US3742768A - Timing motor drive mechanism for water softener valves - Google Patents

Timing motor drive mechanism for water softener valves Download PDF

Info

Publication number
US3742768A
US3742768A US00231145A US3742768DA US3742768A US 3742768 A US3742768 A US 3742768A US 00231145 A US00231145 A US 00231145A US 3742768D A US3742768D A US 3742768DA US 3742768 A US3742768 A US 3742768A
Authority
US
United States
Prior art keywords
pinion
motor
drive gear
drive
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00231145A
Other languages
English (en)
Inventor
A Fleckenstein
H Mitchell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fleckenstein A J
Fleck Controls Inc
Original Assignee
Fleckenstein A J
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fleckenstein A J filed Critical Fleckenstein A J
Application granted granted Critical
Publication of US3742768A publication Critical patent/US3742768A/en
Assigned to L. W. FLECKENSTEIN, INC. reassignment L. W. FLECKENSTEIN, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MITCHELL, HERMAN C.
Assigned to FLECK CONTROLS, INC. reassignment FLECK CONTROLS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE DATE: OCT. 16, 1986 Assignors: L.W. FLECKENSTEIN, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/48Mechanical actuating means actuated by mechanical timing-device, e.g. with dash-pot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/11Tripping mechanism
    • Y10T74/114Retarded
    • Y10T74/115Plural, sequential, trip actuations

Definitions

  • ABSTRACT A water softener valve timing mechanism utilizing a timing motor to shift the valve through the various operating and softening stages.
  • a linkage is operated periodically to shift a drive gear for the valve into engagement with a pinion of the timing motor.
  • An adjustable cam controls a brine line valve for variably controlling the amount of water filled in the brine tank of the system to thereby control salt usage.
  • the invention is directed to new and useful improvements in control valves for water softeners and is particularly concerned with improvements in a drive between a piston operated valve and a timing motor which is used to operate the valve in a preselected periodic fashion.
  • the present invention is directed to improvements in timing motor and valve actuating mechanisms of the type illustrated in Fleckenstein U.S. Pat. No. 3,616,820, issued Nov. 2, 1971.
  • the principal purposes of the present invention are to provide improved and more economical mechanism fo effecting a drive between a continuously operating timing motor'and a linkage which drives the operating piston of a water softener valve, to arrange such a mechanism so as to reduce the operating forces necessary to bring about engagement between a timing motor and the drive linkage for the valve, and to arrange such a drive system with mechanism which provides a predetermined and adjustable period of brine tank filling time in the softener system while effecting a positive shut-off of the brine tank line when either a brining or brine tank filling operation is not needed.
  • FIG. 1 is a schematic view of a typical water softener system provided with the present invention
  • FIG. 2 is a front view of the water softener control illustrated in FIG. 1;
  • FIG. 3 is a rear view of the control mechanism illus trated in FIGS. 1 and 2;
  • FIG. 4 is a view of the brine tank valve control illustrated in FIG. 3 while illustrating a different position of the operating parts;
  • FIG. 5 is a view of the control illustrated in FIG. 3 while illustrating a different operative position of the parts.
  • FIG. 6 is a detail view of certain operating elements illustrated in FIG. 2.
  • the numeral 10 generally designates a typical water softening tank having a control valve 11 fixed to the top thereof so as to selectively direct hard water through an inlet passage to the valve (not shown) and through an inlet space 12in the valve for flow through an outlet 13 in the top of the water softener tank. Water then flows downwardly through the tank where it is softened and then upwardly through an outlet pipe 14, which, in the service position illustrated in FIG. 1, communicates with an outlet space 15 in the valve.
  • the valve has an aspirator assembly 16 which is connected with a line through a shut-off valve 18 to a brine tank 19.
  • a control generally designated at 20 is fixed to the top of the valve and is adapted to drive the piston of the valve at selected time intervals through a slowly moving and uninterrupted reciprocating cycle. As the piston moves, the various passages of the valve are connected for control of regenerative operations such as backwashing, brin'ing, slow rinsing, rapid rinsing, and brine tank filling, respectively, before the valve returns to the service position.
  • FIG. 1 is generally representative of that disclosed in Fleckenstein U.S. Pat. No. 3,616,820.
  • the control of the present invention utilizes an upstanding support plate 21 which is fixed to the top of the valve by a lateral flange 21a.
  • Thesupport plate 21 supports a time-of-day wheel 22, a skip-day wheel 23, a drive pinion 24 for the time-of-day wheel, an actuating element in the form of a pin 25 projecting outwardly from the time-of-day wheel 22, and an actuating arm 26 which is pivotally mounted as at 27 on the upstanding support plate 21, all as generally disclosed in the aforesaid U.S. Pat. No. 3,616,820.
  • the skip-day wheel 23 includes a plurality of circumferentially spaced lugs 28 which are adapted to be engaged by the actuating element 25 once each day so as to shift the skip-day wheel 23 through an arc corresponding to the spacing between adjacent lugs.
  • the movement may be 30 with the 12 lugs illustrated.
  • the lugs 28 carry small bolts 29 which are adapted to engage actuating arm 26 and move it angularly in periodic fashion.
  • a timing motor 30 is arranged to drive time-of-day wheel 22 through a full revolution each day I so as to bring actuating element 25 into engagement with a lug 28 and shift actuating arm 26.
  • Gear 24 may be mounted for axial shifting movement to disengage it from the gear teeth of time-of-day wheel 22 and thus allow setting of the time-of-day wheel for the correct time.
  • Timing motor 30 is fixed to a mounting lever 31 and includes a drive pinion 32.
  • Pinion 32 is part of a gear train for the motor shaft.
  • the pinion is adapted for engagement with an intermediate gear 33 which is fixed for movement with the pinion 24 to drive the time-ofday wheel.
  • the motor drive pinion 32 is also adapted to periodically drive a gear 34 to actuate the piston of the control valve.
  • Gear 34 includes a hub 35 formed thereon which acts as a crank for a connecting rod or lever 36.
  • Lever 36 is connected to the piston rod 36a of the piston in the valve.
  • Gear 34 includes a cut-away portion 37 in its periphery so that when this cut-away portion is opposed to pinion 32 no drive is effected between the pinion 32 and gear 34.
  • the mounting plate or lever 31 for motor 30 is pivotally mounted as at 38 so that the mounting plate may swing about the axis of the gear 33. Such swinging movement is limited as byv means of a slot 39 in the mounting lever.
  • a bolt or pin 40 is fixed to the plate 21 and rides in this slot 39 so as to limit swinging movement of the. motor mounting plate in a counterclockwise direction as seen in FIG. 3 to approximately 5 to 15.
  • a spring 41 extends between the pin 40 and a flange 42 of the mounting plate so as to bias the motor mounting lever in a clockwise direction and toward the normal position illustrated in FIG. 3.
  • This mounting arrangement allows the motor and its mounting plate to swing counterclockwise to the position illustrated in FIG. 5 wherein drive pinion 32 is still engaged with gear 33 but spaced from gap 37. In this position, pinion 32 cannot engage gear 34 even if the gear 34 is rotated to move gap 37 away from the position illustrated in FIG.
  • Motor mounting plate 31 includes an extension 43 presenting a cam surface 44 to camming pin 45 carried by an extension 46 of actuating arm 26.
  • actuating arm 26 When actuating arm 26 is moved counterclockwise in FIG. 3, it then cams motor mounting plate counterclockwise as seen in FIG.
  • a pin 47 may be carried by plate 21 and ride in a slot 48 in the extended end of the motor mounting plate so as to provide stability for the same.
  • Connecting rod 36 is extended on both sides of its pivotal connecton 49 with the crank or hub 35.
  • the extension on the side opposite to the connection with the piston rod 36a is connected with a spring 50.
  • Spring 50 has one end fixed to the support plate 21 as at 51 so that the spring 50 exerts a biasing force on the connecting rod 36 in a clockwise direction as illustrated in FIG. 3.
  • Gear 34 carries an outwardly projecting latching pin 52 on the surface thereof.
  • This latching pin when the position of the elements is as illustrated in FIG. 3, is adapted to seatwithin a recess 53 in an upper edge of the mounting plate.
  • a knob 54 may be fixed to the connecting rod 36 so as to enable manual rotation of the parts for purposes of inspection or repair.
  • the shut-off valve 18 for the brine line 17 includes an actuating stem 55 for the valve closing element.
  • Stem 55 is biased by a spring 56 towards an upper position wherein the valve is closed.
  • a gear 57 is mounted for rotation on plate 21 and is driven by gear 34 whenever the drive is effective between the pinion 32 and gear 34.
  • Gear 57 carries a first cam 58 having an arcuate surface which is adapted to contact stem 55 and depress the same for a periodic time interval corresponding to the time interval whenit is desired to pass brine fromtank 19 to the softener tank to regenerate same.
  • the cam may include a stem actuating arcuate surface 59 of sufficient length to hold the brine line open for a period of time until all brine has been exhausted from the brine tank 19, after which the valve 11 causes hard water to flow to the softening tank to effect a slow rinsing of the same.
  • the valve 18 is then closed.
  • the valve 11 then causes hard water to flow upward in the softening tank to effect a rapid rinsing of the same. Since the valve 18 is then closed, there is no possibility of the rinsing water, which may carry some resin therein, passing to the brine tank.
  • Gear 57 carries a second valve actuating cam 60 which is pivotally mounted on the gear 57 'on an axis, defined by a mounting screw 61. This axis is offset from the axis of gear 57,- as defined by the mounting screw 62.
  • the arcuate cam surface 63 of the cam 60 may be angularly adjusted about axis 61 to thus set a selected amount of time that the cam surface 63 will contact and depress stem 55. By adjusting the position of this cam surface about axis 61, the time of engagement with the valve stem 55 may be adjusted between a few minutes and around 30 to 40 minutes, depending upon the length of the cam surface.
  • Cam 60 is positioned on the gear 57 in spaced relation to cam 58 so that during rotation of gear 57, cam 58 will first engage stem 55 to open the brine valve 18 during the regeneration period.
  • the valve 18 is again closed until gear 57 rotates sufficiently to bring cam surface 63 into engagement with the valve stem 55. Opening of the brine valve 18 at this period of time affords communication between the hard water inlet passage in the valve and the brine tank by means of the' passage through the aspirator. This allows filling of the brine tank with makeup water.
  • the period of time that the brine valve 18 is held open at this stage of the regenera- I tive operation thus controls the amount of makeup water whichis supplied to the brine tank 19. This, in turn, controls the amount of brine which eventually is available for regenerating the softening tank.
  • timing and drive mechanism The operation of the timing and drive mechanism is as follows:
  • Timing motor 30 runs continously so that its drive pinion 32 continually rotates the time-of-day wheel 22 through the gears 24 and 33.
  • valve drive gear 34 is disengaged from the drive pinion 32 of the motor by reason of the gap 37 of the drive gear being opposed to the drive pinion 32.
  • the actuating element 25 on the time-of-day wheel 22 moves into a position where it contacts a lug 28 on the skip-day wheel 23.
  • This engagement causes the skip-day wheel to move throug a partial revolution and in turn causes an element 29 on the skip-day wheel to contact actuating arm 26 and partially rotate it.
  • Actuating arm 26 then cams motor mounting plate 31 counterclockwise as is seen in FIG. 3, and this moves the mounting plate away from the element 52 on the valve drive gear 34 so as to unlatch this element from the recess 53.
  • Spring 50 then biases valve connecting rod 36 clockwise as seen in FIG. 3, and this produces a few degrees of movement of the valve driving gear 34 sufficient to move thegap of the valve drive gear away from the motor pinion 32.
  • valve drive gear34 The timing motor then rotates valve drive gear34 through the remainder of a complete revolution and this in turn shifts the valve piston through the various stages of movement required for the regenerative operations.
  • the movement is continuous and uninterrupted even at the bottom dead center position of the hub 35 and connecting lever 36.
  • valve drive gear When the valve drive gear has rotated to a position wherein the gap 37 is again opposed to the drive pinion 32 of the motor, the motion is interrupted. At this point the valve connecting lever 36 is substantially attop dead center position. It is preferred that this point of stopping occur when the connecting rod is several degrees beyond the exact top dead center position t allow easier starting of the drive. i
  • latching pin 52 on the drive gear 34 drops into the latching recess 53.
  • Pin 52 is held in firm contact with the lower'edge of latching recess 53 by means of spring 50 acting through lever 36, hubs 35 and gear 34.
  • the spring bias for the motor mounting lever 31 allows the motor drive pinion 32 to move slightly in the event that gears in the drive pinion 32 and valve drive gear 34 do not engage properly at the start of the operation (as by teeth of the gears exactly opposing one another). An additional small increment of movement of the pinion will then allow the teeth to engage smoothly.
  • Actuating arm 26 may be moved manually to shift motor mounting plate 31 and thus allow manual rotation of gear 34 through actuation of knob 54. This is desireable for purposes of inspection and/or repair.
  • valve operating mechanism as disclosed herein may be made manually starting as by dispensing with time-of-day wheel 22, skip-day wheel 23, and drive pinion 24. Regeneration of the softener system is then started through manual shifting of actuating arm 26. Upon release of the actuating arm 26, spring 41 then biases the motor mounting plate and pinion 32 to a position where the pinion 32 may engage the teeth of gear 34 and slowly rotate this gear through the remainder of a complete revolution until gap 37 is again opposed to pinion 32. This provides a full regeneration cycle. The drive is then stopped.
  • a timing motor timing and actuating mechanism for water softener valves including a water softener valve having a movable control element for controlling various stages of normal softening operation and regeneration in a water softener system, a timing motor adapted to run continuously and a drive gear adapted to be operatively rotated thereby, means providing a driving connection between said drive gear and said control element for translating rotation of said gear into movement of said element, said drive gear having a gap in the periphery thereof, said gap being adapted to be moved into opposition to a drive pinion of said timing motor to prevent engagement between said pinion and said gear, said pinion being adapted to drive said drive gear when said gap is moved away from said pinion, resilient means interconnected with said drive gear so as to bias said drive gear away from a position wherein said gap is opposed to said pinion, latching means for holding said drive gear in a position wherein said gap is opposed to said drive pinion, and means for unlatching said latching means to allow said resilient means to move said connecting rod and gear to bring about
  • said driving connection means includes a connecting rod connected to said control element and connected to said drive gear at a point eccentric to the axis of rotation of said drive gear, said resilient means including a spring connected to an extension of said connecting rod.
  • said improvement comprising means movably mounting said motor and drive pinion for swinging movement toward and away from a position adapted for selective engagement with said drive gear and disengagement with said drive gear nesting withinsaid gap, means biasing said motor and pinion toward said position, resilient means for partially rotating said drive gear to thereby move said gap away from said nested position wherein said gap is opposed to said pinion, means for causing swinging movement of said motor and pinion away from said gap, and latching means for holding said motor and pinion in a position wherein said pinion is within said gap, said latching means being unlatched by said swinging movement causing means to thereby permit said resilient means to partially rotate said drive gear away said position and bring about engagement between said drive gear and said pinion.
  • said latching means is defined by an element carried by said drive gear and engageable in a recess in a lever movable with said motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Transmission Devices (AREA)
US00231145A 1972-03-02 1972-03-02 Timing motor drive mechanism for water softener valves Expired - Lifetime US3742768A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23114572A 1972-03-02 1972-03-02

Publications (1)

Publication Number Publication Date
US3742768A true US3742768A (en) 1973-07-03

Family

ID=22867920

Family Applications (1)

Application Number Title Priority Date Filing Date
US00231145A Expired - Lifetime US3742768A (en) 1972-03-02 1972-03-02 Timing motor drive mechanism for water softener valves

Country Status (9)

Country Link
US (1) US3742768A (enExample)
BE (1) BE796193A (enExample)
CH (1) CH562163A5 (enExample)
DE (1) DE2310189C2 (enExample)
ES (1) ES412200A1 (enExample)
FR (1) FR2174220B1 (enExample)
GB (1) GB1429071A (enExample)
IT (1) IT979563B (enExample)
NL (1) NL162463C (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0028049A1 (fr) * 1979-10-30 1981-05-06 L.W. FLECKENSTEIN, INC., Société dite Dispositif de commande d'un système de conditionnement d'eau
US4313825A (en) * 1981-02-23 1982-02-02 L. W. Fleckenstein, Inc. Control system for meter actuated regeneration in a water treatment system
US5879559A (en) * 1996-10-07 1999-03-09 Erie Manufacturing Company Valve controller for water conditioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3147922A1 (de) * 1981-12-03 1983-11-17 Kurt Michael 8220 Traunstein Desch Dreiteiliges zentralsteuerventil fuer wasseraufbereitungsanlagen mit gesondertem kanal- und regeneriermittel-vorratsbehaelter-rueckfuellventil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302467A (en) * 1965-03-31 1967-02-07 Autotrol Corp Timing control
US3448625A (en) * 1967-11-01 1969-06-10 Union Tank Car Co Timer
US3457792A (en) * 1967-09-29 1969-07-29 Fleckenstein A J Timing motor mechanism for control valves and the like

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616820A (en) * 1968-10-01 1971-11-02 Fleckenstein A J Softener valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302467A (en) * 1965-03-31 1967-02-07 Autotrol Corp Timing control
US3457792A (en) * 1967-09-29 1969-07-29 Fleckenstein A J Timing motor mechanism for control valves and the like
US3448625A (en) * 1967-11-01 1969-06-10 Union Tank Car Co Timer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0028049A1 (fr) * 1979-10-30 1981-05-06 L.W. FLECKENSTEIN, INC., Société dite Dispositif de commande d'un système de conditionnement d'eau
FR2468939A1 (fr) * 1979-10-30 1981-05-08 Fleckenstein Inc L W Dispositif de commande d'un systeme de conditionnement d'eau
US4313825A (en) * 1981-02-23 1982-02-02 L. W. Fleckenstein, Inc. Control system for meter actuated regeneration in a water treatment system
US5879559A (en) * 1996-10-07 1999-03-09 Erie Manufacturing Company Valve controller for water conditioning system

Also Published As

Publication number Publication date
NL7302879A (enExample) 1973-09-04
BE796193A (fr) 1973-07-02
GB1429071A (en) 1976-03-24
DE2310189A1 (de) 1973-09-13
CH562163A5 (enExample) 1975-05-30
DE2310189C2 (de) 1982-11-18
ES412200A1 (es) 1976-05-01
FR2174220A1 (enExample) 1973-10-12
FR2174220B1 (enExample) 1976-11-05
IT979563B (it) 1974-09-30
NL162463C (nl) 1980-05-16

Similar Documents

Publication Publication Date Title
US3874412A (en) Timing motor drive mechanism for water softener valves
US2302012A (en) Domestic appliance
US4539106A (en) System and apparatus for water conditioning
EP0566061B1 (en) Vehicle sun roof fastening device
EP0060150B1 (fr) Système de commande du cycle de régénération contrôlé par un compteur dans un dispositif de conditionnement d'eau
US3616820A (en) Softener valve
US3742768A (en) Timing motor drive mechanism for water softener valves
US2254795A (en) Valve control mechanism
US2743622A (en) Setting device for price indicator for liquids
US2331699A (en) Combined clothes washer and extractor
US3938426A (en) Water powered drive for automatic controllers
US2917933A (en) Control device
GB675768A (en) Improvements in and relating to control devices for electric washing machines
US3160008A (en) Flow responsive signal generator
JPH09216694A5 (enExample)
US3077784A (en) Timer mechanism
US2699207A (en) Multiple valve and control mechanism therefor
CN208734858U (zh) 一种汽车操纵杆行程控制机构
US3107544A (en) Regulator mechanism
US6287457B1 (en) Water treatment device having volumeter driven monitoring discs
US3587329A (en) Timing means for providing timed output signals
US2407539A (en) Valve system and control therefor
US2379522A (en) Operating and timing device for laundering machines and the like
US5042311A (en) Secondary timer for program timer
US3999223A (en) Flush valve with selected volume control

Legal Events

Date Code Title Description
AS Assignment

Owner name: L. W. FLECKENSTEIN, INC., BROOKFIELD, WI A CORP O

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MITCHELL, HERMAN C.;REEL/FRAME:004346/0640

Effective date: 19841203

AS Assignment

Owner name: FLECK CONTROLS, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:L.W. FLECKENSTEIN, INC.;REEL/FRAME:004925/0251

Effective date: 19880614