US3731144A - Direct current powered ignition system with blocking oscillator - Google Patents

Direct current powered ignition system with blocking oscillator Download PDF

Info

Publication number
US3731144A
US3731144A US00229332A US3731144DA US3731144A US 3731144 A US3731144 A US 3731144A US 00229332 A US00229332 A US 00229332A US 3731144D A US3731144D A US 3731144DA US 3731144 A US3731144 A US 3731144A
Authority
US
United States
Prior art keywords
transistor
primary winding
diode
source
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00229332A
Other languages
English (en)
Inventor
J Mckeown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bendix Corp
Unison Industries LLC
Original Assignee
Bendix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bendix Corp filed Critical Bendix Corp
Application granted granted Critical
Publication of US3731144A publication Critical patent/US3731144A/en
Assigned to IGNITION PRODUCTS CORPORATION reassignment IGNITION PRODUCTS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ALLIED-SIGNAL INC.
Assigned to HOUSEHOLD COMMERCIAL FINANCIAL SERVICES, INC. reassignment HOUSEHOLD COMMERCIAL FINANCIAL SERVICES, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UNISON INDUSTRIES LIMITED PARTNERSHIP
Assigned to UNISON INDUSTRIES LIMITED PARTNERSHIP, 530 BLACKHAWK PARK AVE., ROCKFORD, ILLINOIS 61108, A DE. LIMITED PARTNERSHIP reassignment UNISON INDUSTRIES LIMITED PARTNERSHIP, 530 BLACKHAWK PARK AVE., ROCKFORD, ILLINOIS 61108, A DE. LIMITED PARTNERSHIP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: IGNITION PRODUCTS CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/001Ignition installations adapted to specific engine types
    • F02P15/003Layout of ignition circuits for gas turbine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks

Definitions

  • Appl. No.: 229,332 RACT An electrical system for igniting fuel in a turbine en- [52] Cl. 315/209 T, 123/148 E 315/209 R gine or the like which utilizes a battery-powered 315/211 331/1 blocking oscillator and a transformer having its prima- [51] um Cl 6 37/02 ry winding in the oscillator circuit and its secondary Fie'ld B 148 winding connected to a spark plug that ignites fuel in the engine.
  • automobile ignition system include a source of d-c power, an oscillator, a transformer responsive to the oscillator for stepping up the pulses therefrom, and a secondary circuit which includes a spark gap discharge device located in the combustion chamber of the engine.
  • a spark gap discharge device located in the combustion chamber of the engine.
  • the impedance of the spark gap discharge device varies (open circuit to short circuit).
  • this type of circuit generally includes a transformer which has a control winding (tertiary) that experiences high frequency oscillations that affect the operation of the circuit and, therefore, the maximum power that can be transferred to the spark plug.
  • the high frequency oscillations occur because the amount of feedback to the control winding that turns OFF the switching transistor in series with the primary winding depends upon the voltage across the secondary winding in parallel with the spark plug. At certain load conditions the feedback to the control winding is frequently insufficient to overcome a positive bias on the switching transistor. Therefore, the switching transistor is OFF for very short intervals, hence high frequency oscillations. These high frequency oscillations are therefore undesirable in an ignition system because the discharge at the spark plug 160, necessary to ignite the fuel in the engine, may be extinguished.
  • This invention provides an ignition system for a turbine engine that is not subject to high frequency oscillations as a result of variations in the impedance of the load and provides a shower of sparks to ignite fuel in the engine.
  • the invention is an ignition system for an automobile turbine engine that is characterized by a battery powered blocking oscillator in combination with a 2- 0 vide an electrical apparatus for creating electrical winding transformer having a spark plug across the a secondary winding thereof for igniting the fuel in the engine.
  • the electrical circuit comprises: a battery; a transformer having a primary winding connected to the battery and a secondary winding connected to a spark plug; an oscillator circuit connected to the battery and the transformer to intermittently interrupt current flow from the battery through the primary winding to cause an electrical discharge at said spark plug to ignite fuel in the engine.
  • This circuit eliminates the need for a transformer having a control winding and utilizes a transistor in series with the transformer winding so that the oscillating circuit is virtually independent of the load on the secondary of the transformer.
  • the circuit makes possible control over the frequency of oscillations of the oscillator circuit by employing an unconventional feedback technique that does not use a 3-winding transformer but instead uses a 2-winding transformer in combination with a blocking oscillator.
  • sparks or arcs that are adapted to ignite combustible materials.
  • Another object is to provide an ignition system that is economical to make, has few parts, and is reliable.
  • FIG. Tis a schematic diagram of a d-c powered ignition system that accomplishes the objects of this invention.
  • FIG. 2 is a schematic diagram of an alternate embodiment of the circuit shown in FIG. 1.
  • FIG. 1 illustrates a preferred embodiment of the cir cuit that embodies the principles of this invention.
  • a solid state switch oscillator (blocking oscillator) shown within the dotted lines is powered by a battery or other direct current source.
  • a transformer has its primary winding 101 connected into the oscillator circuit 100 and its secondary winding 151 connected to a spark gap to dissipate the energy generated by the oscillator 100 when the switch 14-1 is closed.
  • the windings 101 and .151 of the transformer 150 are inductively coupled and wound and disposed in the manner indicated by the dots.
  • the solid state switch oscillator 100 operates to intermittently interrupt current flow from the battery 140 through the primary winding 101 of the transformer 150 and includes a first switching transistor 103, a first voltage divider network (110, 111, 112, 113, 114), a second voltage divider network (121, 122, 123), and first diode means (102, 104, 106) connected between the first voltage divider network and the primary winding 101 of the transformer 150 to direct the flow of current to and from the primary winding 101.
  • the oscillator circuit shown is capable of producing oscillations in the range of 800 to 2,000 Hz.
  • the first voltage divider network includes a diode 110 and a plurality of resistors 111, 112 and 113 connected together in series across the primary winding 101 of the transformer and the first transistor 103.
  • Capacitor 114 is in parallelwith diode 110 and the emitter-base junction of transistor 121 to back bias transistor 121 (OFF) during the transfer of energy from the primary winding 101 of transformer 150 to the secondary winding 151.
  • the diode means that directs the current from the primary winding 101 includes a first diode 102 connected by its anode terminal to the junction between resistor 111 and resistor 112 and its cathode connected to the junction between the primary winding 101 and the first transistor 103.
  • diodes 104 and 106 are connected in series with one anode terminal connected to the junction between the primary winding 101 and the first transistor 103 and one cathode terminal connected to the junction between the second transistor 1 12 and the third resistor 113.
  • the second voltage divider network includes a transistor 121, a resistor 122 and a resistor 123 connected together in series across the battery 140.
  • the base of the first transistor 121 is connected, for biasing purposes, to the junction between the diode 110 and resistor 111 of the first voltage divider network.
  • the base of the first transistor 103 is connected tothe junction between resistors 122 and 123 to receive a current at the base of transistor 103 when the transistor 121 is in the conductive state.
  • the secondary winding 151 of the transformer 150 is connected to a spark gap device, such as a spark plug, 160.
  • a spark gap device such as a spark plug
  • the maximum open circuit voltage that can be obtained across the gap 160 is KV to 30 KV which is determined by transformer ratio and circuit losses. However, this voltage is limited by the breakdown voltage of the gap 160 and is generally about 12 to 15 K volts.
  • Switch 141 Ignition switch Spark Gap 160 Spark plug OPERATION Referring now to FIG. 1, the circuit operates as follows: when switch 141 is closed, a positive voltage is applied across the emitter-base circuit of the transistor 121, and transistor 121 conducts, permitting a current to flow through resistors 122 and 123 and through lead 124 to the base of transistor 103 which is in the nonconducting state. When the current to the base of transistor 103 is sufficient, transistor 103 conducts and is turned ON. When transistor 103 is ON, current flows through the primary winding 101 of transformer 150 and transistor 103.
  • transistor 121 At the same time a second current flows through emitter-base junction of transistor 121, resistor 111, diode 102 and the collector-emitter of transistor 103. This current causes transistor 121 to saturate. As a result of transistor 121 operating in this saturated state, a constant base current is provided to transistor 103 from transistor 121 through resistor 122 and lead 124.
  • transistor 121 turns OFF very quickly, which turns OFF transistor 103. At this time the current flowing through primary winding 101 rapidly decays to zero, inducing a high voltage across the gap 160.
  • the gap spacing is designed so that the voltage applied is greater than the voltage breakdown potential of the gap 160 and therefore a discharge occurs across gap 160. Simultaneously with the discharge of the energy in the transformer across spark gap 160, the primary winding becomes a current source which acts to charge capacitor 114 through diodes 104, 106 and-resistors 111, 112. The charge on capacitor 114 is therefore reversed so that transistor 121 is reversed biased. This reverse biasing assures that transistor 121 remains turned OFF for a sufficient time period to keep the operating frequency low. Once the energy in capacitor 114 discharges through diode 110 and is charged in the reverse direction by battery through resistors 111, 112, 113, transistor 121 is again forward biased and the cycle repeats itself again.
  • FIG. 2 illustrates an alternate embodiment of the invention that utilizes less components than the circuit shown in FIG. 1.
  • a solid state switch oscillator 100 (blocking oscillator) shown within the dotted lines is powered by a battery 140 or other direct current source.
  • a transformer has its primary winding 101 connected into the oscillator circuit 100 and its secondary winding 151 connected to a spark gap device to dissipate the energy generated by the oscillator 100 when the switch 141 is closed and the oscillator is operating.
  • the windings 101 and 151 of the transformer 150 are inductively coupled and wound and disposed in the manner indicated by the dots.
  • the solid state switch oscillator 100 operates to intermittently interrupt current flow from the battery 140 to the primary winding 101 of the transformer 150 and includes a first switching transistor 3, a first voltage divider network (10, 11, 13, 14), a second voltage divider network (21, 22, 23), and zener diode means 8 connected between the first voltage divider network and the junction between the primary winding 101 of the transformer 150 and transistor 3 to direct the flow of current to and from the primary winding 101 in a predetermined manner.
  • the oscillator circuit shown is capable of producing oscillations in a range of 800 to 2,000 Hz.
  • the first voltage divider network includes a diode l0 and a plurality of resistors 11 and 13 connected in series across the primary winding 101 of the transformer 150 and the first transistor 3.
  • Capacitor 14 is in parallel with diode 10 and emitter-base junction of transistor 21 to back bias transistor 21 (OFF) during the transfer of energy from the primary winding 101 of transformer 150 to the secondary winding 151.
  • the second voltage divider network includes a transistor 21, a resistor 22 and resistor 23 connected in series across the battery 140.
  • the base of the first transistor 21 is connected for biasing purposes to the junction between diode 10 and resistor 11 of the first voltage divider network.
  • the base of the first transistor 3 is connected to the junction between resistors 22 and 23 through lead 24 to receive a current at the base of transistor 3 when transistor 21 is in the conducting state ON.
  • the zener diode 8 that directs the current from the primary winding 101 in a predetermined manner is connected by its anode terminal to the junction between resistors 11 and 13 and by its cathode to the junction between the primary winding 101 and the first transistor 3.
  • the zener diode has a breakdown potential of 2.4 volts which isolates the primary winding from the potential divider 10, 11, 13 for starting. Initially zener diode 8 is nonconducting; however, it breaks down at 2.5 volts. This hold-off voltage supplies the necessary initial forward biasing to turn transistor 21 ON, which turns transistor 3 ON. Zener diode 8 then conducts in the forward direction to allow more current to flow from the base of transistor 21 and allow transistor 21 to saturate, thus saturating transistor 3. This action then turns transistors 21 and 3 OFF and the energy stored in the primary 101 is transferred to the secondary 151.
  • the secondary winding 151 of the transformer 150 is connected to a spark gap device such as a spark plug 160.
  • a spark gap device such as a spark plug 160.
  • the maximum voltage that can be attained across gap 160 is about 30 K volts which is determined by the transformer ratio. However, this voltage is limited by the breakdown voltage of the gap 160 and is generally about 12-15 K volts.
  • Diode 9 is located across the base emitter terminals of transistor 3 to prevent high negative voltage spikes from appearing across the base to emitter junction of transistor 103 and damaging the transistor.
  • Battery 140 6-20 volts d-c The circuit shown in FIG. 2 operates as follows: when the voltage of battery 140 is between 6 and 20 volts d-c and is applied to the circuit when switch M1 is closed, current flows through the base-emitter junction of transistor 21, resistor 11 and resistor 13 to ground. Application of a voltage to the circuit forward biases transistor 21, causing transistor 21 to turn ON and current flows through the transistor 21, resistor 22 and resistor 23 to ground. When transistor 21 is ON, current also flows through lead 24 to the base of transistor 3. This base current to transistor 3 turns transistor 3 ON, thereby developing a voltage across the winding 101. At this time zener diode 8 conducts in the forward direction, thereby allowing more current to flow from the base of transistor 21 causing it to saturate very quickly.
  • Transistor 21 is therefore maintained in the OFF mode until capacitor 14 discharges, allowing transistor 21 to be forward biased and placed in the ON mode.
  • inductive switching occurs in the transformer 115, Le, the energy stored in the primary is transferred to the secondary and discharged through the spark gap discharge device 160, a large voltage appears across the primary winding 101 in the reverse direction.
  • the primary winding 101 voltage is no longer present and the zener diode 8 no longer conducts in the reverse direction and is considered as turned OFF.
  • the cycle repeats itself again.
  • the importance of capacitor 14 in this circuit is to delay the restarting of the oscillator as it provides a positive method of turning OFF transistor 21 for a predetermined time interval which in turn maintains transistor 3 OFF.
  • the ignition circuit comprises:
  • a transformer having a primary winding connected to said d-c source and a secondary winding, said spark gap discharge means connected across said secondary winding to discharge energy transferred from said primary winding to said secondary winding of said transformer;
  • switching means connected to said source and said transformer to periodically interrupt current flow from said source through said primary winding
  • said switching means including:
  • a first transistor having collector and emitter terminals in series with said primary winding, said transistor having alternate conductive and nonconductive intervals to periodically interrupt the current flowing from said primary winding;
  • said first voltage divider network connected across said first transistor and said primary winding, said first voltage divider network including:
  • a first diode having a first terminal connected to the junction between said primary winding and said source of electrical energy and a second terminal a capacitor connected across said diode;
  • second diode means connected between the junction between resistors of the first voltage divider network and the junction between said primary winding and said first transistor to direct current from said winding in a predetermined manner
  • a second voltage divider network connected across said source of electrical energy, said second voltage divider network including means for connecting said second voltage divider network to the base of said first transistor; a second transistor having its base connected to the second terminal of said first diode and having alternate conductive and nonconductive intervals to respectively control the conductive and nonconductive intervals of said first transistor through said connecting means; and a third and fourth series connected resistor in series with said second transistor, said means for connecting said second voltage divider network to said base of said second transistor being connected to the junction between said third and fourth resistors, whereby the flow of current from said source to said primary winding is periodically interrupted causing current to flow in an oscillatory manner through said primary winding so that energy is transferred to said secondary winding and discharged by said spark gap in response to a change in the conductive state of said first transistor.
  • said second diode means connected to said junction between said primary winding and said first transistor includes at least one diode connected to said junction between said first and second resistor and said junction between said first transistor and primary winding and at least one other diode connected to said junction between said second ad third resistor and the junction between said first transistor and said primary winding, said at least one other diode connected to allow current to flow in a direction opposite that of said at least one diode.
  • Electrical apparatus comprising:
  • a transformer having a primary winding connected to said d-c source and a secondary winding
  • spark gap discharge means connected across said secondary winding to discharge energy transferred from said primary winding to said secondary winding of said transformer
  • switching means connected to said source and said transformer to periodically interrupt current flow from said source through said primary winding, said switching means including:
  • a first transistor having collector and emitter electrodes in series with said primary winding, said transistor having alternate conductive and nonconductive intervals to periodically interrupt the current flowing from said primary winding;
  • said first voltage divider network connected across said first transistor and said primary winding, said first voltage divider network including:
  • diode having a first terminal connected to the junction between said primary winding and said source of electrical energy and a second terminal connected to the base of said second transistor;
  • zener diode means having its anode connected to the junction between the first and second resistors of the first voltage divider network and its cathode connected to the junction between said primary winding and said first transistor to direct current from said winding in a predetermined manner;
  • a second voltage divider network connected across said source of electrical energy and in parallel with said first voltage divider network, said second voltage divider network including:
  • a second transistor having its base terminal connected to the second terminal of said diode in said first voltage divider network, a second terminal of said second transistor connected to the first terminal of said second diode means and one terminal of said source of d-c energy;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
US00229332A 1972-02-25 1972-02-25 Direct current powered ignition system with blocking oscillator Expired - Lifetime US3731144A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22933272A 1972-02-25 1972-02-25

Publications (1)

Publication Number Publication Date
US3731144A true US3731144A (en) 1973-05-01

Family

ID=22860754

Family Applications (1)

Application Number Title Priority Date Filing Date
US00229332A Expired - Lifetime US3731144A (en) 1972-02-25 1972-02-25 Direct current powered ignition system with blocking oscillator

Country Status (8)

Country Link
US (1) US3731144A (de)
JP (1) JPS4898227A (de)
CA (1) CA951788A (de)
DE (1) DE2309052A1 (de)
FR (1) FR2173240B1 (de)
GB (1) GB1424718A (de)
IT (1) IT979396B (de)
SE (1) SE391781B (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3877453A (en) * 1972-01-28 1975-04-15 Bbc Brown Boveri & Cie Ignition system for internal combustion engines
US4355263A (en) * 1981-05-15 1982-10-19 James E. Meagher Ignition circuit for explosive devices and the like
DE3235593A1 (de) * 1982-09-25 1984-03-29 Meagher, James Elston, 91011 La Canada, Calif. Zuendstromkreis fuer explosionsvorrichtungen und dergl.
JPS5965546A (ja) * 1982-10-06 1984-04-13 ジエ−ムス・エルストン・ミ−ガ− 爆発装置のための点火回路
US4998047A (en) * 1989-07-03 1991-03-05 James E. Meagher Ignition circuit for explosive devices and the like
US5065073A (en) * 1988-11-15 1991-11-12 Frus John R Apparatus and method for providing ignition to a turbine engine
US5148084A (en) * 1988-11-15 1992-09-15 Unison Industries, Inc. Apparatus and method for providing ignition to a turbine engine
US5245252A (en) * 1988-11-15 1993-09-14 Frus John R Apparatus and method for providing ignition to a turbine engine
US5473502A (en) * 1992-09-22 1995-12-05 Simmonds Precision Engine Systems Exciter with an output current multiplier
US5754011A (en) * 1995-07-14 1998-05-19 Unison Industries Limited Partnership Method and apparatus for controllably generating sparks in an ignition system or the like
US20100254165A1 (en) * 2007-11-28 2010-10-07 Anton Werner Keller Power supply

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597482B2 (ja) * 1987-05-26 1997-04-09 利康 鈴木 電力変換装置
JPH02146265A (ja) * 1988-11-29 1990-06-05 Toshiyasu Suzuki 電力変換回路と点火回路

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535652A (en) * 1965-10-04 1970-10-20 Brunswick Corp Gated transistor blocking oscillator without feedback winding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1364159A (fr) * 1963-05-10 1964-06-19 G Ab Dispositif d'allumage de mélanges carburés
US3400319A (en) * 1966-06-03 1968-09-03 Automatic Elect Lab Regulated voltage converter circuit for converting a dc voltage into a higher dc voltage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535652A (en) * 1965-10-04 1970-10-20 Brunswick Corp Gated transistor blocking oscillator without feedback winding

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3877453A (en) * 1972-01-28 1975-04-15 Bbc Brown Boveri & Cie Ignition system for internal combustion engines
US4355263A (en) * 1981-05-15 1982-10-19 James E. Meagher Ignition circuit for explosive devices and the like
DE3235593A1 (de) * 1982-09-25 1984-03-29 Meagher, James Elston, 91011 La Canada, Calif. Zuendstromkreis fuer explosionsvorrichtungen und dergl.
JPS5965546A (ja) * 1982-10-06 1984-04-13 ジエ−ムス・エルストン・ミ−ガ− 爆発装置のための点火回路
US5561350A (en) * 1988-11-15 1996-10-01 Unison Industries Ignition System for a turbine engine
US5065073A (en) * 1988-11-15 1991-11-12 Frus John R Apparatus and method for providing ignition to a turbine engine
US5148084A (en) * 1988-11-15 1992-09-15 Unison Industries, Inc. Apparatus and method for providing ignition to a turbine engine
US5245252A (en) * 1988-11-15 1993-09-14 Frus John R Apparatus and method for providing ignition to a turbine engine
US5399942A (en) * 1988-11-15 1995-03-21 Unison Industries Limited Partnership Apparatus and method for providing ignition to a turbine engine
US4998047A (en) * 1989-07-03 1991-03-05 James E. Meagher Ignition circuit for explosive devices and the like
US5473502A (en) * 1992-09-22 1995-12-05 Simmonds Precision Engine Systems Exciter with an output current multiplier
US5754011A (en) * 1995-07-14 1998-05-19 Unison Industries Limited Partnership Method and apparatus for controllably generating sparks in an ignition system or the like
US6034483A (en) * 1995-07-14 2000-03-07 Unison Industries, Inc. Method for generating and controlling spark plume characteristics
US6353293B1 (en) 1995-07-14 2002-03-05 Unison Industries Method and apparatus for controllably generating sparks in an ignition system or the like
US20020101188A1 (en) * 1995-07-14 2002-08-01 Unison Industries, Inc. Method and apparatus for controllably generating sparks in an ingnition system or the like
US7095181B2 (en) 1995-07-14 2006-08-22 Unsion Industries Method and apparatus for controllably generating sparks in an ignition system or the like
US20100254165A1 (en) * 2007-11-28 2010-10-07 Anton Werner Keller Power supply
US8482939B2 (en) 2007-11-28 2013-07-09 Thomson Licensing Power supply

Also Published As

Publication number Publication date
CA951788A (en) 1974-07-23
IT979396B (it) 1974-09-30
JPS4898227A (de) 1973-12-13
DE2309052A1 (de) 1973-08-30
FR2173240B1 (de) 1976-11-05
SE391781B (sv) 1977-02-28
GB1424718A (en) 1976-02-11
FR2173240A1 (de) 1973-10-05

Similar Documents

Publication Publication Date Title
US3731144A (en) Direct current powered ignition system with blocking oscillator
US3958168A (en) Electronic control circuit
US4248200A (en) Ignition system for internal combustion engine
US3839659A (en) Multi-pulse capacitor discharge ignition system
US3331362A (en) Internal combustion engine ignition systems
US3818277A (en) Start device for battery igniter
US3841288A (en) Ignition system for internal combustion engines
US3767970A (en) Turn on/turn off circuit for the direct current operation of gaseous discharge lamps
US3581726A (en) Capacitive-discharge system for internal combustion engines
US3835350A (en) High energy output inductive ignition system
US3331034A (en) Converter stabilizing circuit
US3924595A (en) Automatic turn-off for transistorized ignition systems for internal combustion engines
JPS5941020B2 (ja) 内燃機関用点火装置
US3874355A (en) Ignition device for internal combustion engine equipped with protective device
US3335320A (en) Ignition circuit with voltage regulator
US3709206A (en) Regulated ignition system
US3900017A (en) Spark ignition systems for internal combustion engines
US3051870A (en) Ignition system
GB1601081A (en) Detection devices especially for the detection of flames
US4064415A (en) Inductive spark ignition for combustion engine
US3725732A (en) Voltage regulated transistorized ignition system for an automobile turbine engine
US3381172A (en) Solid state silicon control rectifier ignition system for internal combustion engines
US3870028A (en) Ignition system for internal combustion engines
KR930002378B1 (ko) 내연기관 점화장치
US3721884A (en) Single transistor oscillator blasting device

Legal Events

Date Code Title Description
AS Assignment

Owner name: IGNITION PRODUCTS CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ALLIED-SIGNAL INC.;REEL/FRAME:005012/0079

Effective date: 19881231

Owner name: HOUSEHOLD COMMERCIAL FINANCIAL SERVICES, INC.

Free format text: SECURITY INTEREST;ASSIGNOR:UNISON INDUSTRIES LIMITED PARTNERSHIP;REEL/FRAME:005012/0090

Effective date: 19890106

AS Assignment

Owner name: UNISON INDUSTRIES LIMITED PARTNERSHIP, 530 BLACKHA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:IGNITION PRODUCTS CORPORATION;REEL/FRAME:005164/0245

Effective date: 19890106