US3740488A - Inductive loop through-the-earth communication system - Google Patents
Inductive loop through-the-earth communication system Download PDFInfo
- Publication number
- US3740488A US3740488A US00106034A US3740488DA US3740488A US 3740488 A US3740488 A US 3740488A US 00106034 A US00106034 A US 00106034A US 3740488D A US3740488D A US 3740488DA US 3740488 A US3740488 A US 3740488A
- Authority
- US
- United States
- Prior art keywords
- antenna
- audio
- amplifier
- earth
- secondary winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004891 communication Methods 0.000 title claims description 19
- 230000001939 inductive effect Effects 0.000 title description 5
- 230000005236 sound signal Effects 0.000 claims abstract description 12
- 238000004804 winding Methods 0.000 claims description 23
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 12
- 230000001965 increasing effect Effects 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 7
- 230000004044 response Effects 0.000 description 15
- 230000002238 attenuated effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/24—Inductive coupling
- H04B5/26—Inductive coupling using coils
- H04B5/266—One coil at each side, e.g. with primary and secondary coils
Definitions
- SHEET 2 BF 5 I VOICE BAND-+ I60 I l
- FIG. l2 PREAMP p w PATENIED JUM 9 I975 SHEET 5 OF 5 FIG. I5
- the invention generally relates to communication systems, and particularly to a through the earth voice communication system.
- injured and uninjured men will leave the vicinity of the explosion and fires, and will seek refuge in pre-existing refuge chambers at various locations within the mine. Smaller groups of men may be trapped anywhere within the mine and may not have access to these refuge chambers or other special equipment previously placed in designated areas. These men will likely have no equipment or means of communication other than that which was part of their attire at the time of the disaster.
- a carrier signal is modulated by the voice intelligence to be transmitted, such modulation being in the form of frequency modulation, amplitude modulation or pulse position modulation, for example.
- the higher frequencies are attenuated more and accordingly the carrier signal is attenuated after a relatively short distance through the earth.
- the carrier signal is attenuated after a relatively short distance through the earth.
- much more expensive and higher powered transmitting equipment is required to compensate for the attenuation.
- the present invention provides a through the earth voice communication system which allows for great separation between transmitter and receiver, and wherein the receiver may be carried on a person, and wherein voice reproduction is of extremely high quality.
- a transmitter means for transmitting an audio signal through the earth to a receiver.
- the signal transmitted is a band of frequencies within the audio range.
- the transmitter and receiver may be at the same, or different levels with one, or both being located within the earth.
- the receiver means includes an audio amplifier, a loop antenna coupled to the audio amplifier and an output, such as a speaker or earphone for converting the audio amplifier output to an audible sig- BRIEF DESCRIPTION OF THE DRAWINGS
- FIG. 1 illustrates, with portions broken away, a mine environment in which the present invention may be utilized;
- FIG. 2 is a block diagram of the transmitter means
- FIG. 3 is a block diagram of the receiver means
- FIG. 4 is a curve illustrating the attenuation of various frequencies in through the earth transmission
- FIG. 5 is a curve illustrating the loop antenna response
- FIG. 6 is a curve illustrating the resultant signal obtained through the use of the loop antenna of FIG. 3, in conjunction with the transmitter means of FIG. 2;
- FIG. 7 is a plan view
- FIG. 8 is a side elevational view of the coverage obtained with a long line antenna
- FIG. 9 is a block diagram illustrating a transmitter means for obtaining greater coverage
- FIGS. 10 and 11 illustrate other antenna configurations
- FIG. 12 illustrates another type of antenna which may be used in the transmitting means
- FIG. 13 illustrates the invention in conjunction with a miners helmet
- FIG. 14 illustrates another use for the present invention.
- FIG. 15 is a curve illustrating the loop antenna response for the embodiment of FIG. 14.
- FIG. 1 there is illustrated a mine site with a portion of the earth broken away to show a section of the mine 10.
- a transmitter means 12 having a long line, insulated wire transmitting antenna 13 grounded at both ends 15 and 16 by connection to the earth.
- the ends 15 and 16 may be grounded by a technique utilizing a plurality of grounding stakes driven into the ground in one or more groups with the stakes having, for example, salt water poured on them, and each being electrically connected to an end.
- the transmitter means is operable to transmit an audio signal, directly and without modulating a carrier, through the earth to one or more receiver means.
- a receiver means may be carried by each miner and will also be located in pre-existing refuge chambers 22.
- the transmitter means 12 includes an audio frequency power amplifier for amplifying the audio signal provided by an input means such as microphone 27 in response to a speaker.
- the audio amplifier can be driven with a preamplifier 29 of the type that is typically used for normal audio frequency amlification and a suitable power supply 31 is provided to supply necessary operating potentials.
- the output of the audio frequency power amplifier 25 is an audio signal within the audio range.
- the audio range occupies a band from approximately 20 to 20,000 HZ and speech occupies the band primarily. from 50 to 7,500 Hz although most of the information is contained within the 300 to 3,000 Hz range.
- the transmitter means 12 may be designed to provide an output band of frequencies substantially within this lat-' ter range and herein termed the voice band.
- a coupling and matching network in the form of a transformer 32 having a primary and secondary winding 33 and 34 respectively for matching the output of the amplifier 25 to the impedance of the antenna 13.
- the transformer 32 may incorporate a secondary winding 34 which includes multiple taps 35 selectable, such as by a switch 36, to permit matching a wide variety of antenna impedances.
- one section of antenna 13 may be coupled to one end of the transformer secondary winding and the other section of antenna 13 may be coupled to the switch 36.
- the two antenna sections are preferably on respective reels carried by vehicles which may then drive off in opposite directions to antenna grounding positions. Alternatively one end may be grounded and a single long length of antenna wire, reel mounted and vehicle carried, may be connected to the switch (or vice versa).
- the antenna should be buried just below the surface to avoid damage.
- the receiving means 38 includes an audio amplifier designed for amplifying the band of frequencies being transmitted, and suitable filter means may be included for rejecting noise signals outside the transmitted band.
- the audio amplifier 40 includes means for connection to a source of operating potential in a form of power supply 42. If the receiving apparatus is located within a refuge chamber, the power supply 42' may be a rechargeable battery within the chamber; if the receiving means 38 is carried by a miner, the power supply 42 may be from the battery normally carried by the miner to power his helmet carried light.
- a receiving antenna in the form of loop antenna 46 is provided to receive the transmitted signal, and more particularly the magnetic field thereof, to provide an output voltage, herein termed the terminal voltage of the loop, to the audio amplifier.
- the output of the audio amplifier 40 is connected to an output transducer means 49 for converting the output signal to an audible signal.
- the output transducer means may, for example, be a speaker or a set of earphones.
- FIG. 4 the horizontal axis is a log scale of frequency, and the vertical axis represents the strength of the magnetic field received, measured in decibels (db), relative to 1 amp per meter, a typical designation for magnetic field strength.
- FIG. 4 illustrates the situation for a thousand foot depth with an earth conductivity of 10" mhos per meter.
- Curve 52 is the resultant response with a transmitter antenna of a 1,000 meter length and a 1 ampere antenna current and curve 52', having a similar slope, is the response with an antenna of a meter length and a l ampere antenna current. It is seen that as the frequency increases, the magnetic field strength decreases and this is due to the fact that increased attenuation occurs with increased frequency. Since the field strength is not uniform across the voice band, any amplification thereof will result in a distorted and perhaps unintelligible output.
- the loop antenna 46 is designated to compensate for this non-uniform attenuation.
- the loop antenna 46 consists of winding 55 having a number of turns of wire disposed about a core which may be air, or for example, a ferrite core 57 as illustrated in FIG. 3.
- a typical loop antenna response is illustrated in FIG. 5 wherein the horizontal axis is a log scale of frequency and the vertical axis represents the loop terminal voltage induced, due to a given magnetic field, the units being in decibels relative to one volt. Up until a point at which self resonance is approached, the induced RMS terminal voltage is given by the relationship:
- V is in volts f is the frequency in hertz
- A is the area of the coil in square meters
- N is the number of turns of wire in the coil
- H is the RMS magnetic field in amperes per meter.
- Thearea of the antenna may be calculated knowing the diameter D (A 1rD /4) and since there may be many layers wound around the core 57, D is taken to be the mean diameter. Associated with the winding is a distributed capacitance whose capacitive reactance increases with increasing frequency while inductive reactance decreases with increasing frequency. When the inductive and capacitive reactances are equal at a particular frequency, the loop antenna is self resonant and the particular frequency is herein termed the self resonant frequency fr.
- the curve of FIG. 5 is the output voltage vs. frequency characteristic, for a given magnetic field H of 1 amp per meter with 800 turns of wire, an area of 0.69 square meters and a core of free space.
- the curve illustrates that the loop terminal voltage increases linearly to a peak point 60 and thereafter decreases linearly. Peak point 60 occurs at the self resonant frequency fr.
- the linear response is approximately 6 db per octave, that is, for each doubling of the frequency the terminal voltage doubles.
- the resonant frequency for the loop antenna of FIG. 3 is designed to occur above the band of frequencies being transmitted. In this manner the antenna is operated in the linear range 62 encompassing the voice band transmission. Accordingly, as the higher frequencies result in lower field strengths and as the loop antenna provides a higher output voltage for these frequencies the combined action being illustrated in FIG. 6 results in a terminal voltage which does not vary greatly with frequency within the band of interest.
- curve 65 represents the magnetic field strength response such as previously illustrated in FIG. 4 and curve 66 represents the linear portion of the receiving loop response curve of FIG. 5. If the two curves are multiplied by one another (or added logarithmically), that is if, for each frequency, the actual value of H be utilized in equation (1), there results a substantially constant output voltage as illustrated by curve 68. It is to be noted that the transmitted audio signal is actually varying in amplitude; the voltage referred to is the RMS voltage. The amplification of the signal represented by curve 68 which is substantially linear in response to the receipt of the band of frequencies being transmitted insures a substantially distortionless output from the audio amplifier 40, FIG. 3, and an intelligible output signal from the output transducer 49.
- Intelligible communications for a system is a necessity, particularly in a mine disaster situation since its use may be by injured, frightened, or confused personnel who must respond to given instructions. Because of transmitter power limitations in the mine and strong atmospheric noise levels at the surface, the available signal to noise ratios at the surface will be far less than those obtained with the transmission from the surface to the mine. However by using a narrow band code system with a low data rate as a miner response unit, the signal to noise ratio can be made sufficiently high to obtain reliable message transmission. These response units may be placed within refuge chambers with each being assigned a slightly different frequency from the others for identification purposes.
- a seismic response may be made in accordance with received instructions by hammering on the mine wall or other mine structure.
- FIG. 7 is a plan view of a long wire antenna 72 of length L, illustrating an approximate area of coverage 74 and FIG. 8 is a side elevational view illustrating the area of coverage 76 penetrating into the earth.
- the coverage obtained with the system is dependent upon various factors such as earth conductivity, the length L of the wire antenna and the current coupled into it from the audio amplifier. In order to increase the coverage an arrangement such as illustrated in FIG. 9 may be utilized.
- FIG. 9 there is provided a coupling means 80 for coupling the output of the audio frequency power amplifier to a plurality of antennas 83 and 84.
- a plurality of audio frequency power amplifiers could be coupled to the microphone to drive respective antennas.
- the coupling means of FIG. 9 as well as other coupling means, to be described, could incorporate the multiple tap arrangement of FIG. 2.
- FIGS. 10 and 11 Other predetermined antenna placements are illustrated in FIGS. 10 and 11, FIG. 10 showing a'crossed pair, and FIG. 11 showing a radial array, by way of example.
- FIG. 12 illustrates an alternative to the long wire antenna grounded at both ends, as previously described.
- Coupling means 86 couples the output of the audio frequency power amplifier to a large loop antenna 89 which may, in a practical embodiment, have sides which are many thousands of feet in length.
- the simplicity of the system, and particularly the receiver means minimizes expense such that each miner may be provided with the receiver means. Fabrication may be made utilizing integrated circuits and the receiver means may be easily carried on the miner or may be built into the miners helmet as illustrated in FIG. 13.
- the helmet 92 carries a miners light 93 operated by a miner-carried battery 95.
- a receiving loop antenna may be positioned conveniently on the miner or, as illustrated by numeral 98, may be positioned around the inside of the helmet 92 and an output speaker or earphones may be positioned on the brim 102 of the helmet 92.
- the remainder of the receiving means is contained in a package 104 also mounted on the brim 102. Obviously the small size of the package 104 permits its placement in any other desired position on his helmet 92 or elsewhere on his person.
- the present invention provides a voice communication link not only from the surface to the mine but additionally from the mine to the surface.
- a transmitter means such as illustrated in FIG. 2 may be placed within the mine with the antenna ends grounded in the mine, and a receiver such as illustrated in FIG. 3 may be utilized at the surface. Since power requirements need not be kept'to a minimum at the surface, the receiving means may be operated at increased power levels to insure higher signal to noise ratios.
- the transmitting antenna could also be of the type illustrated in FIG. 12 wherein the loop could be positioned around the walls of a tunnel.
- the transmitter and receiver means are for spaced apart operation with at least one being for location within the earth.
- a transmitter means includes an audio frequency power amplifier 112 receiving signals from an input means 115 which may be a microphone for real time voice transmissions or a recorded message to be transmitted, via a long wire antenna 118 buried beside, or as illustrated in FIG. 14, buried beneath a roadbed 120.
- the transmitter means 110 includes the power supply 122, preamplifier 123, and the coupling means 125, as previously described.
- a vehicle such as car 129 includes a receiving means 132 having a loop antenna 133 the receiving means being of the type described with respect to FIG. 3.
- the vehicle thus could receive information or warnings from such transmissions which could for example, upon approaching an intersection or road hazard, warn the driver of the approaching hazard and the action he should be prepared to take.
- FIG. 14 shows the designed output voltage versus frequency characteristic for the loop antenna 133.
- the antenna is designed such that the response is relatively flat in the vicinity of the self resonant frequency fr and the self resonant frequency is within the band of frequencies being transmitted. This may be accomplished by adding resistance to the loop antenna to lower its Q thereby flattening the curve.
- the self resonant frequency fr may be shifted downward by the addition of capacitance to the loopantenna such as across the loop antenna terminals.
- operation of the loop antenna 133 is within the range from point 135 to point 136. Since the field strength will be relatively constant for the band of frequencies transmitted, the relatively constant portion of the loop response curve will result in a substantially constant output RMS voltage as heretofore described.
- a communications system comprising:
- said transmitter and receiver means being for spaced apart operation with at least one being for location within the earth;
- said receiver means including:
- ii means for connecting said audio amplifier to a source of operating potential
- output transducer means for converting the output signal of said audio amplifier to an audible signal
- said loop antenna having an increasing output voltage vs. frequency characteristic, for a given magnetic field, said characteristic being linear up to a self resonant frequency, after which said output voltage vs. frequency characteristic decreases;
- said loop antenna being of a design that said self resonant frequency is above said band of frequencies being transmitted.
- said transmitter means includes: 7
- said antenna means is a relatively large loop.
- said coupling means includes a transformer having a primary and a secondary winding
- said antenna means includes a first and second long insulated wire sections connected to said secondary winding.
- said coupling means includes a transformer having a primary and a secondary winding
- said antenna means is a long insulated wire connected tov one end of said secondary winding, the other end ofsaid secondary winding being for connection to the earth.
- said coupling means includes:
- said secondary winding including multiple taps
- said transmitter means includes:
- said antennas being arranged'in a predetermined pattern in accordance with a desired area coverage.
- a system according to claim l 'for mine use which includes:
- Receiver apparatus for receiving through the earth transmission of an audio signal of a band of frequencies within the audio range, comprising:
- said loop antenna having an increasing output voltage vs. frequency characteristic, for a given magnetic field, said characteristic being linear up to a self resonant frequency, after which said output voltage vs. frequency characteristic decreases;
- said loop antenna being of a design that said self resonant frequency isabove said band of frequencies being transmitted;
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Details Of Aerials (AREA)
- Near-Field Transmission Systems (AREA)
- Transmitters (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10603471A | 1971-01-13 | 1971-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3740488A true US3740488A (en) | 1973-06-19 |
Family
ID=22309114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00106034A Expired - Lifetime US3740488A (en) | 1971-01-13 | 1971-01-13 | Inductive loop through-the-earth communication system |
Country Status (8)
Country | Link |
---|---|
US (1) | US3740488A (fr) |
AU (1) | AU3736171A (fr) |
BE (1) | BE777931A (fr) |
CA (1) | CA941308A (fr) |
DE (1) | DE2200784A1 (fr) |
FR (1) | FR2121778B1 (fr) |
GB (1) | GB1382257A (fr) |
ZA (1) | ZA718534B (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3411478A1 (de) * | 1983-03-28 | 1984-10-04 | Institut Français du Pétrole, Rueil-Malmaison, Hauts-de-Seine | Verfahren zum uebertragen eines signals ohne elektrische verbindung durch eine leitende wand, insbesondere den rumpf eines seefahrzeugs und vorrichtung zu seiner durchfuehrung |
US4652857A (en) * | 1983-04-29 | 1987-03-24 | Meiksin Zvi H | Method and apparatus for transmitting wide-bandwidth frequency signals from mines and other power restricted environments |
US4864301A (en) * | 1987-07-24 | 1989-09-05 | Richard J. Helferich | Variable speed transmission recording and retrieval of data |
US4905003A (en) * | 1987-07-24 | 1990-02-27 | Richard J. Helferich | Analog/digital data storage system |
US5003576A (en) * | 1987-07-24 | 1991-03-26 | Richard J. Helferich | Analog/digital voice storage cellular telephone |
USRE34976E (en) * | 1987-07-24 | 1995-06-20 | Richard J. Helferich | Analog/digital voice storage cellular telephone |
USRE37618E1 (en) * | 1987-07-24 | 2002-04-02 | Richard J. Helferich | Analog/digital data storage system |
US20100311325A1 (en) * | 2009-06-03 | 2010-12-09 | Marshall Radio Telemetry, Inc. | Systems and methods for through-the-earth communications |
US20120293150A1 (en) * | 2008-03-28 | 2012-11-22 | Broadcom Corporation | IC Package with Embedded Transformer |
US20130003244A1 (en) * | 2007-12-12 | 2013-01-03 | Broadcom Corporation | Integrated Circuit Package with Transformer |
US8395878B2 (en) | 2006-04-28 | 2013-03-12 | Orica Explosives Technology Pty Ltd | Methods of controlling components of blasting apparatuses, blasting apparatuses, and components thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2163029B (en) * | 1984-08-06 | 1987-11-18 | Peter James Raynor | Inductive communication system |
GB8530772D0 (en) * | 1985-12-13 | 1986-01-22 | Gradwell Paul Stephen | Communication system |
CA1311527C (fr) * | 1988-05-02 | 1992-12-15 | Kenneth E. Hjelmstad | Systeme d'alarme-incendie electromagnetique pour mine souterraine |
ES2330286B1 (es) * | 2007-07-26 | 2010-09-21 | Universidad De Zaragoza | Metodo y dispositivo de transmision y recepcion de audio para comunicaciones bidireccionales mediante inyeccion de corriente. |
GB2563872B (en) | 2017-06-28 | 2022-06-15 | Kirintec Ltd | Communications system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1015485B (de) * | 1956-07-21 | 1957-09-12 | Siemens Ag | Bewegliche Mikrophonanordnung mit einem Mikrophonverstaerker, der insbesondere mit dem Mikrophon eine Baueinheit bildet |
US2853557A (en) * | 1955-01-28 | 1958-09-23 | Dictograph Products Co Inc | Sound distribution system |
US2980793A (en) * | 1956-06-11 | 1961-04-18 | Electronic Safety Engineering | Restricted range radio transmitting system |
GB1031994A (en) * | 1965-01-22 | 1966-06-08 | John Davis & Son Derby Ltd | Improvements in inductive signalling systems for mines, tunnels and similar situations |
US3323063A (en) * | 1964-08-07 | 1967-05-30 | Theodore Granik | System for re-diffusion of received radio signals |
US3470474A (en) * | 1966-12-23 | 1969-09-30 | Donald E Bilger | Underground radio communication system for highways |
US3495209A (en) * | 1968-11-13 | 1970-02-10 | Marguerite Curtice | Underwater communications system |
-
1971
- 1971-01-13 US US00106034A patent/US3740488A/en not_active Expired - Lifetime
- 1971-10-19 CA CA125,475A patent/CA941308A/en not_active Expired
- 1971-12-21 ZA ZA718534A patent/ZA718534B/xx unknown
- 1971-12-24 AU AU37361/71A patent/AU3736171A/en not_active Expired
- 1971-12-30 GB GB6070071A patent/GB1382257A/en not_active Expired
-
1972
- 1972-01-08 DE DE19722200784 patent/DE2200784A1/de active Pending
- 1972-01-12 BE BE777931A patent/BE777931A/fr unknown
- 1972-01-12 FR FR7200918A patent/FR2121778B1/fr not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2853557A (en) * | 1955-01-28 | 1958-09-23 | Dictograph Products Co Inc | Sound distribution system |
US2980793A (en) * | 1956-06-11 | 1961-04-18 | Electronic Safety Engineering | Restricted range radio transmitting system |
DE1015485B (de) * | 1956-07-21 | 1957-09-12 | Siemens Ag | Bewegliche Mikrophonanordnung mit einem Mikrophonverstaerker, der insbesondere mit dem Mikrophon eine Baueinheit bildet |
US3323063A (en) * | 1964-08-07 | 1967-05-30 | Theodore Granik | System for re-diffusion of received radio signals |
GB1031994A (en) * | 1965-01-22 | 1966-06-08 | John Davis & Son Derby Ltd | Improvements in inductive signalling systems for mines, tunnels and similar situations |
US3470474A (en) * | 1966-12-23 | 1969-09-30 | Donald E Bilger | Underground radio communication system for highways |
US3495209A (en) * | 1968-11-13 | 1970-02-10 | Marguerite Curtice | Underwater communications system |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3411478A1 (de) * | 1983-03-28 | 1984-10-04 | Institut Français du Pétrole, Rueil-Malmaison, Hauts-de-Seine | Verfahren zum uebertragen eines signals ohne elektrische verbindung durch eine leitende wand, insbesondere den rumpf eines seefahrzeugs und vorrichtung zu seiner durchfuehrung |
US4652857A (en) * | 1983-04-29 | 1987-03-24 | Meiksin Zvi H | Method and apparatus for transmitting wide-bandwidth frequency signals from mines and other power restricted environments |
USRE37618E1 (en) * | 1987-07-24 | 2002-04-02 | Richard J. Helferich | Analog/digital data storage system |
US4905003A (en) * | 1987-07-24 | 1990-02-27 | Richard J. Helferich | Analog/digital data storage system |
US5003576A (en) * | 1987-07-24 | 1991-03-26 | Richard J. Helferich | Analog/digital voice storage cellular telephone |
USRE34976E (en) * | 1987-07-24 | 1995-06-20 | Richard J. Helferich | Analog/digital voice storage cellular telephone |
US4864301A (en) * | 1987-07-24 | 1989-09-05 | Richard J. Helferich | Variable speed transmission recording and retrieval of data |
US8395878B2 (en) | 2006-04-28 | 2013-03-12 | Orica Explosives Technology Pty Ltd | Methods of controlling components of blasting apparatuses, blasting apparatuses, and components thereof |
US20130003244A1 (en) * | 2007-12-12 | 2013-01-03 | Broadcom Corporation | Integrated Circuit Package with Transformer |
US8855581B2 (en) * | 2007-12-12 | 2014-10-07 | Broadcom Corporation | Integrated circuit package with transformer |
US20120293150A1 (en) * | 2008-03-28 | 2012-11-22 | Broadcom Corporation | IC Package with Embedded Transformer |
US8912639B2 (en) * | 2008-03-28 | 2014-12-16 | Broadcom Corporation | IC package with embedded transformer |
US20100311325A1 (en) * | 2009-06-03 | 2010-12-09 | Marshall Radio Telemetry, Inc. | Systems and methods for through-the-earth communications |
Also Published As
Publication number | Publication date |
---|---|
AU3736171A (en) | 1973-06-28 |
BE777931A (fr) | 1972-07-12 |
GB1382257A (en) | 1975-01-29 |
DE2200784A1 (de) | 1972-07-20 |
CA941308A (en) | 1974-02-05 |
FR2121778A1 (fr) | 1972-08-25 |
FR2121778B1 (fr) | 1974-11-08 |
ZA718534B (en) | 1972-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3740488A (en) | Inductive loop through-the-earth communication system | |
US5301082A (en) | Current limiter circuit | |
US5093929A (en) | Medium frequency mine communication system | |
US3609247A (en) | Inductive carrier communication systems | |
US6195561B1 (en) | Antenna system for two-way UHF underground radio system | |
Murphy et al. | Underground mine communications | |
US4507646A (en) | Radio communication system | |
GB2126845A (en) | Radio communication systems for underground mines | |
US3760278A (en) | Limited range radiocommunication system | |
Monk et al. | Communication with moving trains in tunnels | |
JPS63500909A (ja) | ロ−プによって情報伝達するケ−ブルカ− | |
US1220005A (en) | Wireless signaling system. | |
US3191122A (en) | Communication system for sielded areas | |
US2427979A (en) | Communication and control system for airplanes | |
US2257094A (en) | High frequency radio relay system | |
WO1997027645A1 (fr) | Systeme de communication electromagnetique basse frequence et son antenne | |
US3715664A (en) | Method of repeating rf-borne signal across an earth barrier | |
JPS5842329A (ja) | 映像伝送装置 | |
US1375675A (en) | Signaling method and system | |
Ilsley et al. | Experiments in underground communication through earth strata | |
US5669065A (en) | Completely redundant communication system utilizing radiating transmission line | |
CN220067424U (zh) | 一种跨介质磁通讯系统 | |
CN203335133U (zh) | 井下音频广播报警装置 | |
Chufo | Vehicular communications 2500 feet underground | |
Coggeshall et al. | Some Studies on Emergency Mine Communications |