US3739532A - Apparatus for transferring and operating on articles - Google Patents
Apparatus for transferring and operating on articles Download PDFInfo
- Publication number
- US3739532A US3739532A US00158376A US3739532DA US3739532A US 3739532 A US3739532 A US 3739532A US 00158376 A US00158376 A US 00158376A US 3739532D A US3739532D A US 3739532DA US 3739532 A US3739532 A US 3739532A
- Authority
- US
- United States
- Prior art keywords
- beveling
- vessel
- rim
- edge
- belt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B21/00—Machines or devices using grinding or polishing belts; Accessories therefor
- B24B21/16—Machines or devices using grinding or polishing belts; Accessories therefor for grinding other surfaces of particular shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q7/00—Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
- B23Q7/003—Cyclically moving conveyors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q7/00—Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
- B23Q7/04—Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of grippers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B11/00—Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
- B25B11/005—Vacuum work holders
Definitions
- ABSTRACT Primary ExaminerDonald G. Kelly Attorney-Richard B. Dence and E. J. Holler [57] ABSTRACT
- the features of the invention are illustrated in a pre- June 19, 1973 ferred embodiment which provides novel apparatus for automatically beveling the edges or rims of television picture tube funnel or viewing panel components.
- the components are delivered to an input station from which they are successively transferred to an edge beveling station.
- Each component is clamped at the beveling station with the rim at a predetermined height.
- the rim edges are contacted with edgebeveling means also located to bevel at the same predetermined height.
- the edge beveling means and the rim are moved with respect to each other at the predetermined height until the beveling is completed to obtain a uniform bevel completely around the rim.
- a component to be beveled is advantageously transferred from the input station to the beveling station while a beveled component is being transferred from the beveling station to the dischargestation.
- Each component is aligned at the input station to insure proper orientation for transferring the component to the beveling station to enable clamping.
- the beveling; of components is limited in accordance with the requirements of a successive operation station.
- Transfer means are provided for moving components between the stations and includes a first carriage horizontally movable along the stations and a second vertically movable carriage, one of the first and second carriages being mounted on and movable with the other of the carriages.
- the second carriage has two spaced component handling or article handling arms extending over the stations.
- Means are provided for raising and lowering the second carriage to enable pickup of components at the input and edge beveling stations and the deposit of components at the beveling and discharge stations, respectively.
- Means are also provided for moving the first carriage back and forth enabling transfer of components between successive stations.
- the input station may include a delivery conveyor and an alignment fixture having an alignment channel above and opening upstream of the run of the conveyor.
- the aligning channel includes a semicircular terminal portion having a diameter equal to the diagonal of the component, and channel sides extending outwardly toward the edges of the conveyor to direct the component into the terminal portion of the channel.
- Means responsive to the presence of a component at the input station enables a component transfer cycle by the transfer means.
- Means responsive to the presence of a component at the discharge station inhibits a'component transfer cycle by the transfer means.
- Each of the component handling arms includes means for engaging a component to transfer the com ponent.
- Means are provided for sensing that the horizontally movable carriage has positioned the component handling arms at the input and beveling stations, and for sensing that the vertically movable carriage is lowered to a component grasping position to enable operation of the component engaging means on each of the arms to grasp the component.
- the operation of the component engagement means is sensed to enable operation of the means for raising the second carriage.
- the arrival of the component handling arms above the beveling and discharge stations is sensed to enable operation of the means for lowering the second carriage.
- Means are further provided for sensing that the horizontally movable carriage has positioned the component handling arms at the beveiing and discharge sta tions and for sensing that the vertically movable carriage is lowered to a component releasing position to enable operation of the component engaging means on each of the arms to release the component grasped thereby.
- the releasing operation of the component engaging means is sensed to enable the first carriage moving means to return the component handling arms to a position above the input and beveling stations.
- Means responsive to the completion of a beveling cycle at the beveling station are provided for enabling a component a transfer cycle by the transfermeans.
- Means are also provided which are responsive to the presence of a component at the input stationfor inhibiting operation of the delivery conveyor means to provide more components at the station.
- the beveling station includes means for supporting the vessel and moving the rim of the open end thereof past at least two edge beveling stations or units.
- Each of the edge beveling stations preferably includes a flexible endless belt having a normally flat straight working run provided with an abrasive surface, a pair of spaced guide pulleys over which the belt is trained to support the same, means for driving the belt over the guide pulleys, and means operable to move the guide pulleys to position the workingrun of each belt into and out of contact with an inner and an outer edge, respectively, of the rim at an acute angleiwith respect to the rim.
- Each spaced pair of guide pulleys are supported on a substantially vertical plate.
- a take-up pulley is provided on each plate, also having the belt trained therearound.
- Means are provided for journally supporting each take-up pulley.
- the journal support means for each take-up pulley is yieldingly biased against the pull of the belt trained therearound.
- the vessel has a configuration with at least one portion thereof extending further away from the axis of vessel movement or rotation than other rim portions, such as a rectangular picture tube, it is advantageous to provide means for yieldingly biasing the pairs of guide pulleys toward the outside edge of the vessel rim to maintain belt contact therewith.
- Stop means may be provided for limiting movement of the outside edge guide pulleys away from the vessel in response to movement of the outwardly extending rim configuration portion past the outside edge guide pulleys, whereby the yieldingly biasing means for the take-up pulley and the yieldingly biasing means for the outside edge guide pulleys cooperate to provide an increased combined spring force to urge the belts against the outside of the outwardly extending configuration portion of the vessel rim.
- the vessel supporting and moving means advantageously includes rotatable spindle means and vacuum chuck means carried on the end of the spindle means for selectively clamping the vessel to the spindle means.
- the vacuum chuck means advantageously includes a first sealing means having a peripheral configuration which substantially mates with a first internal cross section of a vessel being clamped, and a second sealing means having a peripheral configuration which substantially mates with a second larger internal cross section of the vessel being clamped.
- the first and second sealing means are maintained in a spaced relationship enabling their mating with the first and second internal cross sections at the same time.
- Passage means are provided for enabling creation of a partial vacuum in a space defined by the first and second sealing means and an interior wall of a vessel located between the sealing means and mated therewith.
- the edge beveling station further includes means responsive to the clamping of a vessel by the vacuum chuck means for initiating rotation of the spindle means. Means responsive to the completion of an edge beveling cycle is provided for terminating rotation of the spindle means and for deactivating the vacuum chuck means. Operation of the belt driving means is initiated in response to the clamping of a vessel by the vacuum chuck means, and the belt driving means is deactivated in response to the completion of an edge beveling cycle.
- the guide pulley moving means for each edge beveling station includes means for yieldingly biasing each of the pairs of guide pulleys toward the vessel rim, and means for positively retracting each of the pairs of guide pulleys from the vessel rim.
- the placing of a vessel on a support means in edge beveling position is sensed to inhibit the action of the guide pulley retracting means to enable the guide pulley biasing means to move the belts into edge beveling contact with the rim.
- the completion of the edge beveling cycle is sensed to activate the retracting means to move the belts out of contact with the vessel rim.
- a positive pressure may be advantageously applied to the vacuum chuck means in response to the completion of an edge beveling cycle to insure release of the vessel from the vacuum chuck means.
- FIG. I is a partially diagrammatic side elevational view of apparatus embodying the teachings of this invention with portions of some parts being omitted for the purposes of clarity, the omitted portions being shown in greater detail in later figures;
- FIG. 2 is a plan elevational view of the apparatus illustrated in FIG. I;
- FIG. 3 is an end elevational view of the apparatus illustrated in FIG. 1, taken from the right side thereof;
- FIG. 4 is a side elevational view of a horizontally movable carriage portion of the transfer device of this invention.
- FIG. 5 is an end elevational view of the apparatus i1- lustrated in FIG. 4, taken from the right side thereof;
- FIG. 6 is a plan view of a vertically moving carriage supported on the horizontally moving carriage, and the article engaging mechanisms extending therefrom, of the transfer device of this invention
- FIG. 7 is an end elevational view of the apparatus illustrated in FIG. 6, taken from the left side thereof;
- FIG. 8 is an enlarged plan view of the delivery conveyor and the ware alignment fixture associated therewith;
- FIG. 9 is a side elevational view, partially in section, of the rotatable spindle at the beveling station.
- FIG. 10 is a cross-sectional view of the apparatus illustrated in FIG. 9 taken along lines XX thereof;
- FIG. 11 is a cross-sectional side view of the vacuum chuck apparatus to be utilized at the beveling station mounted on the rotatable spindle;
- FIG. 12 is a plan view of the support means for the belt driving units at the beveling station
- FIG. 13 is a side elevational view of the apparatus illustrated in FIG. 12;
- FIG. 14 is an end elevational view of the apparatus illustrated in FIG. 13, taken from the right side thereof;
- FIG. 15 is an elevational view of the belt drive unit for outside edge beveling
- FIG. 16 is a side view of the apparatus illustrated in FIG. 15, taken from the left side thereof and partially in section;
- FIG. 17 is an enlarged fragmentary view of the belt section, of a portion of the belt tensioning means for the apparatus of FIG. 18;
- FIGS. 21a and 21b are schematic diagrams of a pneumatic control circuit for the apparatus illustrated herein.
- FIG. 22 is a schematic diagram of an electrical control circuit for the apparatus herein.
- FIGS. 1, 2 and 3 there is illustrated a general assembly layout of a machine which incorporates the teachings of this invention in automatically edge beveling television component parts.
- An input station is designated generally at 92
- a beveling or operations station is designated generally at 94
- an output or discharge station is designated generally at 96.
- a first carriage 100 is mounted for horizontal reciprocable movement longitudinally along the three stations.
- a second carriage 130 is mounted for vertical recipro cable movement on the first carriage 100.
- An air or fluid cylinder 116 is provided for moving the first carriage 100 back and forth along the stations.
- a second air or fluid cylinder 140 is provided for vertically moving the second carriage 130 up and down on the supporting first carriage 100.
- a pair of spaced transfer arms 150 and 210 extend out from the carriage 130 over the process line.
- the spacing between the arms 150, 210 matches the spacing between the machine stations.
- Article engaging means on the end of the arms 150, 210 are actuated open and closed by air cylinders 190 and 250 to grasp and pick up articles to move them between stations.
- a ware aligning fixture 270 is supported just above a delivery conveyor 260 which beings components to the input station 92. y
- a ware supporting and rotating means is indicated generally at 300 and includes a rotatable spindle having a vacuum chuck indicated generally at 340 for clamping the ware in place for the edge beveling operation.
- Edge beveling belt driving units 560and 660 are illustrateddiagrammatically in FIG. 3 and are positioned to edge bevel the outer and inner edges, respectively, of a vessel clamped'in place on the vacuum chuck 340.
- Edgebeveler support arms 380 and 480 for the belt drive units 560 and 660, respectively, are best seen in FIG. 2.
- a limit valve LV1 is best seen in FIGS. 1 and 2 and is disposed at the input station 92 to detect by contact with the sensor rod L VIS the presence or absence of ware at the input station.
- a limit valve LV11 is provided at the discharge station 96 and sensed via a sensor rod [N1 18 the presence or absence of ware on a discharge conveyor 280at the discharge station.
- limit valves LV2 and LV3 are providedon the carriage 100 to detect the position of'thecarriage 130.
- Limit valves LV4 and LVS are provided on the machine frame to detect the posi-. tion of the carriagelllll.
- Limit valves LV6 and LV7 are provided on the vertically movable carriage 130, best seen in FIGS. 2 and 6, to detect when the article engaging clamps are open.
- Limit valves LV8 and LV9 are also provided on carriage 130 to detect when the. article engaging clamps are closed.
- a limit valve LV10 is illustrated in FIGS. 9 and 10 and provides an indication that the edge beveling cycle is complete and also an indication of the position of the rotatable spindle.
- FIGS. 4 and 5 there is illustrated the horizontally movable carriage 100.
- A, rectangular frame 102 is supported on an upper bracket 104 having spaced pairs of downwardly depending and angularly disposed wheels 106 which ride on an upper rail 108.
- the rail 108 is connected to the machine frame and ex tends along the direction of ware travel.
- the rectangular frame 102 is also supported on a lower bracket 110 having spaced pairs of upwardly extending and angularly disposed wheels 112 which en gage and ride along the lower side of a lower rail 114.
- the rail 114 is also connected to the machine frame and extends along the direction of ware travel.
- a drive plate 115 is attached to the rectangular frame 102 and extends out between the rail 108, 114.
- the drive plate is to be attached to the piston rod 118 of the air cylinder 116 illustrated in FIG. 1. Retraction and extension of the piston rod 118 moves the carriage 100 back and forth in a longitudinal horizontal direction.
- a vertical rail 120 is connected to the rectangular frame 102 and spaced from a vertical rail 122, also connected to frame 102, to define a vertical travel path for the vertically movable carriage 130.
- the carriage 130 is illustrated in greater detail and is shown as including a horizontal cross arm 132 extending between downwardly depending legs 134.
- Each of the legs 134 carries spaced pairs of angularly disposed wheels 136, opposing pairs of the wheels 136 facing away from each other to en gage and travel along the vertical rails 120, 122, supported on the carriage 100.
- An air cylinder 140 is mounted on thecarriage 100 and is connected via a piston rod 142 to the horizontal cross arm 132 of the carriage 130. Extension andretraction of the piston rod 142 raises and lowers the carriage 130.
- An input transfer arm is supported at one end on the cross arm 132 and has at the other end aclamp support bracket 152.
- Opposing chuck arms 154 and 156 are pivotally mounted on a bracket 152 at 158 and 160, respectively.
- Chuck adapters 162 and 164 are mounted on the chuck arms 154, l56' to enable engagement of the articles being transferred, inthis instance the neck of a funnel.
- v e i An upper drive' crank 166 is secured to a vertical drive shaft 168. pivotally supported or mounted in the transfer arm 150.
- a lower drive crank 1.70 is secured to the lower end of the drive shaft 168.
- a connecting rod 112 has one end pivotally con nected at 174 to the chuck arm 154, and the other end pivotally connected atfl76 to the upper drive crank 166.
- Aconnecting rod has one end pivotally connected at 182 to the chuck arm 156, and the other end pivotally connected at 184 to the upper drive crank 166.
- An air cylinder drive means for the article engaging chuck arms has the cylinder end pivotally connected at 192 to a clevis device 194 extending out from the cross arm 132.
- the rod endof the air cylinder drive means 190 is pivotally connected at 196 to the, lower drive crank 1'70.
- a discharge transfer arm 210 is supported at one end on the cross arm 132 and has on the other end thereof a clamp support bracket 212.
- Opposing chuck arms 214 and 216 are pivotally mounted on the bracket 212 at 218 and 220, respectively.
- Chuck adapters 222 and 224 are mounted in opposition on the chuck arms 214 and 216 to enable engagement of the article being transferred.
- the chuck adapters 222, 224 and 162, 164 may be changed to accommodate different sizes of ware being transferred. If a viewing panel is being processed for edge beveling instead of a funnel, then a vacuum cup suction pick up type of article engaging means may be utilized in place of the chuck arms illustrated in FIG. 6.
- An upper drive crank 226 is secured to a vertical drive shaft 228 pivotally mounted in the transfer arm 210.
- a lower drive crank 230 is mounted on the lower end of the drive shaft 228.
- a connecting rod 232 has one end pivotally connected at 234 to the chuck arm 214 and the other end pivotally connected at 236 to the upper drive crank 226.
- a connecting rod 240 has one end pivotally connected at 242 to the chuck arm 216 and has the other arm pivotally connected to the upper drive crank 226.
- An air cylinder drive means 250 has the cylinder end pivotally connected at 252 to the clevis device 194 extending out from the cross arm 132, and the rod end pivotally connected at 256 to the lower drive crank 230.
- the air cylinder 250 operates in a manner similar to that described for air cylinder 190 in that extension of the rod of air cylinder 250 closes the chuck arms 214, 216, while retraction of the rod opens the chuck arms.
- Limit valves LV6 and LV7 are mounted on cross arm 132 and, in response to movement of the upper drive cranks 166, 266, provide a signal when the clamps are open.
- limit valves LVS and LV9 are mounted on the transfer arms 150 and 210, respectively, and in response to movement of the upper drive cranks 166, 226, provide a signal when the clamps are closed.
- a delivery conveyor at the input station 92 is indicated generally at 260 and includes spaced frame members 262 and 264 which carry a plurality of driven rollers 266.
- a ware aligning fixture 270 is supported on frame members 262 and 264 just above rollers 266.
- An input channel 272 of the fixture 2'70 opens upstream of the run of the conveyor 260 to receive ware to be aligned.
- a terminal or end portion of the channel 272 is indicated at 278.
- the are described by the terminal portion 278 of the channel is a semicircle having a diameter equal to the diagonal length of the substantially rectangular components being processed by the machine.
- Opposing channel sides 274 and 276 extend outwardly to ward the edges of the conveyor 260 to direct the rectangular tube components into the terminal end 278 of the channel 272. Since the diagonal and two sides of the rectangular tube define a right angle triangle, the semicircular terminal portion 278 of the channel necessarily aligns the rectangular component so that the center of'the diagonal is at the center of the semicircle, and thus the centrally located neck of the funnel is always positioned in the same place to enable accurate pick up by the neck clamp means described hereinbefore.
- the center of the diagonal of the face panel is again located at the center of the semicircle of the terminal portion 278, enabling accurate pick up at the center of the face panel and transfer to the edge beveling station in an aligned orientation each time.
- Proper orientation of either the funnel or the face panel is important not only for aligning the component for engagement by the transfer device, but also for the proper positioning of the component on the vacuum chuck means at the edge beveling station to enable proper contact by the edge beveling belts or grinders being utilized.
- the chuck arms shown would be replaced by a vacuum suction cup article engaging means if face panels are being processed.
- the vacuum chuck arrangement illustrated and described hereinafter would be replaced by a vacuum cup clamping means or other suitable means for engaging the interior face of a viewing panel.
- a vertical standard 302 is secured to the frame of the machine.
- a spindle support arm 304 is cantilevered from the standard 302 and journally supports a spindle 306 in upper bearings 308 and lower bearings 310 carried in the arm 304'.
- a lower end 312 of the spindle 306 extends below the lower bearings 310 and has drive pulley or sprocket means 314 secured thereto to be rotated via a belt, chain or other connecting means by a spindle motor pulley or sprocket 316.
- a cam 320 is secured to the lower end 312 of the arm 306.
- a cam follower wheel 322 of the limit valve LV10 rides on cam 320 and senses the position of the spindle and thus the position of the ware.
- the edge beveling cycle is completed by one revolution of the rotatable spindle 306, therefore the limit valve LV10 may be utilized to sense the completion of an edge beveling cycle. If more than one revolution were required or if a fraction of a revolution were required, gearing may be connected to the spindle 306 to drive a cam to similarly indicate the completion of an edge beveling cycle.
- a rotating union 326 provides communication between a vacuum source and a passage 328 formed through the center of the spindle 306.
- the passage 328 terminates in a plenum 330 at the upper end of the spindle.
- a spindle extender 332, as illustrated in FIG. 1, may be secured to the top of spindle 306 to vary the height at which the ware is supported.
- the spindle extender 332 again provides communication between the plenum 330 and a passage 336, in the vacuum chuck designated generally at 340 and shown in detail in FIG. 11.
- the vacuum chuck 340 includes a base 342 which has a downwardly extending guide 344 which fits partially into and forms the top of the plenum 330 formed in the top of the spindle 306 or the spindle extender 332.
- An 0 ring 346 forms a seal between the base 342 and the extender 332 or the spindle 306.
- a first or lower annular flexible sealing ring 352 is secured to the vacuum chuck head below that laterally directed opening 354 of the passage 336.
- the sealing means 352 has a peripheral configuration which substantially mates with a larger internal cross section of the television funnel or vessel being clamped.
- a second or upper flexible annular sealing member 356 is secured 'to the vacuum chuck head above the opening 354 from passage 336.
- the sealing means 356 has a peripheral configuration which substantially mates with a relatively smaller cross section of the vessel being clamped.
- An upwardly and inwardly extending flange 358 of the seal 356 is shaped to receive the diminishing cross section of the funnel, and to pull against the fun: nel in response to a vacuum introduced in passage 336.
- An extension of the base 342 maintains the first and second sealing means in a spaced relationship enabling their mating with the first and second internal cross sections at the same time.
- the passage 336 provides communication between the space defined by the first and second sealing means and an interior wall of a vessel on the vacuum chuck which extends between the sealing means and is mated therewith, and a passage connection means, such as a rotary union, exterior of the defined space.
- a passage connection means such as a rotary union
- peripherally extending flexible portions of the seals 352'and 356 are advantageously formed to have a surface which describesan acute angle adjacent a wall of a vessel, enclosing the defined space. This enables each flexible peripheral portion to act as a check valve in responseto the creationof a partial vacuum in the defined space, since the exterior ambient pressure will be pushing the flexible peripheries of the sealing means against the vessel wall.
- a resilient annular neck seat 362 is secured to the top of a seat pin 364 which is mounted for reciprocable sliding movement in a vertical bore 366 formed in the head 340.
- a seat biasing spring 368 is received in a spring housing 370 formed in the pin 364 and extends out of the housing to abut the bottom of the bore 366 and urge the pin 364 upwardly. Travel of the pin 364 is limited by a stop member 372 which is received in a vertical slot 374 formed in the side of the pin 364.
- the neck seat 364 is annular in-shape in this application to accommodate the neck of a funnel being processed
- the seat member 362 generically has 21 pe ripheral configuration which contacts an internal wall of a vessel at a cross section thereof which is smaller than that contacted by the sealing means 356.
- the spring 368 yieldingly biases the seat member 362 away from the sealing means,
- the biasing force of the spring 368 is smaller than the clamping force exerted by the creation of a partial vacuum in the defined space between the two seals, but is advantageously sufficiently large to free the vessel from the sealing means in response to the release of the partial vacuum in passage
- FIGS. l2, l3 and 14 there is illustrated the edge beveler or grinder support arms 380 and 480.
- the outside edge beveler support arm 380 carries an outside edge grinding means on one end 382.
- the other end 384 of the arm 380 is connected to pivotable bracket 386.
- the bracket 386 is pivoted on pins 388 and 390 extending through flanges 392 and 394, respectively, of a flange bracket 396 attached to a frame portion 398.
- a multi-layer leaf spring means 400 which exerts a substantially constant pivoting force on arm 380, is
- An air cylinder 412 is secured to an extension 414 of the flange bracket 396 and has a piston rod 416 extend ing therefrom.
- a rod stop 418 carried on the arm 380 is yieldingly urged against the rod 416 by the spring 400.
- a stop bracket 420 extends from the other side of the flange bracket 396 and limits movement of the arm 380 and the pivotal bracket 386 away from the ware in response to an extension of air cylinder rod 416.
- the flange bracket 396 has a horizontal upper groove 422 and a horizontal lower groove 424 for receiving support tongues 426 and 428, respectively, which are connected to the frame. This enables sliding adjusting movement of the bracket 396 with respect to the frame 398 and thus with respect to the ware support spindle.
- An externally threaded adjustment rod 430 is received in mating threaded apertures formed in bracket 396.
- One end of the rod 430 is retained in an upwardly opening U-shaped bracket 432by restraining collars 434 and 436 secured to the rod 430 on each side of the bracket 432.
- a turning of the end 438 of the rod 430 causes the flange bracket 396 to move laterally with respect to the direction of ware travel and support.
- a drive shaft 450 for the belt grinder supported on the grinder arm 380 extends from a belt grinder drive motor 452 (best seen in FIG. 14) for connection by a flexible drive coupling to the drive wheel or pulley of the belt grinder drive unit.
- An inside edge bevelersupport arm 480 carries an inside edge beveling or grinding means on one end 482.
- the other end 484 of the arm 480 is connected to a pivotable bracket 486.
- the bracket 486 is pivoted on pins extending through flanges 492 of a flange bracket 496 attached to frame portion 398 in the same manner as that described for the arm 380.
- a multi-layer leaf spring means 500 again exerting a substantially cons tant pivoting force on the'arm 480, is connected to an arcuate surface 502 of a spring support block 504 on the pivotal bracket 486.-An arcuately shaped section 506 of the spring 500 engages a downwardly depending cam roller suspended from the flange 492 of the flange bracket 496 and yieldingly urges the arm 480 outwardly toward the inner edge or rim of ware supported on the vacuum chuck.
- An air cylinder 512 is secured to an extension 514 of the flange bracket 496 and has a piston rod 516 extend ing therefrom.
- a rod stop 518 on the rod arm 480 is yieldingly urged against rod 516 by the spring 500.
- a stop bracket 520 extends from the other side of the flange bracket 496 and limits movement of the arm 480 and the pivotable bracket 486 away from the inner edge of the ware in response to an extension of air cylinder rod 516, thus preventing the grinding unit from touching the vacuum chuck of the spindle support at rangement.
- the flange bracket 496 has upper and lowcrgrooves for receiving support tongues from the frame 398, as was described with respect to flange bracket 396.'An. externally threaded adjustment rod 530 is received in mating threaded apertures in bracket 496. One end of
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Feeding Of Workpieces (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Jigs For Machine Tools (AREA)
- Manipulator (AREA)
Abstract
The features of the invention are illustrated in a preferred embodiment which provides novel apparatus for automatically beveling the edges or rims of television picture tube funnel or viewing panel components. The components are delivered to an input station from which they are successively transferred to an edge beveling station. Each component is clamped at the beveling station with the rim at a predetermined height. The rim edges are contacted with edge beveling means also located to bevel at the same predetermined height. The edge beveling means and the rim are moved with respect to each other at the predetermined height until the beveling is completed to obtain a uniform bevel completely around the rim. The completion of the beveling operation is sensed to release the clamping of the component at the beveling station and the beveled component is transferred to a discharge station. A component to be beveled is advantageously transferred from the input station to the beveling station while a beveled component is being transferred from the beveling station to the discharge station. Each component is aligned at the input station to insure proper orientation for transferring the component to the beveling station to enable clamping. The beveling of components is limited in accordance with the requirements of a successive operation station.
Description
United States Patent 1 Scott APPARATUS FOR TRANSFERRING AND OPERATING 0N ARTICLES [75] Inventor: John E. Scott, Columbus, Ohio [73] Assignee: Owens-Illinois, Inc., Toledo, Ohio [22] Filed: June 30, 1971 [21] Appl. No.: 158,376
Primary ExaminerDonald G. Kelly Attorney-Richard B. Dence and E. J. Holler [57] ABSTRACT The features of the invention are illustrated in a pre- June 19, 1973 ferred embodiment which provides novel apparatus for automatically beveling the edges or rims of television picture tube funnel or viewing panel components. The components are delivered to an input station from which they are successively transferred to an edge beveling station. Each component is clamped at the beveling station with the rim at a predetermined height. The rim edges are contacted with edgebeveling means also located to bevel at the same predetermined height. The edge beveling means and the rim are moved with respect to each other at the predetermined height until the beveling is completed to obtain a uniform bevel completely around the rim. The completion of the beveling operation is sensed to release the clamping of the component at the beveling station and the beveled component is transferred to a discharge station. A component to be beveled is advantageously transferred from the input station to the beveling station while a beveled component is being transferred from the beveling station to the dischargestation. Each component is aligned at the input station to insure proper orientation for transferring the component to the beveling station to enable clamping. The beveling; of components is limited in accordance with the requirements of a successive operation station.
15 Claims, 23 Drawing Figures I PATENTEB- JOHN E. SCOTT INVENTOR BY 40% z.
ATTORNEY PATENTEDJUN 19 ms 3.739.532
am on 14 INVENTOR JOHN E. SCOTT I BYQLAQADM fm L/ ATTORNEY NEWER-"I19!" ml 05G 14 QZDM ATTORNEY PAIENIEB Jul 9 SIEEI 05W 14 INVENTOR JOHN E. SCOTT BYQQ MJ ATTORNEY PATENIED 9 whN Ohm
INVENTOR JOHN E. SCOTT BYWM %?M ATTORNEY Pmmmm 3.739.532
N (I) I INVENTOR JOH N E. SCOTT QBYWLO'M ATTORNEY PATENTEHJux 1 9 ms am US$14 INVENTOR JOHN E. SCOTT BY%Z ibm E. W
APPARATUS FOR TRANSFERRING AND OPERATING ON ARTICLES BACKGROUND OF THE INVENTION It is oftentimes desired to bevel the inner and outer borders of the open ends of vessels having generally eliptical configurations. For example, the sealing edges of rectangular television picture tube funnel and viewing panel parts have relatively sharp borders which are succeptible to bruise checking and it is, therefore, desirable to bevel such borders to reduce the possibility of such checking to the extent possible. This is particularly true for funnel and viewing panel parts for color television picture tubes since such tubes must be evacuated to a greater degree than similar parts for monochromatic television picture tubes. Furthermore, the viewing panels for color picture tubes are subject to much more handling than are their counterparts for monochromatic picture tubes and are, therefore, subject to greater chances of bruise checking.
Previously, the borders of the sealing edges of the television parts mentioned have been manually beveled in a time consuming and relatively expensive operation. It is desirable to eliminate the hand grinding or beveling of the borders of the edges and to provide a convenient means or apparatus for power grinding of the borders to reduce the time required for the grinding or beveling of the borders. Apparatus has been proposed for eliminating hand grinding as shown in US. Pat. No. 3,550,322, issued Dec. 29, 1970. However, the apparatus disclosed in the abovementioned patent does not eliminate completely manual operations with respect to edge beveling and does not provide the bevel uniformity desired.
Accordingly, it is an object of this invention to provide novel apparatus for automatically transferring vessels into a beveling station for the beveling operation SI JMMARY OF THE INVENTION In carrying out the above objects the invention is disclosed in apparatus for automatically edge beveling television picture tube components. An input station,
an edge beveling station, and a discharge station are shown, the stations being spaced the same distance apart. Transfer means are provided for moving components between the stations and includes a first carriage horizontally movable along the stations and a second vertically movable carriage, one of the first and second carriages being mounted on and movable with the other of the carriages. The second carriage has two spaced component handling or article handling arms extending over the stations. Means are provided for raising and lowering the second carriage to enable pickup of components at the input and edge beveling stations and the deposit of components at the beveling and discharge stations, respectively. Means are also provided for moving the first carriage back and forth enabling transfer of components between successive stations.
The input station may include a delivery conveyor and an alignment fixture having an alignment channel above and opening upstream of the run of the conveyor. The aligning channel includes a semicircular terminal portion having a diameter equal to the diagonal of the component, and channel sides extending outwardly toward the edges of the conveyor to direct the component into the terminal portion of the channel.
Means responsive to the presence of a component at the input station enables a component transfer cycle by the transfer means. Means responsive to the presence of a component at the discharge station inhibits a'component transfer cycle by the transfer means.
Each of the component handling arms includes means for engaging a component to transfer the com ponent. Means are provided for sensing that the horizontally movable carriage has positioned the component handling arms at the input and beveling stations, and for sensing that the vertically movable carriage is lowered to a component grasping position to enable operation of the component engaging means on each of the arms to grasp the component. The operation of the component engagement means is sensed to enable operation of the means for raising the second carriage.
The arrival of the component handling arms above the beveling and discharge stations is sensed to enable operation of the means for lowering the second carriage. Means are further provided for sensing that the horizontally movable carriage has positioned the component handling arms at the beveiing and discharge sta tions and for sensing that the vertically movable carriage is lowered to a component releasing position to enable operation of the component engaging means on each of the arms to release the component grasped thereby. The releasing operation of the component engaging means is sensed to enable the first carriage moving means to return the component handling arms to a position above the input and beveling stations. Means responsive to the completion of a beveling cycle at the beveling station are provided for enabling a component a transfer cycle by the transfermeans. Means are also provided which are responsive to the presence of a component at the input stationfor inhibiting operation of the delivery conveyor means to provide more components at the station.
The beveling station includes means for supporting the vessel and moving the rim of the open end thereof past at least two edge beveling stations or units. Each of the edge beveling stations preferably includes a flexible endless belt having a normally flat straight working run provided with an abrasive surface, a pair of spaced guide pulleys over which the belt is trained to support the same, means for driving the belt over the guide pulleys, and means operable to move the guide pulleys to position the workingrun of each belt into and out of contact with an inner and an outer edge, respectively, of the rim at an acute angleiwith respect to the rim.
Each spaced pair of guide pulleys are supported on a substantially vertical plate. A take-up pulley is provided on each plate, also having the belt trained therearound. Means are provided for journally supporting each take-up pulley. The journal support means for each take-up pulley is yieldingly biased against the pull of the belt trained therearound.
If the vessel has a configuration with at least one portion thereof extending further away from the axis of vessel movement or rotation than other rim portions, such as a rectangular picture tube, it is advantageous to provide means for yieldingly biasing the pairs of guide pulleys toward the outside edge of the vessel rim to maintain belt contact therewith. Stop means may be provided for limiting movement of the outside edge guide pulleys away from the vessel in response to movement of the outwardly extending rim configuration portion past the outside edge guide pulleys, whereby the yieldingly biasing means for the take-up pulley and the yieldingly biasing means for the outside edge guide pulleys cooperate to provide an increased combined spring force to urge the belts against the outside of the outwardly extending configuration portion of the vessel rim.
The vessel supporting and moving means advantageously includes rotatable spindle means and vacuum chuck means carried on the end of the spindle means for selectively clamping the vessel to the spindle means. The vacuum chuck means advantageously includes a first sealing means having a peripheral configuration which substantially mates with a first internal cross section of a vessel being clamped, and a second sealing means having a peripheral configuration which substantially mates with a second larger internal cross section of the vessel being clamped. The first and second sealing means are maintained in a spaced relationship enabling their mating with the first and second internal cross sections at the same time. Passage means are provided for enabling creation of a partial vacuum in a space defined by the first and second sealing means and an interior wall of a vessel located between the sealing means and mated therewith.
The edge beveling station further includes means responsive to the clamping of a vessel by the vacuum chuck means for initiating rotation of the spindle means. Means responsive to the completion of an edge beveling cycle is provided for terminating rotation of the spindle means and for deactivating the vacuum chuck means. Operation of the belt driving means is initiated in response to the clamping of a vessel by the vacuum chuck means, and the belt driving means is deactivated in response to the completion of an edge beveling cycle.
The guide pulley moving means for each edge beveling station includes means for yieldingly biasing each of the pairs of guide pulleys toward the vessel rim, and means for positively retracting each of the pairs of guide pulleys from the vessel rim. The placing of a vessel on a support means in edge beveling position is sensed to inhibit the action of the guide pulley retracting means to enable the guide pulley biasing means to move the belts into edge beveling contact with the rim. The completion of the edge beveling cycle is sensed to activate the retracting means to move the belts out of contact with the vessel rim.
A positive pressure may be advantageously applied to the vacuum chuck means in response to the completion of an edge beveling cycle to insure release of the vessel from the vacuum chuck means.
Other objects, advantages and features of this invention will become apparent when the following description is taken in conjunction with the accompanying drawings, in which:
FIG. I is a partially diagrammatic side elevational view of apparatus embodying the teachings of this invention with portions of some parts being omitted for the purposes of clarity, the omitted portions being shown in greater detail in later figures;
FIG. 2 is a plan elevational view of the apparatus illustrated in FIG. I;
FIG. 3 is an end elevational view of the apparatus illustrated in FIG. 1, taken from the right side thereof;
FIG. 4 is a side elevational view of a horizontally movable carriage portion of the transfer device of this invention;
FIG. 5 is an end elevational view of the apparatus i1- lustrated in FIG. 4, taken from the right side thereof;
FIG. 6 is a plan view of a vertically moving carriage supported on the horizontally moving carriage, and the article engaging mechanisms extending therefrom, of the transfer device of this invention;
FIG. 7 is an end elevational view of the apparatus illustrated in FIG. 6, taken from the left side thereof;
FIG. 8 is an enlarged plan view of the delivery conveyor and the ware alignment fixture associated therewith;
FIG. 9 is a side elevational view, partially in section, of the rotatable spindle at the beveling station;
FIG. 10 is a cross-sectional view of the apparatus illustrated in FIG. 9 taken along lines XX thereof;
FIG. 11 is a cross-sectional side view of the vacuum chuck apparatus to be utilized at the beveling station mounted on the rotatable spindle;
FIG. 12 is a plan view of the support means for the belt driving units at the beveling station;
FIG. 13 is a side elevational view of the apparatus illustrated in FIG. 12;
FIG. 14 is an end elevational view of the apparatus illustrated in FIG. 13, taken from the right side thereof;
FIG. 15 is an elevational view of the belt drive unit for outside edge beveling;
FIG. 16 is a side view of the apparatus illustrated in FIG. 15, taken from the left side thereof and partially in section;
FIG. 17 is an enlarged fragmentary view of the belt section, of a portion of the belt tensioning means for the apparatus of FIG. 18;
FIGS. 21a and 21b are schematic diagrams of a pneumatic control circuit for the apparatus illustrated herein; and
FIG. 22 is a schematic diagram of an electrical control circuit for the apparatus herein.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIGS. 1, 2 and 3 there is illustrated a general assembly layout of a machine which incorporates the teachings of this invention in automatically edge beveling television component parts. An input station is designated generally at 92, a beveling or operations station is designated generally at 94, and an output or discharge station is designated generally at 96. A first carriage 100 is mounted for horizontal reciprocable movement longitudinally along the three stations. A second carriage 130 is mounted for vertical recipro cable movement on the first carriage 100. An air or fluid cylinder 116, best seen in FIG. 1, is provided for moving the first carriage 100 back and forth along the stations. A second air or fluid cylinder 140, best seen in FIG. 3, is provided for vertically moving the second carriage 130 up and down on the supporting first carriage 100.
A pair of spaced transfer arms 150 and 210 extend out from the carriage 130 over the process line. The spacing between the arms 150, 210 matches the spacing between the machine stations. Article engaging means on the end of the arms 150, 210 are actuated open and closed by air cylinders 190 and 250 to grasp and pick up articles to move them between stations. A ware aligning fixture 270 is supported just above a delivery conveyor 260 which beings components to the input station 92. y
A ware supporting and rotating means is indicated generally at 300 and includes a rotatable spindle having a vacuum chuck indicated generally at 340 for clamping the ware in place for the edge beveling operation. Edge beveling belt driving units 560and 660 are illustrateddiagrammatically in FIG. 3 and are positioned to edge bevel the outer and inner edges, respectively, of a vessel clamped'in place on the vacuum chuck 340. Edgebeveler support arms 380 and 480 for the belt drive units 560 and 660, respectively, are best seen in FIG. 2.
A limit valve LV1 is best seen in FIGS. 1 and 2 and is disposed at the input station 92 to detect by contact with the sensor rod L VIS the presence or absence of ware at the input station. Similarly, a limit valve LV11 is provided at the discharge station 96 and sensed via a sensor rod [N1 18 the presence or absence of ware on a discharge conveyor 280at the discharge station.
As best seen in FIGS. 1 and 4, limit valves LV2 and LV3 are providedon the carriage 100 to detect the position of'thecarriage 130. Limit valves LV4 and LVS are provided on the machine frame to detect the posi-. tion of the carriagelllll. Limit valves LV6 and LV7 are provided on the vertically movable carriage 130, best seen in FIGS. 2 and 6, to detect when the article engaging clamps are open. Limit valves LV8 and LV9 are also provided on carriage 130 to detect when the. article engaging clamps are closed. A limit valve LV10 is illustrated in FIGS. 9 and 10 and provides an indication that the edge beveling cycle is complete and also an indication of the position of the rotatable spindle.
The general layout of the components and sensors of the automatic edge beveling unit 90 having been described, the specific portions will be described in detail with respect to the illustrations in the remaining drawings, reference being made to FIGS. 1, 2 and 3 for the clarification, location and cooperation of the parts de scribed.
Referring now to FIGS. 4 and 5 there is illustrated the horizontally movable carriage 100. A, rectangular frame 102 is supported on an upper bracket 104 having spaced pairs of downwardly depending and angularly disposed wheels 106 which ride on an upper rail 108. The rail 108 is connected to the machine frame and ex tends along the direction of ware travel.
The rectangular frame 102 is also supported on a lower bracket 110 having spaced pairs of upwardly extending and angularly disposed wheels 112 which en gage and ride along the lower side of a lower rail 114. The rail 114 is also connected to the machine frame and extends along the direction of ware travel.
A drive plate 115 is attached to the rectangular frame 102 and extends out between the rail 108, 114. The drive plate is to be attached to the piston rod 118 of the air cylinder 116 illustrated in FIG. 1. Retraction and extension of the piston rod 118 moves the carriage 100 back and forth in a longitudinal horizontal direction.
A vertical rail 120 is connected to the rectangular frame 102 and spaced from a vertical rail 122, also connected to frame 102, to define a vertical travel path for the vertically movable carriage 130.
Referring to FIGS. 6 and 7, the carriage 130 is illustrated in greater detail and is shown as including a horizontal cross arm 132 extending between downwardly depending legs 134. Each of the legs 134 carries spaced pairs of angularly disposed wheels 136, opposing pairs of the wheels 136 facing away from each other to en gage and travel along the vertical rails 120, 122, supported on the carriage 100. An air cylinder 140, best seen in FIG. 3, is mounted on thecarriage 100 and is connected via a piston rod 142 to the horizontal cross arm 132 of the carriage 130. Extension andretraction of the piston rod 142 raises and lowers the carriage 130. a
An input transfer arm is supported at one end on the cross arm 132 and has at the other end aclamp support bracket 152. Opposing chuck arms 154 and 156 are pivotally mounted on a bracket 152 at 158 and 160, respectively. Chuck adapters 162 and 164 are mounted on the chuck arms 154, l56' to enable engagement of the articles being transferred, inthis instance the neck of a funnel. v e i An upper drive' crank 166 is secured to a vertical drive shaft 168. pivotally supported or mounted in the transfer arm 150. A lower drive crank 1.70 is secured to the lower end of the drive shaft 168. l
A connecting rod 112 has one end pivotally con nected at 174 to the chuck arm 154, and the other end pivotally connected atfl76 to the upper drive crank 166. Aconnecting rod has one end pivotally connected at 182 to the chuck arm 156, and the other end pivotally connected at 184 to the upper drive crank 166.
An air cylinder drive means for the article engaging chuck arms has the cylinder end pivotally connected at 192 to a clevis device 194 extending out from the cross arm 132. The rod endof the air cylinder drive means 190 is pivotally connected at 196 to the, lower drive crank 1'70.
In operation, when the piston rod of the air cylinder 190 extends, the lower drive crank 170 is pushed away from the cylinder 190, rotating the drive shaft 168 and pivoting the upper drive crank 166 in a counterclockwise direction. The connecting rods respond to the arcuate movement of the end of the crank 166 toward the chuck support bracket to push thepivotally connected chuck arms 154, 156 on their pivots toward each other to the closed position shown in FIG. 6. Retraction of the piston rod of the air cylinder 190 reverses the operation of the linkage and opens the chuck arms 154, 156 to a position where they may pass the funnel necks horizontally without touching them when the carriage 100 moves longitudinally along the machine 90.
A discharge transfer arm 210 is supported at one end on the cross arm 132 and has on the other end thereof a clamp support bracket 212. Opposing chuck arms 214 and 216 are pivotally mounted on the bracket 212 at 218 and 220, respectively. Chuck adapters 222 and 224 are mounted in opposition on the chuck arms 214 and 216 to enable engagement of the article being transferred. The chuck adapters 222, 224 and 162, 164 may be changed to accommodate different sizes of ware being transferred. If a viewing panel is being processed for edge beveling instead of a funnel, then a vacuum cup suction pick up type of article engaging means may be utilized in place of the chuck arms illustrated in FIG. 6.
An upper drive crank 226 is secured to a vertical drive shaft 228 pivotally mounted in the transfer arm 210. A lower drive crank 230 is mounted on the lower end of the drive shaft 228.
A connecting rod 232 has one end pivotally connected at 234 to the chuck arm 214 and the other end pivotally connected at 236 to the upper drive crank 226. A connecting rod 240 has one end pivotally connected at 242 to the chuck arm 216 and has the other arm pivotally connected to the upper drive crank 226.
An air cylinder drive means 250 has the cylinder end pivotally connected at 252 to the clevis device 194 extending out from the cross arm 132, and the rod end pivotally connected at 256 to the lower drive crank 230. The air cylinder 250 operates in a manner similar to that described for air cylinder 190 in that extension of the rod of air cylinder 250 closes the chuck arms 214, 216, while retraction of the rod opens the chuck arms.
Limit valves LV6 and LV7 are mounted on cross arm 132 and, in response to movement of the upper drive cranks 166, 266, provide a signal when the clamps are open. Similarly, limit valves LVS and LV9 are mounted on the transfer arms 150 and 210, respectively, and in response to movement of the upper drive cranks 166, 226, provide a signal when the clamps are closed.
Referring now to FIG. 8, a delivery conveyor at the input station 92 is indicated generally at 260 and includes spaced frame members 262 and 264 which carry a plurality of driven rollers 266. A ware aligning fixture 270 is supported on frame members 262 and 264 just above rollers 266. An input channel 272 of the fixture 2'70 opens upstream of the run of the conveyor 260 to receive ware to be aligned.
A terminal or end portion of the channel 272 is indicated at 278. The are described by the terminal portion 278 of the channel is a semicircle having a diameter equal to the diagonal length of the substantially rectangular components being processed by the machine. Opposing channel sides 274 and 276 extend outwardly to ward the edges of the conveyor 260 to direct the rectangular tube components into the terminal end 278 of the channel 272. Since the diagonal and two sides of the rectangular tube define a right angle triangle, the semicircular terminal portion 278 of the channel necessarily aligns the rectangular component so that the center of'the diagonal is at the center of the semicircle, and thus the centrally located neck of the funnel is always positioned in the same place to enable accurate pick up by the neck clamp means described hereinbefore.
If a viewing panel is being processed the center of the diagonal of the face panel is again located at the center of the semicircle of the terminal portion 278, enabling accurate pick up at the center of the face panel and transfer to the edge beveling station in an aligned orientation each time. Proper orientation of either the funnel or the face panel is important not only for aligning the component for engagement by the transfer device, but also for the proper positioning of the component on the vacuum chuck means at the edge beveling station to enable proper contact by the edge beveling belts or grinders being utilized. As noted hereinbefore, the chuck arms shown would be replaced by a vacuum suction cup article engaging means if face panels are being processed. Similarly, the vacuum chuck arrangement illustrated and described hereinafter would be replaced by a vacuum cup clamping means or other suitable means for engaging the interior face of a viewing panel.
Referring to FIGS. 9, 10 and 11 there is illustrated ware supporting and rotating means generally indicated at 300. A vertical standard 302 is secured to the frame of the machine. A spindle support arm 304 is cantilevered from the standard 302 and journally supports a spindle 306 in upper bearings 308 and lower bearings 310 carried in the arm 304'. A lower end 312 of the spindle 306 extends below the lower bearings 310 and has drive pulley or sprocket means 314 secured thereto to be rotated via a belt, chain or other connecting means by a spindle motor pulley or sprocket 316.
A cam 320 is secured to the lower end 312 of the arm 306. A cam follower wheel 322 of the limit valve LV10 rides on cam 320 and senses the position of the spindle and thus the position of the ware. In the present instance, the edge beveling cycle is completed by one revolution of the rotatable spindle 306, therefore the limit valve LV10 may be utilized to sense the completion of an edge beveling cycle. If more than one revolution were required or if a fraction of a revolution were required, gearing may be connected to the spindle 306 to drive a cam to similarly indicate the completion of an edge beveling cycle.
A rotating union 326 provides communication between a vacuum source and a passage 328 formed through the center of the spindle 306. The passage 328 terminates in a plenum 330 at the upper end of the spindle. A spindle extender 332, as illustrated in FIG. 1, may be secured to the top of spindle 306 to vary the height at which the ware is supported. The spindle extender 332 again provides communication between the plenum 330 and a passage 336, in the vacuum chuck designated generally at 340 and shown in detail in FIG. 11.
The vacuum chuck 340 includes a base 342 which has a downwardly extending guide 344 which fits partially into and forms the top of the plenum 330 formed in the top of the spindle 306 or the spindle extender 332. An 0 ring 346 forms a seal between the base 342 and the extender 332 or the spindle 306. When various sizes of ware are being processed various sizes of spindle extenders may beutilized to properly position the rim of the ware with respect to the edge beveling equipment.
A first or lower annular flexible sealing ring 352 is secured to the vacuum chuck head below that laterally directed opening 354 of the passage 336. The sealing means 352 has a peripheral configuration which substantially mates with a larger internal cross section of the television funnel or vessel being clamped. A second or upper flexible annular sealing member 356 is secured 'to the vacuum chuck head above the opening 354 from passage 336. The sealing means 356 has a peripheral configuration which substantially mates with a relatively smaller cross section of the vessel being clamped. An upwardly and inwardly extending flange 358 of the seal 356 is shaped to receive the diminishing cross section of the funnel, and to pull against the fun: nel in response to a vacuum introduced in passage 336. An extension of the base 342 maintains the first and second sealing means in a spaced relationship enabling their mating with the first and second internal cross sections at the same time.
The passage 336 provides communication between the space defined by the first and second sealing means and an interior wall of a vessel on the vacuum chuck which extends between the sealing means and is mated therewith, and a passage connection means, such as a rotary union, exterior of the defined space. Thus the reduction of pressure in the passage 336 below the ambient pressure creates a partial vacuum in the defined space to clamp the vessel to the sealing means.
The peripherally extending flexible portions of the seals 352'and 356 are advantageously formed to have a surface which describesan acute angle adjacent a wall of a vessel, enclosing the defined space. This enables each flexible peripheral portion to act as a check valve in responseto the creationof a partial vacuum in the defined space, since the exterior ambient pressure will be pushing the flexible peripheries of the sealing means against the vessel wall.
A resilient annular neck seat 362 is secured to the top of a seat pin 364 which is mounted for reciprocable sliding movement in a vertical bore 366 formed in the head 340. One end of a seat biasing spring 368 is received in a spring housing 370 formed in the pin 364 and extends out of the housing to abut the bottom of the bore 366 and urge the pin 364 upwardly. Travel of the pin 364 is limited by a stop member 372 which is received in a vertical slot 374 formed in the side of the pin 364. t
, Although the neck seat 364 is annular in-shape in this application to accommodate the neck of a funnel being processed, the seat member 362 generically has 21 pe ripheral configuration which contacts an internal wall of a vessel at a cross section thereof which is smaller than that contacted by the sealing means 356. The spring 368 yieldingly biases the seat member 362 away from the sealing means, The biasing force of the spring 368 is smaller than the clamping force exerted by the creation of a partial vacuum in the defined space between the two seals, but is advantageously sufficiently large to free the vessel from the sealing means in response to the release of the partial vacuum in passage Referring to FIGS. l2, l3 and 14 there is illustrated the edge beveler or grinder support arms 380 and 480. The outside edge beveler support arm 380 carries an outside edge grinding means on one end 382. The other end 384 of the arm 380 is connected to pivotable bracket 386. The bracket 386 is pivoted on pins 388 and 390 extending through flanges 392 and 394, respectively, of a flange bracket 396 attached to a frame portion 398.
A multi-layer leaf spring means 400, which exerts a substantially constant pivoting force on arm 380, is
connected to an arcuate surface 402 of a spring support edge of the rim of the ware supported on the vacuum 7 chuck.
An air cylinder 412 is secured to an extension 414 of the flange bracket 396 and has a piston rod 416 extend ing therefrom. A rod stop 418 carried on the arm 380 is yieldingly urged against the rod 416 by the spring 400. A stop bracket 420 extends from the other side of the flange bracket 396 and limits movement of the arm 380 and the pivotal bracket 386 away from the ware in response to an extension of air cylinder rod 416.
The flange bracket 396 has a horizontal upper groove 422 and a horizontal lower groove 424 for receiving support tongues 426 and 428, respectively, which are connected to the frame. This enables sliding adjusting movement of the bracket 396 with respect to the frame 398 and thus with respect to the ware support spindle. An externally threaded adjustment rod 430 is received in mating threaded apertures formed in bracket 396. One end of the rod 430 is retained in an upwardly opening U-shaped bracket 432by restraining collars 434 and 436 secured to the rod 430 on each side of the bracket 432. Thus a turning of the end 438 of the rod 430 causes the flange bracket 396 to move laterally with respect to the direction of ware travel and support.
A drive shaft 450 for the belt grinder supported on the grinder arm 380 extends from a belt grinder drive motor 452 (best seen in FIG. 14) for connection by a flexible drive coupling to the drive wheel or pulley of the belt grinder drive unit.
An inside edge bevelersupport arm 480 carries an inside edge beveling or grinding means on one end 482. The other end 484 of the arm 480 is connected to a pivotable bracket 486. The bracket 486 is pivoted on pins extending through flanges 492 of a flange bracket 496 attached to frame portion 398 in the same manner as that described for the arm 380. A multi-layer leaf spring means 500, again exerting a substantially cons tant pivoting force on the'arm 480, is connected to an arcuate surface 502 of a spring support block 504 on the pivotal bracket 486.-An arcuately shaped section 506 of the spring 500 engages a downwardly depending cam roller suspended from the flange 492 of the flange bracket 496 and yieldingly urges the arm 480 outwardly toward the inner edge or rim of ware supported on the vacuum chuck.
An air cylinder 512 is secured to an extension 514 of the flange bracket 496 and has a piston rod 516 extend ing therefrom. A rod stop 518 on the rod arm 480 is yieldingly urged against rod 516 by the spring 500. A stop bracket 520 extends from the other side of the flange bracket 496 and limits movement of the arm 480 and the pivotable bracket 486 away from the inner edge of the ware in response to an extension of air cylinder rod 516, thus preventing the grinding unit from touching the vacuum chuck of the spindle support at rangement.
The flange bracket 496 has upper and lowcrgrooves for receiving support tongues from the frame 398, as was described with respect to flange bracket 396.'An. externally threaded adjustment rod 530 is received in mating threaded apertures in bracket 496. One end of
Claims (15)
1. Apparatus for beveling the rim of a vessel having an open end comprising; a. means for supporting the vessel and moving the rim of the open end thereof past at least two edge beveling stations; b. a first of said edge beveling stations including a first flexible endless belt having a normally flat straight working run provided with an abrasive surface, a first pair of spaced guide pulleys over which said first belt is trained to support the same, means for driving said first belt over said first guide pulleys, and means operable to move said first guide pulleys to position said working run of said first belt into and out of contact with an inner edge of said rim at an acute angle with respect to the rim; c. a second of said edge beveling stations including a second flexible endless belt having a normally flat straight working run provided with an abrasive surface, a second pair of spaced guide pulleys over which said second belt is trained to support the same, means for driving said second belt over said second guide pulleys, and means operable to move said second guide pulleys to position said working run of said second belt into and out of contact with an outer edge of said rim at an acute angle with respect to the rim.
2. Apparatus as defined in claim 1 in which each of said edge beveling stations further includes a belt tension controlling means comprising; a. means for supporting said spaced pair of guide pulleys; b. take-up pulley means having said belt trained therearound; c. means for journally supporting said take-up pulley; and d. means for yieldingly biasing said journal support means for said take-up pulley against the pull of the belt trained therearound.
3. Apparatus as defined in claim 2 in which a. said means for journally supporting said take-up pulley includes a take-up arm pivotally mounted on said guide pulley support means; and which further includes b. means for limiting the pivotable movement of said take-up arm.
4. Apparatus as defined in claim 2 in which said vessel rim has a configuration with at least one portion thereof extending further away from the axis of vessel movement than other rim portions, and which further includes a. means for yieldingly biasing said outside edge guide pulleys toward said outside edge of said vessel rim to maintain belt contact therewith; and b. stop means for limiting movement of said outside edge guide pulleys away from said vessel in response to movement of said outwardly extending rim configuration portion past said second station, whereby said yieldingly biasing means for said take-up pulley means and said yieldingly biasing means for said outside edge guide pulleys cooperate to provide an increased combined spring force to urge said belt against the outside of said outwardly extending configuration portion of said vessel rim.
5. Apparatus as defined in claim 1 in which said vessel supporting and moving means includes a. rotatable spindle means; and b. vacuum chuck means carried on the end of said spindle means for selectively clamping said vessel to said spindle means.
6. Apparatus as defined in claim 5 in which said vacuum chuck means includes a. first sealing means having a peripheral configuration which substantially mates with a first internal cross section of a vessel being clamped; b. second sealing means having a peripheral configuration which substantially mates with a second larger internal cross section of the vessel being clamped; c. means for maintaining said first and second sealing means in a spaced relationship enabling their mating with said first and second internal cross sections, respectively; and d. means for creating a partial vacuum in the space defined by said first and second sealing means and an interior wall of a vessel between said sealing means and mated therewith.
7. Apparatus as defined in claim 5 which further includes means responsive to the clamping of a vessel by said vacuum chuck means for initiating rotation of said spindle means.
8. Apparatus as defined in claim 5 which further includes means responsive to the completion of an edge beveling cycle for terminating rotation of said spindle means.
9. Apparatus as defined in claim 5 which further includes means responsive to the completion of an edge beveling cycle for deactivating said vacuum chuck means.
10. Apparatus as defined in claim 5 which further includes means responsive to the clamping of a vessel by said vacuum chuck means for initiating operation of said belt driving means.
11. Apparatus as defined in claim 5 which further includes means responsive to the completion of an edge beveling cycle for deactivating said belt driving means.
12. Apparatus as defined in claim 1 which said guide pulley moving means for each beveling station includes a. means for yieldingly biasing each of said pairs of guide pulleys toward said vessel rim; and b. means for retracting each of said pairs of guide pulleys from said vessel rim.
13. Apparatus as defined in claim 12 which further includes means responsive to the placing of a vessel on said support means in edge beveling position for inhibiting the action of said guide pulley retracting means to enable said guide pulley biasing means to move said belts into edge beveling contact with said vessel rim.
14. Apparatus as defined in claim 12 which further includes means responsive to the completion of an edge beveling cycle for activating said retracting means to move said belts out of contact with said vessel rim.
15. Apparatus as defined in claim 5 which further includes means responsive to the completion of an edge beveling cycle for applying positive pressure to said vacuum chuck means to insure release of said vessel from said vacuum chuck means.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15837671A | 1971-06-30 | 1971-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3739532A true US3739532A (en) | 1973-06-19 |
Family
ID=22567829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00158376A Expired - Lifetime US3739532A (en) | 1971-06-30 | 1971-06-30 | Apparatus for transferring and operating on articles |
Country Status (2)
Country | Link |
---|---|
US (1) | US3739532A (en) |
JP (1) | JPS52106669U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2546090A1 (en) * | 1981-12-16 | 1984-11-23 | Weisser Soehne J G | Short workpiece feed for end facing lathe |
US4592013A (en) * | 1981-08-21 | 1986-05-27 | International Business Machines Corp. | Method and device for addressing a memory |
CN111300116A (en) * | 2019-12-02 | 2020-06-19 | 江苏科森医疗器械有限公司 | Automatic processing device for high-precision parts |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2489811A (en) * | 1948-03-31 | 1949-11-29 | Hammond Machinery Builders | Belt polishing and grinding machine |
US2587271A (en) * | 1948-12-01 | 1952-02-26 | Edwin M Knowles China Company | Dinnerware finishing machine |
US2612007A (en) * | 1950-10-05 | 1952-09-30 | Hammond Machinery Builders Inc | Abrasive belt attachment for abrasive wheel machines |
US2901871A (en) * | 1957-02-07 | 1959-09-01 | J M Nash Company | Method and machine for finishing the inner surfaces of hollow workpieces |
US3381347A (en) * | 1964-09-03 | 1968-05-07 | Motorola Inc | Cathode ray tube manufacture |
US3488891A (en) * | 1966-05-28 | 1970-01-13 | Fischer Ag Georg | Grinding machines |
-
1971
- 1971-06-30 US US00158376A patent/US3739532A/en not_active Expired - Lifetime
-
1977
- 1977-01-18 JP JP1977003912U patent/JPS52106669U/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2489811A (en) * | 1948-03-31 | 1949-11-29 | Hammond Machinery Builders | Belt polishing and grinding machine |
US2587271A (en) * | 1948-12-01 | 1952-02-26 | Edwin M Knowles China Company | Dinnerware finishing machine |
US2612007A (en) * | 1950-10-05 | 1952-09-30 | Hammond Machinery Builders Inc | Abrasive belt attachment for abrasive wheel machines |
US2901871A (en) * | 1957-02-07 | 1959-09-01 | J M Nash Company | Method and machine for finishing the inner surfaces of hollow workpieces |
US3381347A (en) * | 1964-09-03 | 1968-05-07 | Motorola Inc | Cathode ray tube manufacture |
US3488891A (en) * | 1966-05-28 | 1970-01-13 | Fischer Ag Georg | Grinding machines |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4592013A (en) * | 1981-08-21 | 1986-05-27 | International Business Machines Corp. | Method and device for addressing a memory |
FR2546090A1 (en) * | 1981-12-16 | 1984-11-23 | Weisser Soehne J G | Short workpiece feed for end facing lathe |
CN111300116A (en) * | 2019-12-02 | 2020-06-19 | 江苏科森医疗器械有限公司 | Automatic processing device for high-precision parts |
CN111300116B (en) * | 2019-12-02 | 2021-12-07 | 江苏科森医疗器械有限公司 | Automatic processing device for high-precision parts |
Also Published As
Publication number | Publication date |
---|---|
JPS52106669U (en) | 1977-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4638601A (en) | Automatic edge grinder | |
CN110893398A (en) | Bearing ring surface defect detection device based on machine vision | |
CA2278676A1 (en) | Inlet conveyor for tire testing systems | |
US4457420A (en) | Apparatus for diverting objects from a main conveyor path | |
KR870009933A (en) | Conveyer | |
CN107364719B (en) | Glass piece material loading conveyor | |
US4033172A (en) | Apparatus for testing hollow bodies | |
US6510751B2 (en) | Glass container inspection machine | |
CN110542689A (en) | Bearing ring image detection device | |
US3739532A (en) | Apparatus for transferring and operating on articles | |
US3311051A (en) | Workpiece supporting and registering apparatus for bottle decorating apparatus | |
CN107984087B (en) | Positioning mechanism for laser processing and laser processing system | |
US3198348A (en) | Ware loader and unloader | |
US4038785A (en) | Method and apparatus for transferring and operating on articles | |
CN210803316U (en) | Bearing ring image detection device | |
US3875704A (en) | Apparatus for automatically beveling the rim of a vessel | |
CN218674774U (en) | Real-time detection device for small defects on surface of bearing | |
CN114146932B (en) | Conveying module and online testing device | |
GB1187398A (en) | Improvements in or relating to Handling Fabric Material | |
US3598397A (en) | Sheet feeder | |
US3555737A (en) | Apparatus for treating glass sheets | |
CN110672012B (en) | Full-size detection machine for valve | |
CN211916032U (en) | Automatic top piece assembling device | |
CN111151466B (en) | Visual automatic detection equipment for sheet workpiece | |
US4516306A (en) | Semi-automatic pipe threading plant and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OWENS-ILLINOIS TELEVISION PRODUCTS INC.,OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-ILLINOIS, INC., A CORP. OF OHIO;REEL/FRAME:004772/0648 Effective date: 19870323 Owner name: OWENS-ILLINOIS TELEVISION PRODUCTS INC., SEAGATE, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OWENS-ILLINOIS, INC., A CORP. OF OHIO;REEL/FRAME:004772/0648 Effective date: 19870323 |