US3736270A - Solid compound of rhodium and tungsten and manufacturing process therefor - Google Patents
Solid compound of rhodium and tungsten and manufacturing process therefor Download PDFInfo
- Publication number
- US3736270A US3736270A US00167517A US3736270DA US3736270A US 3736270 A US3736270 A US 3736270A US 00167517 A US00167517 A US 00167517A US 3736270D A US3736270D A US 3736270DA US 3736270 A US3736270 A US 3736270A
- Authority
- US
- United States
- Prior art keywords
- rhodium
- tungsten
- manufacturing process
- solid compound
- process therefor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010948 rhodium Substances 0.000 title description 21
- 150000001875 compounds Chemical class 0.000 title description 7
- 238000004519 manufacturing process Methods 0.000 title description 3
- 229910052703 rhodium Inorganic materials 0.000 title description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 title description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title description 2
- 229910052721 tungsten Inorganic materials 0.000 title description 2
- 239000010937 tungsten Substances 0.000 title description 2
- 239000007787 solid Substances 0.000 title 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000460 chlorine Substances 0.000 description 9
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000012267 brine Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000208199 Buxus sempervirens Species 0.000 description 1
- 208000032538 Depersonalisation Diseases 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- SULCFFJNLVZXGH-UHFFFAOYSA-N rhodium(3+);trinitrate;dihydrate Chemical compound O.O.[Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O SULCFFJNLVZXGH-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/652—Chromium, molybdenum or tungsten
- B01J23/6527—Tungsten
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G55/00—Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/077—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
- C25B11/0775—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide of the rutile type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
Definitions
- the present invention relates to a new oxygen-containing compound of rhodium and tungsten, Rh -WO and to a manufacturing process therefor.
- the present invention concerns a compound Rh WO- DESCRIPTION OF THE PREFERRED EMBODIMENTS
- the new compound was prepared from powdered and W0 which were mixed in equimolecular quantities, then comminuted and pelletized.
- the starting oxide Rh O was obtained by pyrolysis at 500 C. of pure rhodium nitrate supplied by Fluka, whereas the WO was a product supplied by UCB, chemical analysis grade.
- the unit cell has the following parameters:
- the unit cell contains two molecules of Rh WO
- the intensities of the lines and the observed interplanar 3,735,270 Patented May 29, 1973 ice spacings determined in the X-ray crystallographic analysis are given in the following table.
- Rh WO In order to measure the electrical conductivity of the obtained Rh WO the powder resulting from comminuting the porous disc was again pelletized under the same conditions used for pelletizing the Rh O -WO mixture.
- the measured electrical conductivity was in the range of 10 (ohm-cm.)"
- the obtained Rh WO' is thus really a semiconductor and its forbidden gap, or energy gap, amounts to 0.03 e.v.
- forbidden gap and energy gap refer to the distance between the top of the valence band and the bottom of the conduction band; these terms appear, for instance, in Physics and Technology of Semiconductor Devices by A. S. Grove, pages 91-95 and 102.
- the manufacturing process for the compound of the present invention is very easy and the operative conditions are easily reproducible.
- the new compound Used as an anodic operative surface in the electrolysis of sodium chloride, the new compound presents very interesting polarization properties and is very resistant to electrochemical attack under cellconditions.
- the compound Rh /WO of the present invention is very useful for industrial applications not only as an electrode in various electrochemical processes, but also as an oxidation catalyst in organic chemistry or as a component in composite semiconductive devices.
- the starting materials were obtained from Fluka, CH- 9470 Buchs (Switzerland) and UCB, 33 rue dAnderlecht, 1620 Drogenbos (Belgium).
- the trademark designation of the rhodium nitrate was rhodium (III) -nitrat Dihydrat purissimum No. 83,760.
- the trademark designation of the W0 was anhydride tungstique pour analyse No. 1925.
- the rhodium nitrate was supplied in a purity grade designated as purissimum which meant a chemical analysis in weight-percent as follows:
- the W was supplied in a purity grade designated as: chemical analysis which meant a chemical analysis in weight-percent as follows:
- Rh WO Chlorides Max. 0.0015 Heavy metals (-Pb) Max. 0.002 Iron (Fe) Max. 0.004 Molybden (Mo) Max. 0.05 Ammonium (NH Max. 0.0015 Arsenic (As) Max. 0.0015 W0 Balance
- -Pb Heavy metals
- Fe Iron
- Mo Molybden
- Ammonium NH Max. 0.0015
- overvoltage is used herein in the same since as it is used at pages 48 8-492 of Physical Chemistry by Walter J. Moore, Prentice-Hall Inc., second edition.
- the coated plate was used as anode for the electrolysis of a brine containing 250 g. NaCl/ kg. of solution saturated with chlorine at 60 C. and at an approximate pH of 2. Under these conditions, the coated plate of this example showed an overvoltage in the range 250 mv. under an anodic current density of 10 kajmfi.
- the coated plate was used as anode in a cell with a flowing mercury cathode for the electrolysis of a brine saturated with sodium chloride and chlorine, between and C., under a constant anode-cathode potential difference, the test being stopped when the current density was reduced to one half of its initial value (initial value generally was between 30 and 40 ka./m. Under these conditions, the tested plate produced 9 tons of chlorine per square meter of active surface; the rhodium consumption lay below 200 mg. per ton of chlorine produced under an average current density of 20 ka./m.
- the Well homogenized mixture has a particle size distribution lower than Lu.
- the pelletizing is carried out without any binding additive.
- Rh WO crystallized in the tetragonal system under the trirutile form the parameters a and c being 4.609 and 9.083 A. respectively, having an electrical conductivity of 10- (ohm-cm.) and an energy gap of 0.03 erv.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Conductive Materials (AREA)
- Catalysts (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU61435 | 1970-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3736270A true US3736270A (en) | 1973-05-29 |
Family
ID=19726436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00167517A Expired - Lifetime US3736270A (en) | 1970-07-29 | 1971-07-29 | Solid compound of rhodium and tungsten and manufacturing process therefor |
Country Status (9)
Country | Link |
---|---|
US (1) | US3736270A (enrdf_load_stackoverflow) |
JP (1) | JPS5338280B1 (enrdf_load_stackoverflow) |
BE (1) | BE769679A (enrdf_load_stackoverflow) |
DE (1) | DE2136393C3 (enrdf_load_stackoverflow) |
ES (1) | ES393034A1 (enrdf_load_stackoverflow) |
FR (1) | FR2099649B1 (enrdf_load_stackoverflow) |
GB (1) | GB1306479A (enrdf_load_stackoverflow) |
LU (1) | LU61435A1 (enrdf_load_stackoverflow) |
NL (1) | NL168794C (enrdf_load_stackoverflow) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT993637B (it) * | 1972-10-16 | 1975-09-30 | Rca Corp | Metodo per la fabbricazione di dispositivi semiconduttori del tipo a doppia giunzione |
-
1970
- 1970-07-29 LU LU61435D patent/LU61435A1/xx unknown
-
1971
- 1971-07-08 ES ES393034A patent/ES393034A1/es not_active Expired
- 1971-07-08 BE BE769679A patent/BE769679A/xx not_active IP Right Cessation
- 1971-07-19 FR FR7126435A patent/FR2099649B1/fr not_active Expired
- 1971-07-21 DE DE2136393A patent/DE2136393C3/de not_active Expired
- 1971-07-28 NL NLAANVRAGE7110388,A patent/NL168794C/xx not_active IP Right Cessation
- 1971-07-28 JP JP5609971A patent/JPS5338280B1/ja active Pending
- 1971-07-29 US US00167517A patent/US3736270A/en not_active Expired - Lifetime
- 1971-07-29 GB GB3574671A patent/GB1306479A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE2136393C3 (de) | 1979-07-05 |
NL7110388A (enrdf_load_stackoverflow) | 1972-02-01 |
GB1306479A (en) | 1973-02-14 |
LU61435A1 (enrdf_load_stackoverflow) | 1972-04-12 |
ES393034A1 (es) | 1973-08-01 |
NL168794C (nl) | 1982-05-17 |
AU3178971A (en) | 1973-02-01 |
DE2136393A1 (de) | 1972-02-03 |
BE769679A (enrdf_load_stackoverflow) | 1972-01-10 |
DE2136393B2 (de) | 1978-11-09 |
FR2099649A1 (enrdf_load_stackoverflow) | 1972-03-17 |
FR2099649B1 (enrdf_load_stackoverflow) | 1974-03-29 |
NL168794B (nl) | 1981-12-16 |
JPS5338280B1 (enrdf_load_stackoverflow) | 1978-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | An oxygen vacancy-rich two-dimensional Au/TiO2 hybrid for synergistically enhanced electrochemical N2 activation and reduction | |
Yan et al. | Simultaneous electrochemical ozone production and hydrogen evolution by using tantalum-based nanorods electrocatalysts | |
Schmuecker et al. | Synthesis of metastable chromium carbide nanomaterials and their electrocatalytic activity for the hydrogen evolution reaction | |
Rios et al. | Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3− xO4 system | |
Regazzoni et al. | Some observations on the composition and morphology of synthetic magnetites obtained by different routes | |
Singh et al. | Electrocatalytic properties of new active ternary ferrite film anodes for O2 evolution in alkaline medium | |
DE2734879A1 (de) | Elektrokatalytisch wirksame substanzen, verfahren zu ihrer herstellung und daraus hergestellte katalysatoren und elektroden | |
EP1121477B1 (de) | Elektrochemische herstellung amorpher oder kristalliner metalloxide mit teilchengrössen im nanometerbereich | |
US3399966A (en) | Novel cobalt oxide and an electrode having the cobalt oxide coating | |
DE2304380A1 (de) | Elektroden mit einer delafossit-oberflaeche | |
Chen et al. | Boosting nitrogen reduction to ammonia on Fe–N3S sites by introduction S into defect graphene | |
US7407521B2 (en) | Process for producing nickel oxyhydroxide by electrolytic oxidation | |
DE1962860C3 (de) | Elektroden für elektrochemische Zellen | |
Broicher et al. | Particle size-controlled synthesis of high-performance MnCo-based materials for alkaline OER at fluctuating potentials | |
JP3579432B2 (ja) | 光沢顔料およびその製造法 | |
Park et al. | Electrochemical synthesis of core–shell nanoparticles by seed-mediated selective deposition | |
DE69006428T2 (de) | Wasserstoff-Entwicklungselektrode mit hoher Dauerhaftigkeit und Stabilität. | |
Zhang et al. | Amorphous iridium oxide coating on TiO2 for efficient electrocatalytic oxygen evolution reaction | |
US3736270A (en) | Solid compound of rhodium and tungsten and manufacturing process therefor | |
Shen et al. | Breaking Linear Scaling Relation Limitations on a Dual‐Driven Single‐Atom Copper‐Tungsten Oxide Catalyst for Ammonia Synthesis | |
Jiang et al. | Manipulating Charge Distribution at Organic‐inorganic Interface via Optimizing Substituents for Sustainable Water Electrolysis | |
US4042483A (en) | Electrolysis cell electrode and method of preparation | |
EP4156383A1 (en) | Oxygen catalyst, electrode using said oxygen catalyst, and electrochemical measurement method | |
DE3885093T2 (de) | Verfahren zur herstellung von teilförmigem metallpulver. | |
CN104475759A (zh) | 一种高分散超细纳米Mo-Cu复合粉末的制备方法 |