into the mold.
To achieve this result, at least the face coat of the mold is prepared by dipping the pattern in a slurry having the following general composition:
l. Finely divided mold material.
2. Metal oxide binder or compound pyrolyzable to the same.
3. Inhibitor-former of tungsten or molybdenum compound which is reducible by hydrogen to tungsten or molybdenum.
4. Liquid vehicle.
The method of the invention is applicable to the preparation of molds having face coats containing as primary constituents a variety of finely divided mold materials. Thus, such materials may comprise finely divided oxides characterized by having high melting points and the high stability resulting from having high free energies of formation. Illustrative of such oxides are zirconium dioxide, aluminum oxide and magnesium oxide.
Metallic molybdenum and tungsten in the form of their finely divided powders are particularly well suited for use as primary face coat mold materials in the compositions of the present invention. This is because of their lack of a normal tendency to form castingdamaging intermediate metallic compounds with the various reactive and refractory casting metals, and their freedom from a tendency to react with such metals to form gases which might contaminate the castings.
Such metal powders may be used singly or admixed with each other. They may be used in the form of the pure metals, their alloys, or their unalloyed mixtures. They are employed in finely divided, graded condition, having a particle size, for example, in the range of from below 400 mesh to mesh U.S. Sieve Series, i.e. having a particle size of from 0.1 to 4000 microns.
The metal oxide binders employed in the face coat of the presently described systems in general comprise certain refractory metal oxides, or compounds pyrolyzable to such oxides. These are used in the liquid state, in a dissolved condition, or as solids suspended or dispersed in aqueous or other liquid media.
In general those metal oxides are preferred as binders which are oxides of the group 3 and group 4 metals in the Mendeleevian periodic chart (as set forth on page 30 of Advanced Inorganic Chemistry by F. G. Cotton and G. Wilkinson; Interscience Publishers, 1962), which have a free energy of formation at 1000I(, greater than 69 kilocalories per gram atom of oxygen in the oxide, which melt after pyrolyzation at a temperature of more than l000l(, which bond upon pyrolyzation and which provide a high temperature bond for the mold material particles.
Preferred binders of this class are the oxides, or the compounds which form oxides upon pyrolysis, of zirconium, thorium, hafnium, yttrium, and gadolinium.
Illustrative of compounds which form such oxides upon pyrolysis are the polymeric carboxylates, such as diacetato zirconic acid (zirconium acetate); the basic oxyhalogenides; the metal-organic compounds, particularly the alkoxides; the alkoxide alcoholates; the oxide alkoxide alcoholates; the polymeric alkoxides; and the oxide alkoxides; the hydrolyzed alkoxides; the halogenated alkoxides, and the hydrolyzed halogenated alkoxides; of zirconium, thorium, hafnium, yttrium and gadolinium. Upon pyrolysis, the foreging are converted to metal oxide binders which normally mature and cure below the sintering temperature of the mold material components of the facing and adjacent facing systems, and thus normally ideally serve the purposes of the invention.
Other binders which may be employed comprise various phosphates such as magnesium phosphate and such conventional binders as calcium aluminate and sodium silicate. All of these binders, however must meet the minimum free energy of formation requirement of at least 69 kilocalories per gram atom of contained oxygen at I000K. and the minimum melting point require- 5 ment of I00OK. after pyrolyzation.
The third major constituent of the mold face coat slurry is an inhibitor having the ability to inhibit the deleterious reactions which may occur between some molten reactive and refractory metals cast in the mold with the various face coat mold materials and metal oxide binders employed in making the mold.
The inhibiting materials useful for this purpose belong to the class of compounds which are susceptible to reduction in the hydrogen environment of the mold firing furnace to form a coating of metal on the particles of metal oxide binder and mold material. This coating is not necessarily completely continuous, since gaseous products are formed during its deposition. However, any discontinuities are in the form of tiny openings which are so small as to be substantially impenetratable by the molten casting metal because of the surface tension properties of the latter. The coating accordingly acts as a physical barrier which retards attack on the binder and mold material by the molten casting metal. It also acts as a close proximity heat sink.
The selection of a suitable inhibitor is difficult because of the environment of its use and the critical problems which are present.
Thus, the inhibitor should have a sufficiently low free energy of formation so that it may be reduced to elemental metal rapidly by hydrogen.
Physically, it must be soluble, or at least dispersible, in the liquid vehicle employed in the formulation of the dip coat slurry so that a substantially uniform barrier coat may be produced.
It also must be reducible to a metal which is sufficiently high melting so that it will not be washed off the particles of mold material and oxide binder by the molten titanium or other metal being cast in the mold.
I have discovered that, of all the commercially and practically available metal-forming inhibitors, certain molybdenum-and tungsten-containing compounds uniquely are suited for this intended purpose. The behavior of these two metals is in sharp contrast to the behavior of other metals such as iron, nickel, copper, cobalt, silver, gold, zinc and lead. These react readily with reactive and refractory casting metals such as titanium and zirconium, forming intermetallic compounds which effect deleteriously the properties of the resulting casting.
Specifically, there may be employed the following classes of compounds of molybdenum and tungsten:
The oxides of molybdenum and tungsten, including molybdenum dioxide, molybdenum trioxide, tungsten dioxide, and tungsten trioxide.
The acids of tungsten and molybdenum and the salts thereof. Such compounds include molybdic acid, tungstic acid, ammonium metatungstate, and ammonium paratungstate.
There also may be employed double salts of tungsten and molybdenum containing other metals. Such compounds are lanthanum metatungstate and yttrium metatungstate. It should be noted, however, that such double compounds are only partially reducible by hydrogen to elemental metal. Thus, when lanthanum metatungstate is employed as an inhibitor, the tungsten oxide component is reduced'to metallic tungsten in the desired manner. The lanthanum oxide component, however, is not thus reduced, but remains innocuously as lanthanum oxide.
A third class of inhibitor-formers comprises the alkoxides and halogenated alkoxides of molybdenum and tungsten. These are prepared by reacting the corresponding metal halides with an alcohol having, for example, from 1 to 5 carbon atoms. Important examples for the present purposes are molybdenum ethoxide ethylate, tungsten ethoxide ethylate, molybdenum chlorethoxide ethylate, tungsten trichloro diethoxide ethylate, and tungsten trichloro dimethoxide.
Still a further class of inhibitor-formers useful for the present purpose comprise the halides and oxyhalides of molybdenum and tungsten. In particular, the chlorides and oxychlorides are of significance. Examples are molybdenum pentachloride, molybdenum oxytrichloride, dimolybdenum oxyoctachloride, dimolybdenum trioxypentachloride, molybdenum dioxydichloride, molybdenum oxytetrachloride, tungsten hexachloride, tungsten dioxydichloride, and tungsten oxytetrachloride.
These and other inhibitor-formers may be used singly or in combination with each other in the formulation of the face coat slurries employed in the method of the present invention.
Another principle constituent of the face coat slurry comprises a liquid vehicle for the aforementioned materials, i.e. the mold material, the binder, and the inhibitor-former. Such vehicle may comprise water, or various organic solvents, especially the lower aliphatic alcohols having fewer than four carbonatoms, i.e. methyl alcohol, ethyl alcohol, and the propyl alcohols. Admixtures of water and other water soluble organic solvents also may be employed.
In addition to the mold materials, binders, inhibitorformers and suspension or dispersion vehicles of the above described systems, there may be employed a suitable quantity of conventional additives such as suspension agents, green strength promoters, plasticizers, wetting agents, anti-foaming agents, deflocculants, and coating driers.
The relative proportions of the constituents employed in the face coat slurry are somewhat variable, depending upon particular applications. However, the metal oxide binder normally is employed in an amount of from 0.01 to 50.0 percent by weight of the mold material slurry. The tungsten-or molybdenum-forming inhibitor is employed in at least the amount required for forming the coating of inhibiting metal on the metal oxide binder particles and the face coat mold material. The liquid vehicle is employed in amount sufficient to impart the desired viscosity to the dip coat slurry. Suitable viscosities lie within the broad range of 50750 centistokes at room temperature.
A preferred method of preparing the face coat dip slurry comprises first mixing the metaloxide binder with the selected liquid vehicle and then dissolving or suspending the metal-forming inhibitor in the resulting mixture. The finely divided mold material next is mixed in, as are any supplemental materials which are to be included in the mix. The resulting composition then is agitated until a slurry of uniform composition is obtained.
In the application of the face coat dip slurry, the pattern first is treated with a suitable solvent, as required to remove any die release agent which may be present on its surface. It then is immersed with agitation in the face coat dip slurry and rotated to insure complete coverage. After a dwell period of from 5 to 60 seconds, it is withdrawn and, typically, drained for 10 to 60 seconds.
The wet pattern assembly then normally is stuccoed with finely divided molybdenum or tungsten having a mesh size of about 60 to (United States Sieve Series). In the alternative, it may be stuccoed with an oxide of a metal such as zirconium, hafnium, thorium, yttrium or gadolinium, or with a selected face coat mold material.
The dip coated and stuccoed pattern assembly then is air dried until the coat has a solvent content of below about 20 percent by volume. If desired, gel drying or vacuum drying techniques also may be employed supplemental to, or in lieu of, air drying.
The dried assembly next is treated with superimposed alternating dip coats and stucco coats of predetermined composition and number until a mold of the desired size and strength has been fabricated. Thereafter, the mold is heated to fluidize and remove the disposable pattern which thus has been invested to form the mold. In next must be oven dried and cured.
The mold is oven dried in either air or a nonoxidizing atmosphere at from 500K. to 650K. for 4 to 8 hours. This removes most of the low temperature volatiles.
After the drying cycle, the mold is placed in a furnace and treated with hydrogen gas for reduction of the inhibitor-former to metallic molybdenum or tungsten. The treatment with hydrogen gas preferably is effectuated in a purging environment of the latter in order to sweep out of the vicinity of the mold water vapor which usually is formed as a product of the action between the inhibitor-former and gaseous hydrogen. Such water vapor, if permitted to remain in contact with the mold, would react with the metal interface in an undesirable manner.
The hydrogen gas should be employed in an amount which is at least the stoichiometric amount required for reducing the inhibitor-former. This is desirable since, at least in the case of certain inhibitor-formers, a residue of the same left at the mold interface would cause the occurrence of undesirable side reactions between the mold and the casting metal poured therein.
The mold is heated in the hydrogen environment at a temperature and time sufficient to reduce substantially completely the inhibitor-forming compound. In the usual case, it requires heating the mold at a temperature of from 900K. to 2500K. for a time of from 2 to 4 hours. In order to prevent mold distortion or sagging, it is desirable that the final mold curing temperature be below the melting temperature of any of the mold materials which at this stage of the process still are present in the mold.
If desired, after treatment with hydrogen, the molds may be vacuum processed at high temperature in known manner.
Subjecting the molds to the action of hydrogen at high temperature serves various functions. If metallic oxide-forming binders have been employed, the heat drying converts such binders to metal oxide binders. It also removes essentially all of the remaining volatiles from the mold and provides the mold with a high temperature bond without destroying or distorting it.
Most importantly, however, from the standpoint of the present invention, the heat curing in the presence of hydrogen effects reduction of the inhibitor-former to metallic molybdenum and/or tungsten. This forms a metallic barrier at the mold interface and effectively covers the particles of face coat mold material and oxide binder. It thus inhibits reaction between the mold constituents and the reactive and refractory molten metals subsequently cast therein.
The investment shell molds of the invention and the methods for making them are illustrated further in the following examples wherein amounts are given in percent by weight.
EXAMPLE Facing Slurry 2 3 4 and up Hydrolyzed Hafnium Chloroethoxide Ethylate (32.9%
HfO in Ethanol) 10.50 11.10 9.10 7.37 Hydrolyzed Zirconium Chloroethoxide Ethylate (15.0%
ZrO- .in Ethanol) 3.10 2.50 2.02 Hydrolyzed Molybdenum Chloroethoxide Ethylate Inhibitor (8.9% MoO in Ethanol) 5.25 5.05 4.15 3.36 Glycerine 0 0.05 0.04 0.03 Water 0 1.10 1.45 1.17 Denatured Ethanol 0 0 0 1.98 Fused Zirconium Oxide Powder {-325 mesh) 84.25 79.60 65.36 52.86
Fused Zirconium Oxide Grain (-20+50 mesh) 0 0 0 17.15 Fused Zirconium Oxide Grain (35+80 mesh) 0 0 17.40 14.06 Stucco ZrO, ZrO ZrO, ZrO 100+200 35+80 -20+50 20+50 EXAMPLE ll Facing Slurry 2 3 and up Colloidal Zirconia (20% ZrO, in Water) 12.4 0 0 Diacetatozironic Acid (22% ZrO, in Water) 8.5 0 0 Hydrolyzed Molybdenum Chloroethoxide Ethylate inhibitor (8.9% M00; in Ethanol) 16.5 0 0 Molybdenum Powder (-325 mesh) 60.0 0 0 Fused Gadolinium Oxide Powder (325 Mesh) 2.6 0 0 Hydrolyzed Tetraethylorthosilicate Solution SiO in Ethanol) 0 23.0 25.0 Fused Zirconium Oxide Powder (325 mesh) 0 77.0 0 Aluminum Silicate Powder (325 mesh) 0 0 50.0 Aluminum Silicate Grain (-+50 mesh) 0 0 25.0 Stucco Molyh ZrO aluminum dcnum silicate l0(l+200 -35+80 20+5O EXAMPLE I" Facing Slurry 2 3 and up Hydrolyzed Tetraethylorotho-silicale Solution (15% SiO, in Ethanol) 20.0 23.0 25.0 Hydrolyzed Tungsten Trichloro dicthoxide inhibitor (26% W0, in Ethanol) 7.2 0 0 Fused Zirconium Oxide Powder (325 mesh) 72.8 77.0 0 Aluminum Silicate Powder (-325 mesh) 0 0 50.0
Aluminum Silicate Grain (20+50 mesh) Diacetatozironic Acid .(22% ZrO, in Water) Ammonium Metatungstate Colloidal Tungstic Acid inhibitor (Water Suspension containing 25% available Tungstie Oxide) Tungsten Powder (-325 mesh) Fused Yttrium Oxide Hydrolyzed Tetraethylorthosilicatc Solution (15% SiO in Ethanol) Fused Zirconium Oxide Powder Aluminum Silicate Powder Aluminum Silicate Grain (20+50 mesh) Diacetatozironic Acid 22% ZrO in Water) Ammonium Metatungstate Tungsten Powder Fused Zirconium Oxide Powder Hydrolyzed Tetraethylorthosilicate Solution (15% SiO in Ethanol) Aluminum Silicate Powder Aluminum Silicate Grain (20+50 mesh) Diacctatozirconic Acid (22% ZrO in Water) Ammonium Metatungstate Aluminum Silicate Powder Aluminum Silicate Grain (20+50 mesh) Diacetatozirconic acid (22% 2:0, in water) 14.6
dioxydichloride Fused Lathanum Oxide Powder [-325 mesh) 16.2
0 ZrO EXAMPLE IV Facing Slurry Tungsten EXAMPLE V Facing Slurry EXAMPLE VI Facing Slurry Tu ngste n EXAMPLE V11 0 ZrO OOON 0 ZrO:
25 .0 aluminum Silicate 20+50 3 and up 25 .0 aluminum Silicate 20+50 3 and up COCO 25 .0 aluminum Silicate 20+50 3 and up 25.0 aluminum oxide 20+50 4 and up Thorium oxide powder (-325 mesh) 19.0 13.7 11.8 9.85 Molybdenum powder (-325 mesh) 41.3 29.8 25.6 21.40 Thorium oxide grain (20+200 mesh) 22.5 19.3 16.15 Molybdenum grain (l00+200 mesh) 0 0 14.1 11.80 Molybdenum grain (--1-50 mesh) 0 O 0 16.35
Molyb- Stucco denum Th0 z Th0, Th0 100+200 20+200 20+50 20+50 In all of the foregoing examples, the dip slurries were prepared by adding the inhibitor-forming components and the binder components to the slurry vehicle and agitating them until a solution or a fine dispersion was obtained. The mold material then was added and the mixing continued until a uniform mixture resulted.
A pattern was dipped and stuccoed alternately with the compositions until the finished mold was produced. The pattern then was removed by melting or solvent treatment, after which the mold was baked at from 500 K. to 650 K. for from 4 to 8 hours to remove low temperature volatiles. Thereafter, the mold was cured in a purging atmosphere of hydrogen at 9002500K. for from 2 to 4 hours.
This effected the reduction of the inhibitor-forming compounds to metallic tungsten or molybdenum, as the case may be. The metal thus formed covered the surfaces of the binder and mold material components of the face coat, thereby forming a barrier capable of inhibiting subsequent reaction of these mold components with molten metallic titanium, zirconium, or other reactive and refractory metals subsequently cast in the mold.
In a manner similar to the foregoing, there are prepared inhibited molds for casting reactive and refractory metals using as inhibitor-forming components of the mold face coat one or a mixture of the following materials: tungsten dioxide, tungsten trioxide, molybdenum dioxide, molybdenum trioxide, tungstic acid, molybdic acid, ammonium metatungstate, lanthanum metatungstate, molybdenum chloroethoxide ethylate, tungsten triehloro diethoxide ethylate, molybdenum pentachloride, molybdenum oxytrichloride, dimolybdenum oxyoetachloride, dimolybdenum trioxypentachloride, molybdenum dioxydichloride, molybdenum oxytetrachloride, tungsten hexachloride, tungsten dioxydichloride, and tungsten oxytetrachloride.
Having thus described my invention in preferred embodiments, I claim:
1. 1n the manufacture of an investment shell mold to be used in casting titanium, zirconium and other reactive and refractory metals by successively dipcoating, stuccoing and drying a disposable pattern to build a mold shell, removing the pattern from the shell, and heat curing the shell, the steps of:
21. including in the first dip coat applied to the pattern an inhibitorformer comprising at least one member of the group consisting of the compounds of tungsten and molybdenum which are reducible by hydrogen to metallic tungsten and molybdenum respectivcly,
b. and after removing the pattern from the shell, heat curing the shell in an atmosphere of hydrogen for a time and at a temperature sufficient to reduce the inhibitor-former to elemental metal,
c. the hydrogen being used in at least the stoichiometric amount required to reduce the inhibitorformer to the corresponding metal and thereby coat the mold interface with a metallic coating functioning, when a molten refractory and reactive metal is cast in the mold, as a barrier layer which shields the mold constituents from the casting metal and thereby inhibits the occurrence of undesirable side reactions therebetween.
2. The method of claim 1 wherein the inhibitorformer comprises at least one member of the group consisting of the oxides of tungsten and molybdenum.
3. The method of claim 1 wherein the inhibitorformer comprises tungsten oxide.
4. The method of claim 1 wherein the inhibitorformer comprises molybdenum oxide.
5. The method of claim 1 wherein the inhibitorformer comprises at least one member of the group consisting of tungstic acid, molybdic acid and the salts thereof.
6. The method of claim 1 wherein the inhibitorformer comprises tungstic acid.
7. The method of claim 1 wherein the inhibitorformer comprises molybdic acid.
8. The method of claim 1 wherein the inhibitorformer comprises ammonium metatungstate.
9. The method of claim 1 wherein the inhibitorformer comprises lanthanum metatungstate.
10. The method of claim 1 wherein the inhibitorformer comprises at least one member of the group consisting of the alkoxides and halogenated alkoxides of tungsten and molybdenum.
11. The method of claim 1 wherein the inhibitorformer comprises molybdenum chloroethoxide ethylate.
12. The method of claim 1 wherein the inhibitorformer comprises tungsten chloroethoxide ethylate.
13. The method of claim 1 wherein the inhibitorformer comprises at least one member of the group consisting of the halides and oxyhalides of tungsten and molybdenum.
14. The method of claim 13 wherein the halide comprises a chloride.
15. The method of claim 13 wherein the oxyhalide comprises an oxychloride.
16. The method of claim 1 wherein the inhibitorformer comprises tungsten chloride.
17. The method of claim 1 wherein the inhibitorformer comprises tungsten oxychloride.
18. The method of claim 1 wherein the inhibitorformer comprises molybdenum chloride.
19. The method of claim 1 wherein the inhibitorformer comprises molybdenum oxychloride.
20. The method of claim 1 wherein included in the first dip coat is a quantity of tungsten in the form of a metallic powder.
21. The method of claim 1 wherein included in the first dip coat is a quantity of molybdenum in the form of a metallic powder.
22. The method of claim 1 wherein the shell is heat cured in a purging atmosphere of hydrogen for substantially complete removal of the gaseous hydrogenation by-products from the mold environment.
23. The method of claim 1 wherein the mold is heat cured in an atmosphere of hydrogen admixed with an inert gas.
24. The method of claim 1 wherein the mold is heat cured in an atmosphere of cracked ammonia.
25. The method of claim 1 wherein the shell is heat cured in an atmosphere of hydrogen at a temperature of from 900K. to 2500K. for a time of from 2 to hours.

Claims (24)

  1. 2. The method of claim 1 wherein the inhibitor-former comprises at least one member of the group consisting of the oxides of tungsten and molybdenum.
  2. 3. The method of claim 1 wherein the inhibitor-former comprises tungsten oxide.
  3. 4. The method of claim 1 wherein the inhibitor-former comprises molybdenum oxide.
  4. 5. The method of claim 1 wherein the inhibitor-former comprises at least one member of the group consisting of tungstic acid, molybdic acid and the salts thereof.
  5. 6. The method of claim 1 wherein the inhibitor-former comprises tungstic acid.
  6. 7. The method of claim 1 wherein the inhibitor-former comprises molybdic acid.
  7. 8. The method of claim 1 wherein the inhibitor-former comprises ammonium metatungstate.
  8. 9. The method of claim 1 wherein the inhibitor-former comprises lanthanum metatungstate.
  9. 10. The method of claim 1 wherein the inhibitor-former comprises at least one member of the group consisting of the alkoxides and halogenated alkoxides of tungsten and molybdenum.
  10. 11. The method of claim 1 wherein the inhibitor-former comprises molybdenum chloroethoxide ethylate.
  11. 12. The method of claim 1 wherein the inhibitor-former comprises tungsten chloroethoxide ethylate.
  12. 13. The method of claim 1 wherein the inhibitor-former comprises at least one member of the group consisting of the halides and oxyhalides of tungsten and molybdenum.
  13. 14. The method of claim 13 wherein the halide comprises a chloride.
  14. 15. The method of claim 13 wherein the oxyhalide comprises an oxychloride.
  15. 16. The method of claim 1 wherein the inhibitor-former comprises tungsten chloride.
  16. 17. The method of claim 1 wherein the inhibitor-former comprises tungsten oxychloride.
  17. 18. The method of claim 1 wherein the inhibitor-former comprises molybdenum chloride.
  18. 19. The method of claim 1 wherein the inhibitor-former comprises molybdenum oxychloride.
  19. 20. The method of claim 1 wherein included in the first dip coat is a quantity of tungsten in the form of a metallic powder.
  20. 21. The method of claim 1 wherein included in the first dip coat is a quantity of molybdenum in the form of a metallic powder.
  21. 22. The method of claim 1 wherein the shell is heat cured in a purging atmosphere of hydrogen for substantially complete removal of the gaseous hydrogenation by-products from the mold environment.
  22. 23. The method of claim 1 wherein the mold is heat cured in an atmosphere of hydrogen admixed with an inert gas.
  23. 24. The method of claim 1 wherein the mold is heat cured in an atmosphere of cracked ammonia.
  24. 25. The method of claim 1 wherein the shell is heat cured in an atmosphere of hydrogen at a temperature of from 900*K. to 2500*K. for a time of from 2 to 4 hours.
US00149485A 1971-06-03 1971-06-03 Making investment shell molds inhibited against reaction with molten reactive and refractory casting metals Expired - Lifetime US3743003A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14948571A 1971-06-03 1971-06-03

Publications (1)

Publication Number Publication Date
US3743003A true US3743003A (en) 1973-07-03

Family

ID=22530497

Family Applications (1)

Application Number Title Priority Date Filing Date
US00149485A Expired - Lifetime US3743003A (en) 1971-06-03 1971-06-03 Making investment shell molds inhibited against reaction with molten reactive and refractory casting metals

Country Status (13)

Country Link
US (1) US3743003A (en)
JP (1) JPS5219163B1 (en)
AT (1) AT328106B (en)
BE (1) BE784269A (en)
CA (1) CA972129A (en)
CH (1) CH554204A (en)
DE (1) DE2226947A1 (en)
FR (1) FR2140189B1 (en)
GB (1) GB1394872A (en)
IE (1) IE36709B1 (en)
IT (1) IT958188B (en)
NL (1) NL7207552A (en)
SE (1) SE388138B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802482A (en) * 1972-03-09 1974-04-09 United Aircraft Corp Process for making directionally solidified castings
US3892579A (en) * 1973-03-22 1975-07-01 American Dental Ass Adhesive refractory protective composition for investment casting
US3933190A (en) * 1974-12-16 1976-01-20 United Technologies Corporation Method for fabricating shell molds for the production of superalloy castings
US3972367A (en) * 1975-06-11 1976-08-03 General Electric Company Process for forming a barrier layer on ceramic molds suitable for use for high temperature eutectic superalloy casting
US4031945A (en) * 1976-04-07 1977-06-28 General Electric Company Process for making ceramic molds having a metal oxide barrier for casting and directional solidification of superalloys
US4159204A (en) * 1972-02-01 1979-06-26 Dynamit Nobel Aktiengesellschaft Process for the manufacture of refractory ceramic products
US4211567A (en) * 1972-02-01 1980-07-08 Dynamit Nobel Aktiengesellschaft Process for the manufacture of refractory ceramic products
US4533394A (en) * 1982-09-30 1985-08-06 Watts Claude H Process for manufacturing shell molds
US4703806A (en) * 1986-07-11 1987-11-03 Howmet Turbine Components Corporation Ceramic shell mold facecoat and core coating systems for investment casting of reactive metals
US6766850B2 (en) 2001-12-27 2004-07-27 Caterpillar Inc Pressure casting using a supported shell mold
US20060021732A1 (en) * 2004-07-28 2006-02-02 Kilinski Bart M Increasing stability of silica-bearing material
US20060051599A1 (en) * 2002-07-01 2006-03-09 Mahnaz Jahedi Coatings for articles used with molten metal
US20130224066A1 (en) * 2012-02-29 2013-08-29 General Electric Company Mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
CN103537620A (en) * 2013-09-30 2014-01-29 中国航空工业集团公司北京航空材料研究院 Preparation method for precision casting of mold shell through directional solidification investment casting of titanium-aluminum based alloy
US20150258602A1 (en) * 2012-10-18 2015-09-17 Cermatco Ltd Investment Binder and Use of the Investment Binder
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
CN111545711A (en) * 2020-05-19 2020-08-18 中国科学院金属研究所 Preparation method of thermal shock resistant ceramic shell for high-temperature alloy LMC (melt-solidified metallic) directional solidification
CN114570882A (en) * 2022-03-10 2022-06-03 西部金属材料股份有限公司 Preparation method of tungsten surface layer shell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2407770A1 (en) * 1977-11-07 1979-06-01 Rem Metals Corp Mould for casting reactive and refractory metals - has an inert facing contg. metal (oxy)fluoride, heat sink material and binder
GB9601910D0 (en) * 1996-01-31 1996-04-03 Rolls Royce Plc A method of investment casting and a method of making an investment casting mould

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1772490A (en) * 1926-01-13 1930-08-12 Dow Chemical Co Casting magnesium and alloys therefor
US3158912A (en) * 1962-08-09 1964-12-01 Gen Electric Controlled grain size casting method
CA868258A (en) * 1971-04-13 A. Brown Robert Investment shell molds for the high integrity precision casting of reactive and refractory metals, and methods for their manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA868258A (en) * 1971-04-13 A. Brown Robert Investment shell molds for the high integrity precision casting of reactive and refractory metals, and methods for their manufacture
US1772490A (en) * 1926-01-13 1930-08-12 Dow Chemical Co Casting magnesium and alloys therefor
US3158912A (en) * 1962-08-09 1964-12-01 Gen Electric Controlled grain size casting method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159204A (en) * 1972-02-01 1979-06-26 Dynamit Nobel Aktiengesellschaft Process for the manufacture of refractory ceramic products
US4211567A (en) * 1972-02-01 1980-07-08 Dynamit Nobel Aktiengesellschaft Process for the manufacture of refractory ceramic products
US3802482A (en) * 1972-03-09 1974-04-09 United Aircraft Corp Process for making directionally solidified castings
US3892579A (en) * 1973-03-22 1975-07-01 American Dental Ass Adhesive refractory protective composition for investment casting
US3933190A (en) * 1974-12-16 1976-01-20 United Technologies Corporation Method for fabricating shell molds for the production of superalloy castings
US3972367A (en) * 1975-06-11 1976-08-03 General Electric Company Process for forming a barrier layer on ceramic molds suitable for use for high temperature eutectic superalloy casting
US4031945A (en) * 1976-04-07 1977-06-28 General Electric Company Process for making ceramic molds having a metal oxide barrier for casting and directional solidification of superalloys
US4533394A (en) * 1982-09-30 1985-08-06 Watts Claude H Process for manufacturing shell molds
US4703806A (en) * 1986-07-11 1987-11-03 Howmet Turbine Components Corporation Ceramic shell mold facecoat and core coating systems for investment casting of reactive metals
US6766850B2 (en) 2001-12-27 2004-07-27 Caterpillar Inc Pressure casting using a supported shell mold
US20040211547A1 (en) * 2001-12-27 2004-10-28 Caterpiller Inc. Pressure casting using a supported shell mold
US7032647B2 (en) 2001-12-27 2006-04-25 Caterpillar Inc. Pressure casting using a supported shell mold
US20060051599A1 (en) * 2002-07-01 2006-03-09 Mahnaz Jahedi Coatings for articles used with molten metal
US20060021732A1 (en) * 2004-07-28 2006-02-02 Kilinski Bart M Increasing stability of silica-bearing material
US7258158B2 (en) 2004-07-28 2007-08-21 Howmet Corporation Increasing stability of silica-bearing material
US20130224066A1 (en) * 2012-02-29 2013-08-29 General Electric Company Mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
CN103286256A (en) * 2012-02-29 2013-09-11 通用电气公司 Mold and facecoat compositions and methods for casting titanium and titanium aluminide alloy
US8932518B2 (en) * 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
US9802243B2 (en) 2012-02-29 2017-10-31 General Electric Company Methods for casting titanium and titanium aluminide alloys
US20150258602A1 (en) * 2012-10-18 2015-09-17 Cermatco Ltd Investment Binder and Use of the Investment Binder
CN103537620A (en) * 2013-09-30 2014-01-29 中国航空工业集团公司北京航空材料研究院 Preparation method for precision casting of mold shell through directional solidification investment casting of titanium-aluminum based alloy
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
CN111545711A (en) * 2020-05-19 2020-08-18 中国科学院金属研究所 Preparation method of thermal shock resistant ceramic shell for high-temperature alloy LMC (melt-solidified metallic) directional solidification
CN111545711B (en) * 2020-05-19 2022-04-05 中国科学院金属研究所 Preparation method of thermal shock resistant ceramic shell for high-temperature alloy LMC (melt-solidified metallic) directional solidification
CN114570882A (en) * 2022-03-10 2022-06-03 西部金属材料股份有限公司 Preparation method of tungsten surface layer shell

Also Published As

Publication number Publication date
DE2226947A1 (en) 1972-12-28
FR2140189B1 (en) 1977-12-16
GB1394872A (en) 1975-05-21
AT328106B (en) 1976-03-10
NL7207552A (en) 1972-12-05
ATA456172A (en) 1975-05-15
IE36709B1 (en) 1977-02-02
CA972129A (en) 1975-08-05
JPS5219163B1 (en) 1977-05-26
FR2140189A1 (en) 1973-01-12
CH554204A (en) 1974-09-30
IT958188B (en) 1973-10-20
IE36709L (en) 1972-12-03
SE388138B (en) 1976-09-27
BE784269A (en) 1972-10-02

Similar Documents

Publication Publication Date Title
US3743003A (en) Making investment shell molds inhibited against reaction with molten reactive and refractory casting metals
US4063954A (en) Fluoride-type with heat sink for casting molten reactive and refractory metals
US5738819A (en) Method for making ceramic shell molds and cores
US3422880A (en) Method of making investment shell molds for the high integrity precision casting of reactive and refractory metals
EP0252862B1 (en) Ceramic shell mold facecoat and core coating systems for investment casting of reactive metals
US4787439A (en) Casting of reactive metals into ceramic molds
US3994346A (en) Investment shell mold, for use in casting of reacting and refractory metals
US4040845A (en) Ceramic composition and crucibles and molds formed therefrom
US3537949A (en) Investment shell molds for the high integrity precision casting of reactive and refractory metals,and methods for their manufacture
US4026344A (en) Method for making investment casting molds for casting of superalloys
JPS6234449B2 (en)
US4557316A (en) Method for manufacture of investment shell mold suitable for casting grain-oriented super alloy
JPS5921979A (en) Crucible liner and its manufacture
US4188450A (en) Shell investment molds embodying a metastable mullite phase in its physical structure
US3305358A (en) Method for shaping beryllium and other metals and ceramics
US3389743A (en) Method of making resinous shell molds
JPH0811274B2 (en) Method for manufacturing precision casting mold
CA1339184C (en) Ceramic shell molds and cores for casting of reactive metals
Calvert An investment mold for titanium casting
JP3130962B2 (en) High melting point active metal casting mold and method for producing the same
GB2294040A (en) Ceramic shell mold and cores for casting of reactive metals
JPH05208241A (en) Casting mold for precision casting of titanium or titanium alloy
IE46077B1 (en) Fluoride-type mould with heat sink for casting molten reactive and refractory metals
US3898313A (en) Production of improved ceramic shell moulds
JP2772090B2 (en) Ceramic shell mold and core for reactive metal casting

Legal Events

Date Code Title Description
AS Assignment

Owner name: SELMET, INC., 9010 S.E. 7 MILE LANE, ALBANY, OR, C

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:REM METALS CORPORATION;REEL/FRAME:004345/0912

Effective date: 19841214