US3741363A - Electronic coin testing apparatus - Google Patents
Electronic coin testing apparatus Download PDFInfo
- Publication number
- US3741363A US3741363A US00153228A US3741363DA US3741363A US 3741363 A US3741363 A US 3741363A US 00153228 A US00153228 A US 00153228A US 3741363D A US3741363D A US 3741363DA US 3741363 A US3741363 A US 3741363A
- Authority
- US
- United States
- Prior art keywords
- coin
- signal
- primary coil
- chute
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D5/00—Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
- G07D5/08—Testing the magnetic or electric properties
Definitions
- the present invention relates to electronic coin testing apparatus for comparing a coin travelling down a chute with a standard coin.
- a difference signal is produced which depends on the difference between the effect produced by the coin to be tested and that produced by the standard coin.
- This difference signal decreases from a predetermined initial value down to zero and then returns to its initial value as a coin identical with the standard coin passes a given position in the chute.
- a threshold device produces a predetermined threshold output signal the difference signal exceeds a given value.
- a gate separates accepted coins from the rejected coins. The gate is actuated by a discriminating means.
- the chute extends between a primary coil connected to a source of alternating current and a first secondary coil inductively coupled with the primary coil.
- the secondary coil is coupled to the gate, beyond the coils in the direction of travel of the coins.
- a second secondary coil is mounted on the side of the primary coil remote from the coin chute, and is inductively coupled with it, and is connected in series with the first secondary coil in such direction that the voltages induced by the primary coil in the two secondary coils are subtracted, with a device for holding a standard coin between the primary coil and the second secondary coil.
- Such switching devices which test the coin passing through the coin chute at the moment when the coin is in the testing position between the primary coil and the secondary coil, give rise to certain problems.
- Mechanical switching devices e. g. a rocker which is actuated by the coin to be tested, and on which a small magnet is mounted for the actuation of a reed contact, are sensitive, liable to interference and, with considerable use, wear relatively quickly.
- Contact-free switching devices e.g. switching devices with capacitive and inductive sensors, are costly and also sensitive as well as susceptible to interference.
- An object of the present invention is to provide such an electronic coin testing device in which it is not necessary to provide a coin-controlled switching device which limits the testing to a predetermined short space of time.
- discriminating means for actuating the gate, arranged to accept a coin only if there is a threshold output signal and it is not followed by a second such signal within a predetermined period.
- the discriminating means preferably include a bistable circuit arranged to be alternately set and reset by successive threshold output signals, to produce a flipflop output signal arranged to actuate the gate through a time constant circuit to accept a coin only if the flipflop output signal persists for a predetermined period.
- the time constant circuit conveniently includes an integrating operational amplifier, and may also include a level-responsive trigger device.
- Resetting means may be provided for resetting the bistable circuit, if it is not already reset, after a second predetermined period, longer than the first predetermined period (in readiness for the next coin).
- Such resetting means may include a delay device connected between the output of the time constant circuit and a resetting input to the bistable device.
- FIG. 1 is a simplified cross-sectional view through the coin chute and the measuring coils of an electronic coin-testing device, on the line l1 of FIG. 2;
- FIG. 2 is a cross-section on the line 2-2 of FIG. 1;
- FIG. 3 is a circuit diagram of an electronic cointesting device according to the invention.
- FIG. 4 is a graphic representation of the attenuation caused by various coins to be tested
- FIGS. 5 to 9 are diagrammatic graphs, relating respectively to the coins correspondingly numbered in FIG. 4, showing the time progress of signals at various points in the circuit.
- the present coin-testing device includes, as usual, a coin chute 10 of rectangular cross-section which starts at a coin input slot 11.
- the coin chute extends between a primary coil 12 and a first secondary coil 14 arranged coaxially with the primary coil.
- a standard coin 18, i.e. a typicalspecimen of the coins to be tested Between the primary coil 12 and the second secondary coil 16 there is disposed a standard coin 18, i.e. a typicalspecimen of the coins to be tested.
- a gate containing an abutment 20 which protrudes into the coin chute, and may be retracted by a magnet coil (FIG. 3).
- the gate In the retracted state the gate allows the tested coin to enter a channel for accepted coins 22, while, when the magnet coil is not excited, the abutment 20 protrudes into the coin chute, so that the tested coin strikes against it and enters a reject channel 24.
- the primary coil 12 is connected to an alternating current source 26 which may, for example, comprise a transistor oscillator, and which supplies an output voltage at a frequency in the range of approximately 10 to kHz.
- an alternating current source 26 which may, for example, comprise a transistor oscillator, and which supplies an output voltage at a frequency in the range of approximately 10 to kHz.
- the two secondary coils l4, 16 are connected in series in such direction that the voltages induced in them by the primary coil 12 are subtracted from each other, to produce a difference signal which will be zero when betweenthe primary coil 12 and the first secondary coil .14 there is acoin which corresponds exactly to the standard coin 1 8 and lies symmetrically with it.;
- the differencesignal of the secondary coils 14, I6 is led via an amplifier30 to a demodulator orrectifier. 32 which supplies a difference signal A which corresponds I to the envelope of the differential voltage produced by the series connected secondary coils 14, 16.
- the output d rest value M as represented in the upperdiagram of FIG.5.
- signal A of the rectifier 32 is supplied to a level respon-p sive trigger circuit 34, for example a Schmitt trigger circuit, which provides a threshold output signal B as long as the amplitude of the difference a predeterminedthresholdvalue S.
- a level respon-p sive trigger circuit 34 for example a Schmitt trigger circuit, which provides a threshold output signal B as long as the amplitude of the difference a predeterminedthresholdvalue S.
- the output of the trigger ciruit 34 is connected to a I (FIG. 2).
- the outputsig nal A has therefore a first zero position x,, when thecoin to be tested is situated switchover input of a bistable or flip-flop circuit 36, so
- This outputsignal C which may be termed a flip-flop output signalis led via a a coin to be tested is located in the centre position 44',
- time constant 38 e.g. an integrating operational amplifier with an input resistorand a feedback capaciton and if required a further'level-responsive triggercircuit, to an amplifier 40, the output of whichactuates the magnetic coil 22 of the gate.
- the time constant circuit 38 is so designed that gate is actuated only when the duration of the flip-flop output signal C of the bistable circuit 36 exceeds a predetermined value, in practice about 20 ms.
- the output 'signalof the amplifier is'furtherr nore led via a delay device 42, which may for example have a delay time of 100 ms, to a reset input R of thebistable Beforean explanation is given of the modus operandi circuit 36.
- the trigger circuit 34 supplies U .athreshold output signal B as long as the amplitudeof theidifilerence signal A lieskbelow the threshold value S (cf. the upper diagram ofFlGS. 5 to 9).
- the threshold value S cf. the upper diagram ofFlGS. 5 to 9.
- the threshold output signal A of the rectifier 32 (FIG. 3) alters as a function of time as represented in FIG..5.
- the signal A has a definite rest value M.
- the amplitude of the signal A decreases until it finally becomes zero, when the coin'is situated exactly between the coils 12 and 14,,as is shown in FIG. 2 by the continuous circle 44.
- the testing of the coin for genuineness took place, i.e. at this moment the attenuations of the coin to be tested and the standard coin were compared. If the coin then travels further, the amplitude of the signal A rises again to the mcoins, w
- signal A develops according to the first diagram in FIG. If the attenuation is still y 1: smaller and lies outside thetolerance range, as is shown Cur v eAin FIG. 7. as a a d If thevattenuation is slightly greater than thatof the at 7 in FIG. 4, the output signal develops according to standard coin, asshown at 8 in FIG. '4, the form of the output'signal as shown in FIG. 8.
- Theattenua tion effected bythe cointo be'tested is thenirideed equalf 'to the attenuation of the ⁇ standard coin 18 coin to betested finds itself the centralised position in the: position 44" (FIG. 2 shown doted.When the the output signalhas a small intermediate maximum,
- coils 12 and 14 supplies onlya single threshold output and remains set until, after for example 120 ms, it is reset by the reset circuit with the delay device 42, as is represented by the curves C in FIGS. 5, 6 and 8.
- the difference signal A (FIG. 7) does not fall below the threshold value S of the trigger circuit 34, the latter cannot supply any threshold output signal, the bistable circuit 36 is not set and therefore also no impulse can be produced for the actuation of the gate.
- the entire testing circuit is therefore continuously operative when coins are to be tested.
- mains-operated coin testing devices the oscillator 26 and the other stages can then be constantly in operation; with battery-operated coin testing devices provision can be made for a quite simple switching device actuated by the insertion of a coin, which switches on the arrangement for the duration of the test.
- this switching arrangement may be made very simple and cheap.
- bistable or flip-flop circuit 36 instead of the. bistable or flip-flop circuit 36 and of the reset circuit consisting in a delay circuit 42, it is naturally possible to use also other known switching arrangements equivalent in effect.
- the values given above for the delay times efiected through the time constant circuit 38 and the delay circuit 42 are typical, and have proved themselves adequately in practice; however, they may be modified if desired.
- the retardation time of the time constant circuit must, however, be at least long enough to make possible resetting of the bistable circuit 36 by the second impulse B (FIG. 9B) to prevent actuation of the gate.
- the delay circuit 42 must ensure that the abutment 20 of the gate remains retracted from the coin chute until a coin found to be acceptable as a result of the testing is able to enter the channel 22 for accepted coins.
- circuits mentioned above and shown in block form in the drawing are preferably trans historianed'circuits which may be of known construction.
- control means for producing a test signal in dependence on a coin to be tested in comparison to a standard coin and a control means for producing an acceptance signal only when the maximum value of the test signal falls within'preselected boundaries, the improvement wherein the control means comprises, in
- a rectifier means connected to said signal generating means for producing a rectified output of the test signal
- threshold value means connected to said rectifier means for producing a threshold output signal each time the rectified output of the test signal is within a threshold area defined by the two preselected boundaries
- a bistable means receiving a plurality of signals and connected to said threshold value means, for producing a gating signal upon receipt of a first signal and turning off the gating signal upon receipt of a second signal
- a time constant means connected to said bistable means for producing an acceptance pulse when the duration of the gating signal is longer than a first predetermined time period
- reset means providing a signal for resetting said bistable means after a second predetermined time period which is longer than the first predetermined time. period.
- time constant means includes an integrating operational am- 3.
- time constant circuit further includes a level-responsive trigger device.
- said reset means includes a delay device connected between the output of said time constant means and' a resetting input to said bistable means.
- Apparatus as defined in claim 1 further comprising a chute along which the coin to be tested passes; and wherein said signal generating means includes: a source of alternating current; a primary coil connected to said current source and arranged on one side of said chute; a first secondary coil inductively coupled with said primary coil and arranged on the side of said chute opposite said primary coil, whereby the voltage induced in said first secondary coil by the current in said primary coil is affected by the coin passing along said chute; a second secondary coil inductively coupled with said primary coil and arranged on the side of said primary coil remote from said chute, whereby the voltage induced in said second secondary coil by the current in said primary coil is affected by a standard coin positioned between said primary coil and said second secondary coil; said first and second secondary coils being connected in such a manner that the voltages induced therein by said primary coil are subtracted.
- the first predetermined time period is selected such that the gat-- ing signal will only be of a longer duration than the first predetermined time period when the rectified output of the test signal onlypasses into the threshold area once.
- said threshold value means includes a Schmitt trigger cir- Clllt.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Coins (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2029751A DE2029751C3 (de) | 1970-06-16 | 1970-06-16 | Elektronischer Münzprüfer mit einer einzigen Prüfvorrichtung |
Publications (1)
Publication Number | Publication Date |
---|---|
US3741363A true US3741363A (en) | 1973-06-26 |
Family
ID=5774164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00153228A Expired - Lifetime US3741363A (en) | 1970-06-16 | 1971-06-15 | Electronic coin testing apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US3741363A (enrdf_load_stackoverflow) |
DE (1) | DE2029751C3 (enrdf_load_stackoverflow) |
GB (1) | GB1301764A (enrdf_load_stackoverflow) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3918564A (en) * | 1972-10-12 | 1975-11-11 | Mars Inc | Method and apparatus for use in an inductive sensor coin selector |
US4105105A (en) * | 1975-10-17 | 1978-08-08 | Libandor Trading Corporation Inc. | Method for checking coins and coin checking apparatus for the performance of the aforesaid method |
FR2464525A1 (fr) * | 1979-09-03 | 1981-03-06 | Cointest Oy | Procede et appareil d'identification de pieces ou similaires |
US4398626A (en) * | 1981-08-21 | 1983-08-16 | Mars, Inc. | Low frequency phase shift coin examination method and apparatus |
WO1984000073A1 (en) * | 1982-06-14 | 1984-01-05 | Raymond Nicholson | Coin detecting apparatus |
US4441602A (en) * | 1981-12-02 | 1984-04-10 | Joseph Ostroski | Electronic coin verification mechanism |
US4448297A (en) * | 1981-06-18 | 1984-05-15 | Mendelsohn Lewis I | Ferromagnetic coin validator and method |
US4469213A (en) * | 1982-06-14 | 1984-09-04 | Raymond Nicholson | Coin detector system |
EP0122732A3 (en) * | 1983-03-21 | 1985-05-15 | Starpoint Electrics Limited | Coin checking |
US4567325A (en) * | 1983-12-30 | 1986-01-28 | At&T Technologies Inc. | Controller for a coin telephone set |
US4574936A (en) * | 1983-05-10 | 1986-03-11 | Lance Klinger | Coin accepter/rejector including symmetrical dual feedback oscillator |
US4666027A (en) * | 1986-02-07 | 1987-05-19 | Validation Systems, Inc. | Coin validation apparatus and method for detecting stringing of coins and distinguishing valid tokens or coins from slugs |
US4884672A (en) * | 1988-08-12 | 1989-12-05 | Parker Engineering & Manufacturing Co. | Coin analyzer system and apparatus |
US4936435A (en) * | 1988-10-11 | 1990-06-26 | Unidynamics Corporation | Coin validating apparatus and method |
US5056644A (en) * | 1988-08-12 | 1991-10-15 | Parker Donald O | Coin analyzer system and apparatus |
US5216234A (en) * | 1990-03-29 | 1993-06-01 | Jani Supplies Enterprises, Inc. | Tokens having minted identification codes |
US5226520A (en) * | 1991-05-02 | 1993-07-13 | Parker Donald O | Coin detector system |
US5293980A (en) * | 1992-03-05 | 1994-03-15 | Parker Donald O | Coin analyzer sensor configuration and system |
US5566808A (en) * | 1994-09-09 | 1996-10-22 | Parker Engineering & Manufacturing Co. | Low profile coin analyzer apparatus |
US6298973B1 (en) * | 1999-11-10 | 2001-10-09 | Parker Engineering & Manufacturing Co., Inc. | Multiple coin analyzer system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1452740A (en) * | 1972-10-12 | 1976-10-13 | Mars Inc | Digital memory coin selector method and apparatus |
US4106610A (en) * | 1976-06-07 | 1978-08-15 | Mars, Incorporated | Coin apparatus having multiple coin-diverting gates |
GB2137793B (en) * | 1983-02-08 | 1986-06-04 | Mars Inc | Coin handling apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3373856A (en) * | 1966-01-18 | 1968-03-19 | Canadian Patents Dev | Method and apparatus for coin selection |
US3401780A (en) * | 1965-12-31 | 1968-09-17 | Crouzet Sa | Electrical coin tester |
US3576244A (en) * | 1969-01-08 | 1971-04-27 | Vendo Co | Coin acceptor having resistivity and permeability detector |
US3599771A (en) * | 1968-08-28 | 1971-08-17 | Adolf Hinterstocker | Coin testing device for comparing coin to be tested with a standard coin |
-
1970
- 1970-06-16 DE DE2029751A patent/DE2029751C3/de not_active Expired
-
1971
- 1971-06-15 GB GB2800071A patent/GB1301764A/en not_active Expired
- 1971-06-15 US US00153228A patent/US3741363A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3401780A (en) * | 1965-12-31 | 1968-09-17 | Crouzet Sa | Electrical coin tester |
US3373856A (en) * | 1966-01-18 | 1968-03-19 | Canadian Patents Dev | Method and apparatus for coin selection |
US3599771A (en) * | 1968-08-28 | 1971-08-17 | Adolf Hinterstocker | Coin testing device for comparing coin to be tested with a standard coin |
US3576244A (en) * | 1969-01-08 | 1971-04-27 | Vendo Co | Coin acceptor having resistivity and permeability detector |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3918564A (en) * | 1972-10-12 | 1975-11-11 | Mars Inc | Method and apparatus for use in an inductive sensor coin selector |
US4105105A (en) * | 1975-10-17 | 1978-08-08 | Libandor Trading Corporation Inc. | Method for checking coins and coin checking apparatus for the performance of the aforesaid method |
FR2464525A1 (fr) * | 1979-09-03 | 1981-03-06 | Cointest Oy | Procede et appareil d'identification de pieces ou similaires |
US4448297A (en) * | 1981-06-18 | 1984-05-15 | Mendelsohn Lewis I | Ferromagnetic coin validator and method |
US4398626A (en) * | 1981-08-21 | 1983-08-16 | Mars, Inc. | Low frequency phase shift coin examination method and apparatus |
US4441602A (en) * | 1981-12-02 | 1984-04-10 | Joseph Ostroski | Electronic coin verification mechanism |
WO1984000073A1 (en) * | 1982-06-14 | 1984-01-05 | Raymond Nicholson | Coin detecting apparatus |
US4469213A (en) * | 1982-06-14 | 1984-09-04 | Raymond Nicholson | Coin detector system |
EP0122732A3 (en) * | 1983-03-21 | 1985-05-15 | Starpoint Electrics Limited | Coin checking |
US4574936A (en) * | 1983-05-10 | 1986-03-11 | Lance Klinger | Coin accepter/rejector including symmetrical dual feedback oscillator |
US4567325A (en) * | 1983-12-30 | 1986-01-28 | At&T Technologies Inc. | Controller for a coin telephone set |
US4666027A (en) * | 1986-02-07 | 1987-05-19 | Validation Systems, Inc. | Coin validation apparatus and method for detecting stringing of coins and distinguishing valid tokens or coins from slugs |
US4884672A (en) * | 1988-08-12 | 1989-12-05 | Parker Engineering & Manufacturing Co. | Coin analyzer system and apparatus |
WO1990001753A1 (en) * | 1988-08-12 | 1990-02-22 | Coin Mechanisms, Incorporated | Coin analyzer system and apparatus |
US5056644A (en) * | 1988-08-12 | 1991-10-15 | Parker Donald O | Coin analyzer system and apparatus |
US4936435A (en) * | 1988-10-11 | 1990-06-26 | Unidynamics Corporation | Coin validating apparatus and method |
US5216234A (en) * | 1990-03-29 | 1993-06-01 | Jani Supplies Enterprises, Inc. | Tokens having minted identification codes |
US5226520A (en) * | 1991-05-02 | 1993-07-13 | Parker Donald O | Coin detector system |
US5293980A (en) * | 1992-03-05 | 1994-03-15 | Parker Donald O | Coin analyzer sensor configuration and system |
US5439089A (en) * | 1992-03-05 | 1995-08-08 | Parker; Donald O. | Coin analyzer sensor configuration and system |
US5566808A (en) * | 1994-09-09 | 1996-10-22 | Parker Engineering & Manufacturing Co. | Low profile coin analyzer apparatus |
US6298973B1 (en) * | 1999-11-10 | 2001-10-09 | Parker Engineering & Manufacturing Co., Inc. | Multiple coin analyzer system |
EP1100051A3 (en) * | 1999-11-10 | 2003-11-19 | Parker Engineering & Manufacturing Co Inc. | Coin tester |
Also Published As
Publication number | Publication date |
---|---|
DE2029751B2 (enrdf_load_stackoverflow) | 1974-04-11 |
GB1301764A (enrdf_load_stackoverflow) | 1973-01-04 |
DE2029751C3 (de) | 1974-11-07 |
DE2029751A1 (de) | 1971-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3741363A (en) | Electronic coin testing apparatus | |
US4432447A (en) | Coin detecting device for a coin sorting machine | |
US3682286A (en) | Method for electronically checking coins | |
US3797307A (en) | Coin discriminator | |
US3918564A (en) | Method and apparatus for use in an inductive sensor coin selector | |
US3933232A (en) | Coin validator | |
GB1279733A (en) | Coin testing device | |
US3869663A (en) | Method and apparatus for checking metallic objects by monitoring its effect on one cycle of an alternating field | |
GB1154219A (en) | Method and apparatus for Coin Selection | |
US2642974A (en) | Coin material testing device | |
US3481443A (en) | Coin checking device | |
US3797628A (en) | Device and method for testing coins employing velocity determining means | |
US3754558A (en) | Coin processing apparatus with jam detection system | |
JPS6051159B2 (ja) | 複数の額面のコインの真贋性と額面を決定する装置 | |
US4172222A (en) | Optoelectric coin edge testing device | |
GB1272671A (en) | Coin acceptor having resistivity and permeability detector | |
IE49067B1 (en) | Coin acceptor apparatus | |
GB1397083A (en) | Coin selector utilizing inductive sensors | |
GB1170417A (en) | Coin Selector | |
US3561580A (en) | Coin tester having a pair of induction coils | |
US4275806A (en) | Coin sorting machine | |
US3496371A (en) | Apparatus for comparing sample document to standard including correlation | |
US3699981A (en) | Coin value determining apparatus and system | |
US5673781A (en) | Coin detection device and associated method | |
ES299733A1 (es) | Perfeccionamientos en dispositivos para controlar el ingreso de monedas en maquinas automaticas |