US3537949A - Investment shell molds for the high integrity precision casting of reactive and refractory metals,and methods for their manufacture - Google Patents

Investment shell molds for the high integrity precision casting of reactive and refractory metals,and methods for their manufacture Download PDF

Info

Publication number
US3537949A
US3537949A US766347*A US3537949DA US3537949A US 3537949 A US3537949 A US 3537949A US 3537949D A US3537949D A US 3537949DA US 3537949 A US3537949 A US 3537949A
Authority
US
United States
Prior art keywords
mold
refractory
molds
casting
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US766347*A
Inventor
Robert A Brown
Clifford A Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Selmet Inc
Original Assignee
Rem Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rem Metals Corp filed Critical Rem Metals Corp
Application granted granted Critical
Publication of US3537949A publication Critical patent/US3537949A/en
Assigned to SELMET, INC. reassignment SELMET, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: REM METALS CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/165Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents in the manufacture of multilayered shell moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/205Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of organic silicon or metal compounds, other organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns

Definitions

  • a mold for casting molten reactive and refractory metals comprising a facing portion comprising fine particles of columbium, molybdenum, tantalum or tungsten bound by a refractory oxide and bound to a back-up portion of refractory metallic oxide bound ceramic particles.
  • the metallic oxide may be oxides of zirconium, thorium, hafnium, yttrium or gadolinium.
  • This invention relates to methods for making investment shell molds for the high integrity precision casting of reactive and refractory metals.
  • metal casting molds Although there are many types of metal casting molds, none of them is applicable to the high integrity precision casting of such metals as chromium, hafnium, molybdenum, plutonium, niobium, rhenium, thorium, uranium, tantalum, titanium, vanadium, zirconium, and the rare earth metals, all of which are highly reactive chemically in the molten state.
  • FIG. 1 is a flow plan illustrating the basic investment shell molding process, a modification of which is the subject matter of the present invention.
  • FIG. 2 is a transverse sectional view through a mold of the class prepared by the instant invention.
  • the sequence of operations employed in the manufacture of intricate castings by the investment shell casting technique involves first providing disposable patterns made from waxes, plastics, frozen mercury, or other materials which readily may be removed from the mold.
  • the investment cycle consists of making the patterns by injecting the pattern material into a die, and gating the patterns to a central sprue to form a pattern cluster.
  • the pattern cluster then is dipped into an agitated slurry of the molding material, drained, stuccoed while still wet with particulate mold material in a fluidized bed or by sprinkling, and dried, preferably to a solvent content of less than 20% by volume.
  • the dipping, draining, stuccoing and drying sequence is repeated a desired number of times, indicated by N times in the flow diagram, to produce a laminated investment shell mold of the desired thickness and strength.
  • the disposable pattern is removed by methods such as melting or solvent treatment.
  • the mold is cured by being fired at a temperature sufficiently elevated to remove volatiles and provide adequate bonding.
  • the molds then are heated, and filled with molten metal by gravity, pressure, vacuum, or centrifugal force. After cooling, the castings are removed from the sprue and finished in the usual manner.
  • the investment shell molds of the present invention comprise a facing portion including a major proportion, at least 50% by weight, of finely divided particles of metallic columbium, molybdenum, tantalum or tungsten, all bonded together with a suitable refractory metallic oxide binder, and a back-up reinforcing portion comprising finely divided particles of shell mold back-up material including ceramic mold materials and refractory metal oxide binders, all the mold components being integrally bonded together to form a strong structure having an inner face portion comprised predominantly of one of the indicated metals.
  • the method of making the herein described investment shell molds for the high integrity precision casting of reactive and refractory metals comprises dip-coating a disposable pattern in a liquid suspension of columbium, molybdenum, tantalum and/or tungsten and a binder therefor comprising a refractory metal oxide and/ or a refractory metal compound pyrolyzable to a refractory metal oxide.
  • the dip coated pattern is stuccoed with at least one of the same finely divided metals, after which it is dried.
  • the foregoing sequence of dip coating, stuccoing and drying is repeated until a shell mold of the desired thickness has been built up about the disposable pattern.
  • the pattern then is removed from the mold, after which the mold is fired at a temperature which is below the sintering temperature of any of its constituents.
  • the firing temperature is predetermined to convert the content of any refractory metal compounds which may be present to refractory metal oxides and also, through the agency of the refractory metal oxides present initially or thus generated, to bond together the finely divided metal particles and mold back-up material particles to form the finished mold.
  • the herein described investment shell mold is made by repeatedly dip coating, stuccoing and drying a disposable pattern, indicated symbolically at 10 in FIG. 2, to invest the pattern with mold-forming coatings sufiicient in number to build up a finished mold of the desired strength.
  • the coatings thus supplied are in general of three categories and are so illustrated in FIG. 2.
  • the first coatings are termed herein the facing coatings and comprise the dip coating and stucco coating 12, 14 making up the inner face of the mold, in direct contact with the molten metal poured therein.
  • a single dip coat-stucco coat combination normally comprise the face coating.
  • the second category of coatings termed herein the adjacent facing coatings, comprise alternate dip coats 16 and stucco coats 18 applied in sequence on top of the face coat. There may be any desired or necessary numbers of such coats, indicated by n in FIG. 2.
  • the third class of coatings applied in making the herein described molds are those which during the use of the molds do not normally come in direct contact with the molten casting metal or with the vapor produced therefrom. These are termed herein back-up coatings and comprise alternate dip coats and stucco coats 20, 22 respectively applied in a sufiicient number, n of FIG. 2, to lend the required strength to the mold. Thus there may normally be a total of from 4 to 12 or more adjacent facing and back-up coatings applied to the pattern in building up the mold, the total number being indicated at N in FIG. 2.
  • Each of these coatings has a characteristic composition as required to fulfill the general purpose of the invention, i.e. the provision of an investment shell mold for the high integrity precision casting of reactive and refractory metals.
  • the preferred components of the integral facing, adjacent facing and back-up coating systems may be selected from the following:
  • Alumina Aluminum silicates (3) Forsterite (4) Olivine (5) Silica (6) Thoria (7) Zircon (8) Zirconia (9) Gadolinia (10) Hafnia (11) Yttria Binders:
  • Alumina Aluminum silicates (3) Forsterite (4) Olivine (5) Silica (6) Thoria (7) Zircon (8) Zirconia (9) Gadolinia 10) Yttria (11) Hafnia Binders:
  • columbium, molybdenum, tantalum and tungsten which are the primary constituents of the foregoing systems, is directly responsible for the production of precision castings in the molds because of their very high melting points, their very low vapor pressures, their lack of a normal tendency to form casting-damaging intermetallic compounds with the various reactive and refractory casting metals, and their freedom from a tendency to react with the reactive and refractory metals to form gases which might contaminate the castings.
  • the foregoing metals may be used in the form of the pure metals, their alloys or their unalloyed mixtures, in the dip coat and stuccoing compositions, they are employed in finely divided, graded condition having a particle size, for example, in the range of from below 400 mesh to 5 mesh U.S. Sieve Series, i.e. having :1 particles size of from 0.1 to 4000 microns.
  • Zirconia, thoria, hafnia, yttria, and gadolinia may be used along with the columbium, molybdenum, tantalum or tungsten as mold materials in the face coating systems, as long as these oxide mold materials are not used in a quantity sufficient to exceed 25 weight percent of the facing portion.
  • Their use as additives is desirable in some instances to reduces the cost of the molds, to alter the thermal conductivity of the molds and to adjust the expansion characteristics thereof. In addition, in some instances they are beneficial in reducing or eliminating cold shut and/or misrun defects.
  • the binders for the foregoing facing and integral facing coatings in general comprise the refractory metal oxide binders, or the refractory metal oxide-forming binders used in the liquid state, in the dissolved condition, or as solids suspended or dispersed in aqueous or other liquid media.
  • those metal oxide binders are preferred which are oxides of the Groups III and IV metals in the Periodic Chart, which have a free energy of formation at 1000 K. greater than 69 kilocalories per gram atom of oxygen in the oxide, which bond upon pyrollization, and which will provide a high temperature bond for the columbium, molybdenum, tantalum or tungsten mold material contained in the integral facing and adjacent facing systems.
  • Preferred binders of this class are the oxides, or compounds which forms oxides, of zirconium, thorium, hafnium, yttrium or gadolinium.
  • Illustrative of compounds which form such oxides upon pyrolysis are the polymeric carboxylates such as diacetato zirconic acid (zirconium acetate), the basic oxyhalogemides the metalorgamic compounds, particularly the alkoxides, the alkoxide alcoholates, the oxide alkoxide alcoholates, the polymeric alkoxides, the oxide alkoxides, hydrolyzed alkoxides, halogenated alkoxides, and hydrolyzed halogenated alkoxides of zirconium, thorium, hafnium, yttrium, and gadolinium.
  • the foregoing are converted to metal oxide binders which mature and cure below the sintering temperature of the metal component of the facing and adjacent facing systems, and
  • binders, and slurry suspension or dispersion media of the foregoing dip coat systems there may be employed in suitable quantity conventional additives such as suspension agents green strength promoters, plasticizers, wetting agents, antifoaming agents, deflocculants and coating driers.
  • dipcoat components employed in the facing, adjacent facing and back-up coatings are applied in the form of aqueous or organic solvent slurries having, for best results the following viscosities:
  • DIPCOAI SLURRY VISCOSITIES (Centistokes) Dipcoat slurry No. Preferred General range
  • the pattern first is treated with a suitable solvent as required to remove any die release agent which may be on its surface. It then is immersed in the agitated first dip coat slurry and rotated to insure complete coverage. After a dwell period of from 10 to 60 seconds it is withdrawn and drained for 1560 seconds.
  • the wet pattern assembly then is stuccoed with the finely divided metal, for example, +200 mesh columbium, molybdenum, tantalum and/ or tungsten grain.
  • the dip coated and stuccoed pattern assembly then is air dried until the coating is below, for example, a 20% by volume solvent content.
  • the dried assembly then is immersed in the agitated second dip coat slurry for -60 seconds, drained for 60 seconds, stuccoed with 100 +200 mesh metallic columbium, molybdenum, tantalum, or tungsten grain, and air dried to a solvent content below about by volume.
  • This assembly then is treated with the third and subsequent dip coat slurries, drained, stuccoed and dried in similar manner until a mold of the desired thickness has been built up.
  • the previous coating should dry preferably to a solvent content of from 2 to 20% by volume before the subsequent coating is applied in order to prevent the previous coating from dissolving in the subsequent dip coating slurry. This may be required from minutes to 6 hours drying time, depending on atmospheric temperature and humidity and pattern complexity. Vacuum drying may be employed to accelerate the drying procedure if desired, in particular instances.
  • each coating be dried below a 20% by volume solvent content before the subsequent coating is applied, for the reason specified above, it also is desirable that the drying be discontinued before the solvent content goes below a level of about 2% by volume. This results in the production of a resilient coating which expands and contracts with thermal changes and avoids significant cracking or spalling. If the solvent content falls below 2% the coating may become brittle and crack.
  • the first dip coat slurry may contain only mold material which is minus 325 mesh while the 5th dip coat slurry may contain appreciable amounts of +100 +200 mesh and -20 +50 mesh mold materials.
  • This particle size increase toward the outer coating is also reflected in the stuccoing material, which may be -100 +200 mesh for the first two coatings and 20 +50 mesh for the remaining coatings.
  • the increase in mold material and stucco material particle sizes from the mold face to the outer coatings of the mold produces a very stable investment shell mold capable of producing very smooth surfaced castings, yet permits the venting of any generated gases during casting. It also reduces the possibility of the formation of hot tears in the casting due to the excellent collapsibility of the mold.
  • Coatings are applied until a mold of the desired strength and permeability is fabricated.
  • the assembly is heated to fiuidize and remove the disposable pattern from the shell mold with which the pattern has been invested.
  • the resulting mold then must be cured.
  • the molds should be heated during the curing cycle to a temperature which is from -75% of the temperature at which the metal to be cast will melt. This converts the metal oxide-forming binder to a metal oxide binder and removes the final vestiges of volatiles from the molds, and provides the molds with a high temperature bond without destroying or distorting the mold.
  • a high temperature binder i.e. a refractory metallic oxide binder
  • the purpose of using a high temperature binder, i.e. a refractory metallic oxide binder, in the molds of the invention is to bond the mold material without the necessity of sintering it, thereby preserving the precise dimensions of the mold.
  • the mold then is cooled and filled with the molten casting metal by the usual techniques.
  • the casting metal is poured, allowed to solidify and cool, the mold removed, and the resulting casting finished in the usual manner.
  • refractory and reactive metals economically may be precision cast in the foregoing manner.
  • Such metals include chromium, Columbium, hafnium, molybdenum, plutonium, tantalum, thorium, titanium, uranium, vanadium, zirconium, the platinum group metals, the rare earth group metals and yttrium.
  • the face coating of the mold material comprises an appropriate facing metal. Illustrative are the following:
  • Casting metal Mold material Chromium Molybdenum or tungsten Columbium Tungsten or tantalum Hafnium Tantalum or tungsten Molybdenum Tungsten or tantalum Plutonium Columbium, molybdenum, tantalum, or tungsten Tantalum Tungsten Thorium Columbium or tungsten Titanium Columbium, tantalum or tungsten Uranium Tantalum, or tungsten Vanadium Columbium, molybdenum, or
  • EXAMPLE 1 The example illustrates a tungsten integrally faced investment shell mold, bonded with zirconium dioxide and backed up with tungsten bonded with zirconium dioxide.
  • the clip coat slurry formulations were as follows:
  • the molds first are dried in either air or in non-oxidizing atmospheres at from l50650 F. for an additional 1 to 6 hours, and then at 250650 F. for l-6 hours. After the drying cycle, the molds are placed in a furnace provided with a non-oxidizing atmosphere of a selected gas which is non-reactive toward the metal present in the face coating or adjacent face coating of the molds. Such gases are, for example, hydrogen, the inert gases, and dissociated ammonia. A vacuum furnace also may be used. The molds are heated in the furnace to a predetermined peak temperature of from 1500 to 5000 F. at a rate of 50200 F. per hour. They are maintained at peak temperature for from 1-12 hours.
  • This example illustrates a molybdenum integrally faced investment shell mold bonded with zirconium dioxide and backed up with molybdenum and tungsten bonded with zirconium dioxide.
  • the mold was prepared in the manner described above, alternately dipping the pattern in the dip coats and stuccoing with finely divided molybdenum with or withconium dioxide, and backed up with a silicon dioxide and aluminumsilicate bonded with silicon dioxide.
  • the dip coat slurry formulations were as follows:
  • DIPCOAT SLURRY FORMULATION (WEIGHT PERCENT) Facing Adjacent facing Back-up slurry slurries slurrics Material 1 2 3 4 5-13 Hydrolyzed zirconium tetraethoxide ethylate Zl'Oz), in ethanol 15. 3 15.0 14. 5 14. 0 0 Tungsten powder (minus 325 mesh) 82. 9 70.0 80.0 50. 0 0 Thorium dioxide powder (minus 325 mesh) 1. 8 1. 8 1. 8 1. 8 0 Thorium dioxide grain (minus plus 270 mesh). 0 13. 2 23. 7 34.
  • EXAMPLE 3 This example illustrates a columbium (niobium) integrally faced investment shell mould bonded with zirconium dioxide, and backed up with columbium, molybdenum and zirconium dioxide bonded with zirconium dioxide.
  • the dip coat formulations were as follows:
  • the alternate dip coat and stucco coats were built up in the manner above described.
  • the stuccoing material for the first three dip coats was 100 +200 mesh thorium oxide grain, and the material applied to the third and successive dipcoats was +100 mesh calcined aluminum silicate grain. A total of 13 coatings was applied. As before, the pattern was removed from the mold after which the mold was dried and fired, whereupon it was ready for use.
  • a mold for casting molten reactive and refractory metals comprising:
  • a facing portion comprising finely divided particles of at least one member of the group consisting of metallic columbium, molybdenum, tantalum and DIPCOAI SLURRY FORMULATION (WEIGHT PERCENT) Facing Adjacent facing Back-up slurry slurries slurries Material 1 2 3 4 5-13 Trioxodi zirconium hydroxychloride (20% ZrO in solution), in water 23. 7 27. 5 18. 3 16. 1 0 Diacetatozironie acid (22% ZrO in solution),
  • the pattern was successively dip coated, drained, stuccoed, dried to form the final mold. Thirteen coatings in all were applied.
  • the stuccoing material employed to the first three dip coats was +200 mesh tantalum grain while that applied to the third and successive dip coats was 10 +50 mesh zircon agregate. In all instances, the coatings were dried below a moisture content of 20% by volume before the next coating was applied.
  • the mold was dried at 250 F. for 4 hours and then heated in vacuo at the rate of 50-200" F. per hour up to 2300 F., at which temperature it was held for 5 hours. After cooling in vacuo, the mold was ready for use.
  • EXAMPLE 4 This example illustrates tungsten and thorium dioxide integrally faced investment shell molds bonded with zirtungsten and a refractory metallic oxide binder therefor, and
  • a back up portion comprising finely divided particles of ceramic shell mold back-up material and a refractory metallic oxide binder therefor.
  • the refractory metallic oxide binder comprises the oxide of a metal of the class consisting of the Group III and Group IV metals of the perodic chart, the metallic oxide having a free energy of formation at 1000 K. greater than 69 kilocalories per gram atom of oxygen in the oxide.
  • the facing portion includes from 0.1% to 25.0% by weight of refractory metal oxide facing coating material comprising at least one member of the group consisting of zirconia, thoria, hafnium, yttria and gadolinia.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

.NOV. 3, .1970 R, BROWN ET AL 3,537,949 INVESTMENT SHELL MOLDS FOR THE HIGH INTEGRITY PRECISION CASTING OF REACTIVE AND REFRACTORY METALS, AND METHODS FOR THEIR MANUFACTURE Original Filed Oct. 24, 1966 DISPOSABLE DISPOSABLE PATTERN PATTERN CL us'TERi I DIP COA T I N v STUCCO N I *fi 0W NE [EA I fgfis" DIP COAT N I I lQ/fi: DRAIN Lu E? k ,i s TUCCO ,fi/W 2 lgig I y DRY M I fififg yi PEMovE PATTEPN M FIRE Pow? METAL COOL I REMOVE MOLD Fig l Haber-l" H. Brown Clifford HBroWn BY INVENTORS United States Patent US. Cl. 161225 13 Claims ABSTRACT OF THE DISCLOSURE A mold for casting molten reactive and refractory metals comprising a facing portion comprising fine particles of columbium, molybdenum, tantalum or tungsten bound by a refractory oxide and bound to a back-up portion of refractory metallic oxide bound ceramic particles. The metallic oxide may be oxides of zirconium, thorium, hafnium, yttrium or gadolinium.
This is a division of the patent application of Robert A. Brown and Cliflord A. Brown, Ser. No. 589,022, filed Oct. 24, 1966, now US. Pat. No. 3,422,880, for Method for Making Investment Shell Molds for the High Integrity Precision Casting of Reactive and Refractory Metals.
This invention relates to methods for making investment shell molds for the high integrity precision casting of reactive and refractory metals.
Although there are many types of metal casting molds, none of them is applicable to the high integrity precision casting of such metals as chromium, hafnium, molybdenum, plutonium, niobium, rhenium, thorium, uranium, tantalum, titanium, vanadium, zirconium, and the rare earth metals, all of which are highly reactive chemically in the molten state.
Present day molds for the casting of such metals comprise graphite, carbon, and ceramic material cemented with various binders and prepared by various techniques. Such molds are unsatisfactory for the casting of the refractory and reactive metals for the reason that when they are used one or more of the following undesirable results ensues:
(1) Gross carbonization of the casting surface.
(2) Gross oxygen, hydrogen, or nitrogen contamina tion in the casting.
(3) Formation of intermetallic inclusions or layers in the casting.
(4) Formation of gas pits, holes, and porosity in the casting.
(5) Embedded non-metallic inclusions or layers in the casting.
(6) Formation of severe cold laps and misrun on the casting surface.
(7) Formation of cracks and tears in the casting.
(8) Formation of a rough casting surface.
(9) Embrittlement or increased hardness of the cast metal.
(10) Production of non-precision castings.
It is the essence of the present invention that the foregoing deficiences of the prior art casting molds and methods may be overcome by the provision of novel in- 3,537,949 Patented Nov. 3, 1970 ice vestment shell molds having a constitution, and prepared by a method, illustrated in the drawings, wherein:
FIG. 1 is a flow plan illustrating the basic investment shell molding process, a modification of which is the subject matter of the present invention; and
FIG. 2 is a transverse sectional view through a mold of the class prepared by the instant invention.
As is illustrated in the flow plan of FIG. 1, the sequence of operations employed in the manufacture of intricate castings by the investment shell casting technique involves first providing disposable patterns made from waxes, plastics, frozen mercury, or other materials which readily may be removed from the mold. The investment cycle consists of making the patterns by injecting the pattern material into a die, and gating the patterns to a central sprue to form a pattern cluster.
The pattern cluster then is dipped into an agitated slurry of the molding material, drained, stuccoed while still wet with particulate mold material in a fluidized bed or by sprinkling, and dried, preferably to a solvent content of less than 20% by volume. The dipping, draining, stuccoing and drying sequence is repeated a desired number of times, indicated by N times in the flow diagram, to produce a laminated investment shell mold of the desired thickness and strength.
Thereafter the disposable pattern is removed by methods such as melting or solvent treatment. The mold is cured by being fired at a temperature sufficiently elevated to remove volatiles and provide adequate bonding. The molds then are heated, and filled with molten metal by gravity, pressure, vacuum, or centrifugal force. After cooling, the castings are removed from the sprue and finished in the usual manner.
We have discovered that the foregoing procedure may be modified and adapted to the production of molds suitable for use in the precision casting of reactive and refractory metals by including as an essential component of at least the face coating of the molds, a single one or a mixture of finely divided, metallic, columbium, molybdenum, tantalum or tungsten. By the simple expedient of using these metals, the above noted deficiences of the prior art molds and mold making methods are overcome with the result that there are provided for the first time practical efficient molds for the high integrity, precision casting of reactive and refractory metals.
The investment shell molds of the present invention comprise a facing portion including a major proportion, at least 50% by weight, of finely divided particles of metallic columbium, molybdenum, tantalum or tungsten, all bonded together with a suitable refractory metallic oxide binder, and a back-up reinforcing portion comprising finely divided particles of shell mold back-up material including ceramic mold materials and refractory metal oxide binders, all the mold components being integrally bonded together to form a strong structure having an inner face portion comprised predominantly of one of the indicated metals.
Generally stated, the method of making the herein described investment shell molds for the high integrity precision casting of reactive and refractory metals comprises dip-coating a disposable pattern in a liquid suspension of columbium, molybdenum, tantalum and/or tungsten and a binder therefor comprising a refractory metal oxide and/ or a refractory metal compound pyrolyzable to a refractory metal oxide. The dip coated pattern is stuccoed with at least one of the same finely divided metals, after which it is dried.
The foregoing sequence of dip coating, stuccoing and drying is repeated until a shell mold of the desired thickness has been built up about the disposable pattern. The pattern then is removed from the mold, after which the mold is fired at a temperature which is below the sintering temperature of any of its constituents. The firing temperature is predetermined to convert the content of any refractory metal compounds which may be present to refractory metal oxides and also, through the agency of the refractory metal oxides present initially or thus generated, to bond together the finely divided metal particles and mold back-up material particles to form the finished mold.
Considering the foregoing general statements of the invention in greater detail:
As indicated above, the herein described investment shell mold is made by repeatedly dip coating, stuccoing and drying a disposable pattern, indicated symbolically at 10 in FIG. 2, to invest the pattern with mold-forming coatings sufiicient in number to build up a finished mold of the desired strength. The coatings thus supplied are in general of three categories and are so illustrated in FIG. 2. The first coatings are termed herein the facing coatings and comprise the dip coating and stucco coating 12, 14 making up the inner face of the mold, in direct contact with the molten metal poured therein. A single dip coat-stucco coat combination normally comprise the face coating.
The second category of coatings, termed herein the adjacent facing coatings, comprise alternate dip coats 16 and stucco coats 18 applied in sequence on top of the face coat. There may be any desired or necessary numbers of such coats, indicated by n in FIG. 2.
The third class of coatings applied in making the herein described molds are those which during the use of the molds do not normally come in direct contact with the molten casting metal or with the vapor produced therefrom. These are termed herein back-up coatings and comprise alternate dip coats and stucco coats 20, 22 respectively applied in a sufiicient number, n of FIG. 2, to lend the required strength to the mold. Thus there may normally be a total of from 4 to 12 or more adjacent facing and back-up coatings applied to the pattern in building up the mold, the total number being indicated at N in FIG. 2.
Each of these coatings has a characteristic composition as required to fulfill the general purpose of the invention, i.e. the provision of an investment shell mold for the high integrity precision casting of reactive and refractory metals.
Thus the preferred components of the integral facing, adjacent facing and back-up coating systems may be selected from the following:
INTEGRAL FACING AND ADJACENT FACING COATING SYSTEMS (A) Metal mold materials and refractory metal oxide binders Mold materials:
(1) Columbium (3) Tungsten (2) Molybdenum. (4) Tantalum Binders:
(1) Colloidal gadolinia (2) Colloidal yttria (3) Colloidal thoria (4) Colloidal zirconia (5) Colloidal hafnia (B) Metal mold materials and refractory metal oxide forming binders Mold materials:
(1) Columbium (2) Molybdenum (3) Tantalum (4) Tungsten Binders:
(1) Metal-organics:
(a) Thorium chloroalkoxides (b) Zirconium chloroalkoxides (c) Hafnium chloroalkoxides (d) Zirconium alkoxides (e) Thorium alkoxides (f) Hafnium alkoxides Basic oxyhalogenides:
(a) Hafnium (b) Zirconium Polymeric carboxylates:
(a) Hafnium (b) Zirconium (C) Metal-refractory metal oxide mold materials and refractory metal oxide binders Mold materials:
( 1) Columbium (2) Molybdenum (3) Tantalum (4) Tungsten with (5) Gadolinia (6) Hafnia (7) Thoria (8) Yttria (9) Zirconia Binders:
(1) Colloidal gadolinia (2) Colloidal yttria (3) Colloidal thoria (4) Colloidal zirconia (5) Colloidal hafnia (D) Metal refractory metal oxide mold materials and refractory metal oxide forming binders Mold materials:
( 1) Columbium (2) Molybdenum (3) Tantalum (4) Tungsten with (5) Gadolinia (6) Hafnia (7) Thoria (8) Yttria (9) Zirconia BACK-UP COATING ISYSTEMS (1) The systems listed under Integral Pacing and Adjacent Facing Coating Systems.
(2) Ceramic-Ceramic Systems.
(A) Ceramic mold materials and refractory metal oxide binders Mold materials:
(1) Alumina (2) Aluminum silicates (3) Forsterite (4) Olivine (5) Silica (6) Thoria (7) Zircon (8) Zirconia (9) Gadolinia (10) Hafnia (11) Yttria Binders:
(1) Colloidal alumina (2) Colloidal silica (3) Colloidal gadolinia (4) Colloidal yttria (5) Colloidal thoria (6) Colloidal Zirconia (7) Colloidal hafnia (B) Ceramic mold materials and refractory metal oxide forming binders Mold materials:
(1) Alumina (2) Aluminum silicates (3) Forsterite (4) Olivine (5) Silica (6) Thoria (7) Zircon (8) Zirconia (9) Gadolinia 10) Yttria (11) Hafnia Binders:
(1) Metal-organics:
(a) Hafnium chloroalkoxides (b) Titanium chloroalkoxides (c) Thorium chloroalkoxides (d) Zirconium chloroalkoxides (c) Hafnium alkoxides (f) Silicon alkoxides (g) Thorium alkoxides (h) Titanium alkoxides (i) Zirconium alkoxides (2) Basic oxyhalogemides:
(a) Hafnium (b) Zirconium (3) Polymeric carboxylates:
(a) Hafnium (b) Zirconium (4) Ammonium silicate The foregoing materials may be employed singly or in combination with each other and with other materials falling within the scope of the invention.
The use of columbium, molybdenum, tantalum and tungsten, which are the primary constituents of the foregoing systems, is directly responsible for the production of precision castings in the molds because of their very high melting points, their very low vapor pressures, their lack of a normal tendency to form casting-damaging intermetallic compounds with the various reactive and refractory casting metals, and their freedom from a tendency to react with the reactive and refractory metals to form gases which might contaminate the castings.
The foregoing metals may be used in the form of the pure metals, their alloys or their unalloyed mixtures, in the dip coat and stuccoing compositions, they are employed in finely divided, graded condition having a particle size, for example, in the range of from below 400 mesh to 5 mesh U.S. Sieve Series, i.e. having :1 particles size of from 0.1 to 4000 microns.
In addition, Zirconia, thoria, hafnia, yttria, and gadolinia may be used along with the columbium, molybdenum, tantalum or tungsten as mold materials in the face coating systems, as long as these oxide mold materials are not used in a quantity sufficient to exceed 25 weight percent of the facing portion. Their use as additives is desirable in some instances to reduces the cost of the molds, to alter the thermal conductivity of the molds and to adjust the expansion characteristics thereof. In addition, in some instances they are beneficial in reducing or eliminating cold shut and/or misrun defects.
The binders for the foregoing facing and integral facing coatings in general comprise the refractory metal oxide binders, or the refractory metal oxide-forming binders used in the liquid state, in the dissolved condition, or as solids suspended or dispersed in aqueous or other liquid media. In general those metal oxide binders are preferred which are oxides of the Groups III and IV metals in the Periodic Chart, which have a free energy of formation at 1000 K. greater than 69 kilocalories per gram atom of oxygen in the oxide, which bond upon pyrollization, and which will provide a high temperature bond for the columbium, molybdenum, tantalum or tungsten mold material contained in the integral facing and adjacent facing systems.
Preferred binders of this class are the oxides, or compounds which forms oxides, of zirconium, thorium, hafnium, yttrium or gadolinium. Illustrative of compounds which form such oxides upon pyrolysis, are the polymeric carboxylates such as diacetato zirconic acid (zirconium acetate), the basic oxyhalogemides the metalorgamic compounds, particularly the alkoxides, the alkoxide alcoholates, the oxide alkoxide alcoholates, the polymeric alkoxides, the oxide alkoxides, hydrolyzed alkoxides, halogenated alkoxides, and hydrolyzed halogenated alkoxides of zirconium, thorium, hafnium, yttrium, and gadolinium. Upon pyrolysis the foregoing are converted to metal oxide binders which mature and cure below the sintering temperature of the metal component of the facing and adjacent facing systems, and thus normally ideally serve the purposes of the invention.
In addition to the mold materials, binders, and slurry suspension or dispersion media of the foregoing dip coat systems, there may be employed in suitable quantity conventional additives such as suspension agents green strength promoters, plasticizers, wetting agents, antifoaming agents, deflocculants and coating driers.
In use, the dipcoat components employed in the facing, adjacent facing and back-up coatings are applied in the form of aqueous or organic solvent slurries having, for best results the following viscosities:
DIPCOAI SLURRY VISCOSITIES (Centistokes) Dipcoat slurry No. Preferred General range The pattern first is treated with a suitable solvent as required to remove any die release agent which may be on its surface. It then is immersed in the agitated first dip coat slurry and rotated to insure complete coverage. After a dwell period of from 10 to 60 seconds it is withdrawn and drained for 1560 seconds.
The wet pattern assembly then is stuccoed with the finely divided metal, for example, +200 mesh columbium, molybdenum, tantalum and/ or tungsten grain. The dip coated and stuccoed pattern assembly then is air dried until the coating is below, for example, a 20% by volume solvent content.
The dried assembly then is immersed in the agitated second dip coat slurry for -60 seconds, drained for 60 seconds, stuccoed with 100 +200 mesh metallic columbium, molybdenum, tantalum, or tungsten grain, and air dried to a solvent content below about by volume.
This assembly then is treated with the third and subsequent dip coat slurries, drained, stuccoed and dried in similar manner until a mold of the desired thickness has been built up. In all coatings the previous coating should dry preferably to a solvent content of from 2 to 20% by volume before the subsequent coating is applied in order to prevent the previous coating from dissolving in the subsequent dip coating slurry. This may be required from minutes to 6 hours drying time, depending on atmospheric temperature and humidity and pattern complexity. Vacuum drying may be employed to accelerate the drying procedure if desired, in particular instances.
Although it is desirable that each coating be dried below a 20% by volume solvent content before the subsequent coating is applied, for the reason specified above, it also is desirable that the drying be discontinued before the solvent content goes below a level of about 2% by volume. This results in the production of a resilient coating which expands and contracts with thermal changes and avoids significant cracking or spalling. If the solvent content falls below 2% the coating may become brittle and crack.
As the number of dip coats increases there is an increase in proportion of coarser particles of mold material in each dip coat slurry up to a predetermined number of dip coat slurries, for example, five. Thus the first dip coat slurry may contain only mold material which is minus 325 mesh while the 5th dip coat slurry may contain appreciable amounts of +100 +200 mesh and -20 +50 mesh mold materials. This particle size increase toward the outer coating is also reflected in the stuccoing material, which may be -100 +200 mesh for the first two coatings and 20 +50 mesh for the remaining coatings. The increase in mold material and stucco material particle sizes from the mold face to the outer coatings of the mold produces a very stable investment shell mold capable of producing very smooth surfaced castings, yet permits the venting of any generated gases during casting. It also reduces the possibility of the formation of hot tears in the casting due to the excellent collapsibility of the mold.
Coatings are applied until a mold of the desired strength and permeability is fabricated.
Next the assembly is heated to fiuidize and remove the disposable pattern from the shell mold with which the pattern has been invested. The resulting mold then must be cured.
As a general rule, the molds should be heated during the curing cycle to a temperature which is from -75% of the temperature at which the metal to be cast will melt. This converts the metal oxide-forming binder to a metal oxide binder and removes the final vestiges of volatiles from the molds, and provides the molds with a high temperature bond without destroying or distorting the mold.
It is to be emphasized in conjunction with the above that the purpose of using a high temperature binder, i.e. a refractory metallic oxide binder, in the molds of the invention is to bond the mold material without the necessity of sintering it, thereby preserving the precise dimensions of the mold.
The mold then is cooled and filled with the molten casting metal by the usual techniques. The casting metal is poured, allowed to solidify and cool, the mold removed, and the resulting casting finished in the usual manner.
A great variety of refractory and reactive metals economically may be precision cast in the foregoing manner. Such metals include chromium, Columbium, hafnium, molybdenum, plutonium, tantalum, thorium, titanium, uranium, vanadium, zirconium, the platinum group metals, the rare earth group metals and yttrium. In casting these various metals, the face coating of the mold material comprises an appropriate facing metal. Illustrative are the following:
Casting metal: Mold material Chromium Molybdenum or tungsten Columbium Tungsten or tantalum Hafnium Tantalum or tungsten Molybdenum Tungsten or tantalum Plutonium Columbium, molybdenum, tantalum, or tungsten Tantalum Tungsten Thorium Columbium or tungsten Titanium Columbium, tantalum or tungsten Uranium Tantalum, or tungsten Vanadium Columbium, molybdenum, or
tungsten Zirconium Columbium or tungsten The molds of the present invention and their method of manufacture are further illustrated in the following examples:
EXAMPLE 1 The example illustrates a tungsten integrally faced investment shell mold, bonded with zirconium dioxide and backed up with tungsten bonded with zirconium dioxide.
The clip coat slurry formulations were as follows:
DIPCOAT SLURRY FORMULATION (WEIGHT PERCENT) To effectuate the curing operation and to remove most of the volatiles, the molds first are dried in either air or in non-oxidizing atmospheres at from l50650 F. for an additional 1 to 6 hours, and then at 250650 F. for l-6 hours. After the drying cycle, the molds are placed in a furnace provided with a non-oxidizing atmosphere of a selected gas which is non-reactive toward the metal present in the face coating or adjacent face coating of the molds. Such gases are, for example, hydrogen, the inert gases, and dissociated ammonia. A vacuum furnace also may be used. The molds are heated in the furnace to a predetermined peak temperature of from 1500 to 5000 F. at a rate of 50200 F. per hour. They are maintained at peak temperature for from 1-12 hours.
This example illustrates a molybdenum integrally faced investment shell mold bonded with zirconium dioxide and backed up with molybdenum and tungsten bonded with zirconium dioxide.
DIPCOAT SLURRY FORMULATION (WEIGHT PERCENT) Facing Adjacent facing Back-up slurry slurries slurries Material 1 2 3 4 5-9 Colloidal zirconia (22-23% ZrO; in solution) (in Water) 26. 7 25. 5 23. 17. 2 13. 8 Molybdenum powder (minus 325 mesh) 73. 3 66. 1 59. 44. 5 33. 2 Molybdenum grain (minus 100 plus 200 mesh) 0 8. 4 17. 5 13. 1 9. 8 Tungsten grain (minus 20 plus 50 mesh) 0 0 0 25. 2 44. 2
The mold was prepared in the manner described above, alternately dipping the pattern in the dip coats and stuccoing with finely divided molybdenum with or withconium dioxide, and backed up with a silicon dioxide and aluminumsilicate bonded with silicon dioxide. The dip coat slurry formulations were as follows:
DIPCOAT SLURRY FORMULATION (WEIGHT PERCENT) Facing Adjacent facing Back-up slurry slurries slurrics Material 1 2 3 4 5-13 Hydrolyzed zirconium tetraethoxide ethylate Zl'Oz), in ethanol 15. 3 15.0 14. 5 14. 0 0 Tungsten powder (minus 325 mesh) 82. 9 70.0 80.0 50. 0 0 Thorium dioxide powder (minus 325 mesh) 1. 8 1. 8 1. 8 1. 8 0 Thorium dioxide grain (minus plus 270 mesh). 0 13. 2 23. 7 34. 2 0 Hydrolyzed tetraethylorthosilicate solution (15% S102), in ethanol 0 0 0 0 21. 0 Silicon dioxide grain (minus 100 plus 200 mesh) 0 0 0 0 5. 0 Silicon dioxide powder (minus 325 mesh) 0 0 0 0 48. 0 Aluminum silicate grain (minus 20 plus 50 mesh) 0 0 0 0 26. 0
EXAMPLE 3 This example illustrates a columbium (niobium) integrally faced investment shell mould bonded with zirconium dioxide, and backed up with columbium, molybdenum and zirconium dioxide bonded with zirconium dioxide. The dip coat formulations were as follows:
In this instance the alternate dip coat and stucco coats were built up in the manner above described. The stuccoing material for the first three dip coats was 100 +200 mesh thorium oxide grain, and the material applied to the third and successive dipcoats was +100 mesh calcined aluminum silicate grain. A total of 13 coatings was applied. As before, the pattern was removed from the mold after which the mold was dried and fired, whereupon it was ready for use.
Having thus described our invention in preferred embodiments we claim:
1. A mold for casting molten reactive and refractory metals comprising:
(a) a facing portion comprising finely divided particles of at least one member of the group consisting of metallic columbium, molybdenum, tantalum and DIPCOAI SLURRY FORMULATION (WEIGHT PERCENT) Facing Adjacent facing Back-up slurry slurries slurries Material 1 2 3 4 5-13 Trioxodi zirconium hydroxychloride (20% ZrO in solution), in water 23. 7 27. 5 18. 3 16. 1 0 Diacetatozironie acid (22% ZrO in solution),
in water 0 0 0 12. 2 Columbium powder (minus 325 mesh) 76. 3 72. 5 48. 2 32. 6 0 Molybdenum grain (minus 100 plus 200 mesh)... 0 0 33. 5 32. 4 0 Zirconia grain (minus 10 plus 30 mesh) 0 0 0 8. 9 32. 1 Zirconia flour (minus 325 mesh) 0 0 0 0 29. 5 Zirconia grain (minus 80 mesh). 0 0 0 0 26. 2
In the manner heretofore described, the pattern was successively dip coated, drained, stuccoed, dried to form the final mold. Thirteen coatings in all were applied. The stuccoing material employed to the first three dip coats was +200 mesh tantalum grain while that applied to the third and successive dip coats was 10 +50 mesh zircon agregate. In all instances, the coatings were dried below a moisture content of 20% by volume before the next coating was applied.
After removal of the pattern, the mold was dried at 250 F. for 4 hours and then heated in vacuo at the rate of 50-200" F. per hour up to 2300 F., at which temperature it was held for 5 hours. After cooling in vacuo, the mold was ready for use.
EXAMPLE 4 This example illustrates tungsten and thorium dioxide integrally faced investment shell molds bonded with zirtungsten and a refractory metallic oxide binder therefor, and
(b) a back up portion comprising finely divided particles of ceramic shell mold back-up material and a refractory metallic oxide binder therefor.
2. The mold of claim 1 wherein the refractory metallic oxide binder comprises the oxide of a metal of the class consisting of the Group III and Group IV metals of the perodic chart, the metallic oxide having a free energy of formation at 1000 K. greater than 69 kilocalories per gram atom of oxygen in the oxide.
3. The mold of claim 1 wherein the binder content of the facing portion and back-up portion comprises from 0.1% to 25.0% by weight of the mold composition.
4. The mold of claim 1 wherein the facing portion includes from 0.1% to 25.0% by weight of refractory metal oxide facing coating material comprising at least one member of the group consisting of zirconia, thoria, hafnium, yttria and gadolinia.
5. The mold of claim 1 wherein the facing portion comprises finely divided particles of metallic columbium.
6. The mold of claim 1 wherein the facing comprises finely divided particles of metallic denum.
7. The mold of claim 1 wherein the facing portion comprises finely divided particles of metallic tantalum.
8. The mold of claim 1 wherein the facing portion comprises finely divided particles of metallic tungsten.
9. The mold of claim 1 wherein the refractory metallic oxide binder comprises zirconium oxide.
10. The mold of claim 1 wherein the refractory metallic oxide binder comprises thorium oxide.
11. The mold of claim 1 wherein the refractory metallic oxide binder comprises hafnium oxide.
12. The mold of claim 1 wherein the refractory metallicpxide binder comprises yttrium oxide.
13. The mold of claim 1 wherein the refractory metallic oxide binder comprises gandolinium oxide.
portion molyb- 1 2 References Cited UNITED STATES PATENTS OTHER REFERENCES Lang, R. M.: I. G. Kura and I. H. Jackson, Evaluation of Mold Materials for Titanium Castings, Transactions of the American Foundrymens Society, vol. 61, May 4-8, 1953 pp. 540-545.
JOHN T. GOOLKASIAN, Primary Examiner C. B. COSBY, Assistant Examiner US. Cl. X.R.
US766347*A 1966-10-24 1968-08-07 Investment shell molds for the high integrity precision casting of reactive and refractory metals,and methods for their manufacture Expired - Lifetime US3537949A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58902266A 1966-10-24 1966-10-24
US76634768A 1968-08-07 1968-08-07

Publications (1)

Publication Number Publication Date
US3537949A true US3537949A (en) 1970-11-03

Family

ID=27080427

Family Applications (1)

Application Number Title Priority Date Filing Date
US766347*A Expired - Lifetime US3537949A (en) 1966-10-24 1968-08-07 Investment shell molds for the high integrity precision casting of reactive and refractory metals,and methods for their manufacture

Country Status (2)

Country Link
US (1) US3537949A (en)
BE (1) BE777378Q (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854961A (en) * 1970-12-30 1974-12-17 Stauffer Chemical Co Preparation of high temperature shell molds
US3892579A (en) * 1973-03-22 1975-07-01 American Dental Ass Adhesive refractory protective composition for investment casting
US4043377A (en) * 1976-08-20 1977-08-23 The United States Of America As Represented By The Secretary Of The Air Force Method for casting metal alloys
US4057433A (en) * 1974-03-05 1977-11-08 Rem Metals Corporation Oxyfluoride-type mold for casting molten reactive and refractory metals
US4059453A (en) * 1973-10-03 1977-11-22 Dynamit Nobel Ag Method of making molds for the casting of metals
US4078029A (en) * 1976-09-23 1978-03-07 Nissan Chemical Industries, Ltd. Process for preparing mold
US4135030A (en) * 1977-12-23 1979-01-16 United Technologies Corporation Tungsten impregnated casting mold
US4139393A (en) * 1973-10-15 1979-02-13 Crucible Inc. Ceramic core for use in making molds and dies
US4159204A (en) * 1972-02-01 1979-06-26 Dynamit Nobel Aktiengesellschaft Process for the manufacture of refractory ceramic products
US4211567A (en) * 1972-02-01 1980-07-08 Dynamit Nobel Aktiengesellschaft Process for the manufacture of refractory ceramic products
DE3015639A1 (en) * 1979-04-23 1980-11-06 United Technologies Corp MATERIAL AND MATERIAL RESISTANT TO REFLECTABLE MELT-LIQUID METAL AND METHOD FOR IMPROVING THIS RESISTANCE
US4450889A (en) * 1982-08-20 1984-05-29 United Technologies Corporation Mold having a helix for casting single crystal articles
US4504591A (en) * 1981-03-23 1985-03-12 Remet Corporation Refractory material
EP0204674A2 (en) * 1985-06-06 1986-12-10 Remet Corporation Casting of reactive metals into ceramic molds
US4703806A (en) * 1986-07-11 1987-11-03 Howmet Turbine Components Corporation Ceramic shell mold facecoat and core coating systems for investment casting of reactive metals
US4830655A (en) * 1983-06-23 1989-05-16 Ernst Leitz Wetzlar Gmbh High temperature-resistant material for devices used for forming glass optical elements with high surface quality
US4966225A (en) * 1988-06-13 1990-10-30 Howmet Corporation Ceramic shell mold for investment casting and method of making the same
US5630465A (en) * 1987-01-28 1997-05-20 Remet Corporation Ceramic shell molds and cores for casting of reactive metals
US5975188A (en) * 1997-10-30 1999-11-02 Howmet Research Corporation Method of casting with improved detectability of subsurface inclusions
US5977007A (en) * 1997-10-30 1999-11-02 Howmet Research Corporation Erbia-bearing core
US6619368B1 (en) 1997-12-15 2003-09-16 Pcc Structurals, Inc. Method for imaging inclusions in investment castings
US6920910B2 (en) * 2001-06-13 2005-07-26 Siemens Aktiengesellschaft Casting device, process for producing a casting device and method of using the casting device
US20070044935A1 (en) * 2005-08-30 2007-03-01 United Technologies Corporation Method for casting cooling holes
US20110052180A1 (en) * 2009-08-31 2011-03-03 Hon Hai Precision Industry Co., Ltd. Light blocking plate, camera module having same, and method for making same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1347481A (en) * 1917-09-24 1920-07-20 Aluminum Castings Company Process of making castings
US2510735A (en) * 1946-04-10 1950-06-06 United Aircraft Corp Turbine element
US2806271A (en) * 1956-04-05 1957-09-17 Misco Prec Casting Company Process of casting titanium and related metal and alloys
US2887392A (en) * 1956-08-27 1959-05-19 Lolley Barbara Metal containing patterns and method of producing same
US3259948A (en) * 1962-04-09 1966-07-12 Howe Sound Co Making fine grained castings
US3279028A (en) * 1964-05-01 1966-10-18 Rca Corp Method of manufacturing thermionic energy converter tube
US3340026A (en) * 1964-12-03 1967-09-05 Bendix Corp Composite article of bonded refractory metal and a ceramic

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1347481A (en) * 1917-09-24 1920-07-20 Aluminum Castings Company Process of making castings
US2510735A (en) * 1946-04-10 1950-06-06 United Aircraft Corp Turbine element
US2806271A (en) * 1956-04-05 1957-09-17 Misco Prec Casting Company Process of casting titanium and related metal and alloys
US2887392A (en) * 1956-08-27 1959-05-19 Lolley Barbara Metal containing patterns and method of producing same
US3259948A (en) * 1962-04-09 1966-07-12 Howe Sound Co Making fine grained castings
US3279028A (en) * 1964-05-01 1966-10-18 Rca Corp Method of manufacturing thermionic energy converter tube
US3340026A (en) * 1964-12-03 1967-09-05 Bendix Corp Composite article of bonded refractory metal and a ceramic

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854961A (en) * 1970-12-30 1974-12-17 Stauffer Chemical Co Preparation of high temperature shell molds
US4159204A (en) * 1972-02-01 1979-06-26 Dynamit Nobel Aktiengesellschaft Process for the manufacture of refractory ceramic products
US4211567A (en) * 1972-02-01 1980-07-08 Dynamit Nobel Aktiengesellschaft Process for the manufacture of refractory ceramic products
US3892579A (en) * 1973-03-22 1975-07-01 American Dental Ass Adhesive refractory protective composition for investment casting
US4059453A (en) * 1973-10-03 1977-11-22 Dynamit Nobel Ag Method of making molds for the casting of metals
US4139393A (en) * 1973-10-15 1979-02-13 Crucible Inc. Ceramic core for use in making molds and dies
US4063954A (en) * 1974-03-05 1977-12-20 Rem Metals Corporation Fluoride-type with heat sink for casting molten reactive and refractory metals
US4057433A (en) * 1974-03-05 1977-11-08 Rem Metals Corporation Oxyfluoride-type mold for casting molten reactive and refractory metals
US4043377A (en) * 1976-08-20 1977-08-23 The United States Of America As Represented By The Secretary Of The Air Force Method for casting metal alloys
US4078029A (en) * 1976-09-23 1978-03-07 Nissan Chemical Industries, Ltd. Process for preparing mold
US4135030A (en) * 1977-12-23 1979-01-16 United Technologies Corporation Tungsten impregnated casting mold
DE3015639A1 (en) * 1979-04-23 1980-11-06 United Technologies Corp MATERIAL AND MATERIAL RESISTANT TO REFLECTABLE MELT-LIQUID METAL AND METHOD FOR IMPROVING THIS RESISTANCE
US4504591A (en) * 1981-03-23 1985-03-12 Remet Corporation Refractory material
US4450889A (en) * 1982-08-20 1984-05-29 United Technologies Corporation Mold having a helix for casting single crystal articles
US4830655A (en) * 1983-06-23 1989-05-16 Ernst Leitz Wetzlar Gmbh High temperature-resistant material for devices used for forming glass optical elements with high surface quality
EP0204674A2 (en) * 1985-06-06 1986-12-10 Remet Corporation Casting of reactive metals into ceramic molds
EP0204674A3 (en) * 1985-06-06 1987-08-05 Remet Corporation Casting of reactive metals into ceramic molds
US4740246A (en) * 1985-06-06 1988-04-26 Remet Corporation Casting of reactive metals into ceramic molds
US4787439A (en) * 1985-06-06 1988-11-29 Remet Corporation Casting of reactive metals into ceramic molds
US4703806A (en) * 1986-07-11 1987-11-03 Howmet Turbine Components Corporation Ceramic shell mold facecoat and core coating systems for investment casting of reactive metals
US5630465A (en) * 1987-01-28 1997-05-20 Remet Corporation Ceramic shell molds and cores for casting of reactive metals
US5712435A (en) * 1987-01-28 1998-01-27 Remet Corporation Ceramic cores for casting of reactive metals
US5738819A (en) * 1987-01-28 1998-04-14 Remet Corporation Method for making ceramic shell molds and cores
US5944088A (en) * 1987-01-28 1999-08-31 Remet Corporation Ceramic shell molds and cores for casting of reactive metals
US4966225A (en) * 1988-06-13 1990-10-30 Howmet Corporation Ceramic shell mold for investment casting and method of making the same
US5977007A (en) * 1997-10-30 1999-11-02 Howmet Research Corporation Erbia-bearing core
US5975188A (en) * 1997-10-30 1999-11-02 Howmet Research Corporation Method of casting with improved detectability of subsurface inclusions
US6237671B1 (en) 1997-10-30 2001-05-29 Howmet Research Corporation Method of casting with improved detectability of subsurface inclusions
US6619368B1 (en) 1997-12-15 2003-09-16 Pcc Structurals, Inc. Method for imaging inclusions in investment castings
US6920910B2 (en) * 2001-06-13 2005-07-26 Siemens Aktiengesellschaft Casting device, process for producing a casting device and method of using the casting device
US20070044935A1 (en) * 2005-08-30 2007-03-01 United Technologies Corporation Method for casting cooling holes
US7325587B2 (en) * 2005-08-30 2008-02-05 United Technologies Corporation Method for casting cooling holes
US20110052180A1 (en) * 2009-08-31 2011-03-03 Hon Hai Precision Industry Co., Ltd. Light blocking plate, camera module having same, and method for making same
US8009980B2 (en) * 2009-08-31 2011-08-30 Hon Hai Precision Industry Co., Ltd. Light blocking plate, camera module having same, and method for making same

Also Published As

Publication number Publication date
BE777378Q (en) 1972-04-17

Similar Documents

Publication Publication Date Title
US3537949A (en) Investment shell molds for the high integrity precision casting of reactive and refractory metals,and methods for their manufacture
US3422880A (en) Method of making investment shell molds for the high integrity precision casting of reactive and refractory metals
US5738819A (en) Method for making ceramic shell molds and cores
US4057433A (en) Oxyfluoride-type mold for casting molten reactive and refractory metals
US2441695A (en) Casting mold
JPS63115644A (en) Manufacture of mold for reactive metallic casting
US3266106A (en) Graphite mold and fabrication method
US3743003A (en) Making investment shell molds inhibited against reaction with molten reactive and refractory casting metals
US2886869A (en) Graphite refractory molds and method of making same
US2948935A (en) Process of making refractory shell for casting metal
US4316498A (en) Investment shell molding materials and processes
US3256574A (en) Mold and method of fabrication
US2815552A (en) Method of making a mold by the lost-wax process
US3994346A (en) Investment shell mold, for use in casting of reacting and refractory metals
US2942970A (en) Production of hollow thermal elements
US3441078A (en) Method and apparatus for improving grain structures and soundness of castings
US3296666A (en) Method of preparing an investment mold for use in precision casting
US3802902A (en) Method of making molds
US2875485A (en) Precision casting mold and method of making the same
US3211560A (en) Mold wash composition and casting mold coated therewith
US3239897A (en) Precision casting mold and methods and materials for production and use
US3305358A (en) Method for shaping beryllium and other metals and ceramics
US3077648A (en) Multi-layer shell mold
US3389743A (en) Method of making resinous shell molds
US3485288A (en) Method of making a mold for casting of refractory and reactive metals

Legal Events

Date Code Title Description
AS Assignment

Owner name: SELMET, INC., 9010 S.E. 7 MILE LANE, ALBANY, OR, C

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:REM METALS CORPORATION;REEL/FRAME:004345/0912

Effective date: 19841214