US3728051A - Iron or steel components of a rotary piston machine - Google Patents

Iron or steel components of a rotary piston machine Download PDF

Info

Publication number
US3728051A
US3728051A US3728051DA US3728051A US 3728051 A US3728051 A US 3728051A US 3728051D A US3728051D A US 3728051DA US 3728051 A US3728051 A US 3728051A
Authority
US
United States
Prior art keywords
areas
wiped
rotary piston
iron
piston machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
G Humbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3728051A publication Critical patent/US3728051A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/22Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/92Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to such an iron or steel component, which is subject to friction, for a rotary piston machine, particularly for its double-walled side unit, central unit or trochoid housing made of cast iron, which is characterized in that the surfaces limited to the wiped areas are hardened by ionitriding with an iron nitride zone reduced to less than 10 microns thickness and with a surface roughness of a maximum of R 0.8 micron,with'a corrosion resistance relative to combustion residues of fuels increased by at least 300 percent, with a thermal resistance up to 500C over long periods or up to 800C over short'periods, and with a ductility reduced by a maximum of 10 percent as compared with the'basic material.
  • the invention furthermore relates to a method of producing the component subject to friction according to this invention, ionitriding being performed'by means of an electrical glow discharge iii a gas atmosphere containing nitrogen at an elevated temperature in a treat ment chamber, characterized in that the said component is provided with a coating inhibiting the electrical glow discharge on the surfaces outside the wiped surfaces proper, then ionitriding the surfaces of the wiped areas after inserting the component in the treatment chamber for at least five hours at a gas pressure of 0.1 5 mmHg and an operating voltage above 500 Volts, the said operating voltage and the gas pressure being so controlled that the iron nitride zone is partly removed by spattering metal particles from the surface and the thickness of the zone thus held below l0 microns.
  • FIG. 1 shows a double-walled side driving disk of a rotating piston machine
  • FIG. 3 a double-walled central unit of 'a rotary piston machine,shown partly in section,
  • FIG. 2 a double-walled trochoid housing of a rotary piston machine
  • FIG. 4 a diagram of various wear resistances of nitrided wiped surfaces.
  • FIGS.' 1 2 and 3 for single, double and" multi-chamber rotary piston machines are double-walled hollow bodies made of iron or steel, preferably cast iron.
  • the wiped areas of the visible portions are designated at Sand those of the invisible portions indicated by the dot-dash line 6.
  • the rotating piston wipes these wiped areas with its sealing edges and, respectively, sealingstripsso that the entire wiped. area is subject to friction.
  • the numerals 7, 8, 9 and 10 indicate some of the numerous perforations and connections which are required to supply and remove cooling water, fuel mixture, exhaust gases and the like.
  • the wiped areas must naturally be completely smooth and, with the double sides of the central portion as per FIG. 3 they must be perfectly plane parallel on the front and, respectively, rear flat sides; any deformation of the complex hollow bodies during the hardening process would make the wiped areas and, respectively, the entire component useless.
  • ionitriding of components of the type shown in FIGS. 1, 2 and 3 provides the possibility of equipping all surfaces located outside the wiped areas proper with suitable coatings which prevent the occurrence of an electrical glow discharge at those points and thus the penetration of nitrogen into these parts of the surface.
  • suitable coatings for a coating, mechanical coatings or also a coating made by an applicable compound may, by way of example, be selected, which serve the purpose.
  • the said coatings may also be limited to the direct vicinity of the openings since it is only they that would cause deformations of the component during nitriding; this applies particularly to insert disks which may be provided in the areas of the sides subject to wear in the bodies according to FIGS. 1 and 3.
  • the said components of a rotary piston machine or parts thereof are placed, individually or together with other associated components, in the treatment chamber usual for ionitriding and arranged in such a manner that an electrical glow discharge may freely form on the wiped surfaces to be ionitrided.
  • the component should in the usual manner have a negative potential at least occasionally, as described in. greater detail in applicants patent specifications so that lengthy descriptions are superfluous.
  • the surface hardened by ionitriding is substantially limited to the wiped areas which are provided with an iron nitride zone of less than 10 microns and possess a surface roughness of a maximurriof R 0.8 micron.
  • the Vickers hardness HV 0.2 of the ionitrided surface areas exceeds 450 lip/mm, and the wiped surfaces so ionitrided possess increased resistance to corrosion against the combustion residues of the usual fuels.
  • the thermal resistance of the wiped areas and, respectively, the components amounts to about 500C over long periods, but to 800C and above over short periods.
  • FIG. 4 shows the results in the form of a diagram.
  • ionitrided wiped surfaces according to the present invention not only the mechanical wiping wear issmaller but also such wear as is caused by so-called tribochemical applications in the wear process. Connected therewith is the fact that wiped areas so treated also possess 'a substantially higher resistance to corrosion by combustion residues of fuels.
  • the wiped surfaces of the components ionitrided according to this invention of rotary piston machines also possess greater thermal resistance than surfaces hardened by'other methods.
  • the thermal resistance obtained in induction hardening is always below 400C and, in case hardening the thermal resistance hardly exceeds C.
  • the wiped surfaces treated in accordance with this invention reveal a thermal resistance of 400C over extended periods and of 800C or higher over short periods.

Abstract

The friction surface of a cast iron side wall member for a rotary piston engine is hardened by iontriding in an electrical glow discharge in a gas atmosphere containing nitrogen, after coating the areas not be be hardened, to inhibit glow discharge at those areas.

Description

United States Patent [191 Humbert [4 1 Apr. 17, 1973 1 IRON OR STEEL COMPONENTS OF A ROTARY PISTON MACHINE [76] lnventor: Gerhard Philipp Humbert, Margarethenhoehe, Koenigswinter, Germany [22] Filed: Nov. 16, 1970 [21] Appl. No.: 89,589
[30] Foreign Application Priority Data Dec. 12, 1969 Switzerland ..l8501/69 [52] U.S. Cl.. ..418/178, 148/166, 148/315, 204/164, 204/177 [51] Int. Cl ..B0lk l/00, C230 11/16 [58] Field of Search 148/166; 204/164, 204/177; 123/193 C; 418/178, 179, 60, 61
[56] References Cited U N lTED STATES PATENTS 3,033,180 5/1962 Bentele 418/179 X 3,575,537 4/1971 Yamamoto ..418/l78 2,039,487 5/1936 Lindemuth ..148/16.6 3,035,205 5/1962 Berghaus et a1. 204/164 X 3,536,602 10/1970 Jones et a1. ...148/16.6 X 2,946,708 7/1960 Berghaus et al ..148/16 6 2,916,409 12/1959 Bucek ..148/16.6 X 3,190,772 6/1965 Berghaus et a1. ..148/16.6 X
FOREIGN PATENTS OR APPLICATIONS 1,155,864 6/1969 Great Britain ..148/16.6
Primary ExaminerChar1es N. Lovell Attorney-Bacon & Thomas 5 7 ABSTRACT The friction surface of a cast iron side wall member for a rotary piston engine is hardened by iontriding in an electrical glow discharge in a gas atmosphere containing nitrogen, after coating the areas not be be hardened, to inhibit glow discharge at those areas.
2 Claims, 4 Drawing Figures PAIENIED R 3,728.051
SHEET 1 OF 2 IN VE N TOR GEE/MED PH/L /PP H l/MBEPT H TTORNE Y5 PATENTED APR 1 ([975 loss of weight of the samples in mg SHEET 2 OF 2 gas nirrided bath nirrided ionifrided cast iron types N VE/V TOR GER/M20 H/L/PP HUMBERT a mu r4 TTOR/VE Y5 IRON OR STEEL COMPONENTS OF A ROTARY PISTON MACHINE BACKGROUND OF THE INVENTION present invention furthermore relates to a process of producing such components subject to friction.
In the operation of such rotary piston machines the maximum achievable operational life is essentially determined by the components subject to friction. These components possess large flat surface areas over which the rotating piston wipes with its sealing strips so that a comparatively large frictional stress occurs. Since the rotary piston edges or sealing strips wiping over these surface areas must ensure a gas-tight seal, only small wear of these areas is admissible. Accordingly, it has for some time been attempted to make these components, or at least their surface areas subject to friction, as wear-resistant as possible. However, this problem is difficult to solve because it involves complex components, particularly because the twowalled side or central portions are provided with a large number of bores and connections. If at all, such doublewalled cast-iron components with major wiped surfaces subject to friction may, however, be treated with the previously usual processes for surface hardening only with great difficulty.
Hardening of the wiped areas of suchcomponents has so far been effected with varying results in wellknown metal spraying processes which, however, constitute a most expensive treatment which is moreover dangerous owing to possible adverse effects on health. Apart from the fact that the raw materials employed, such as molybdenum, can often only with difficulty be obtained in the quantities required for the treatment of a large number of components, the wiped surfaces provided with such a coat must subsequently be reground, which results in a further cost increase. Reworking such cpated areas following a certain period of operation of the rotary piston machines has so far not been possible.
Again, the so-called induction hardening of such wiped areas is possible, but in view of the great stresses arising in the operation of such rotary piston machines such hardened wiped surfaces are not sufficiently wearresistant in order to ensure satisfactory operational life. The deformations occurring in such a treatment are in addition so pronounced that they require regrinding and can hardly be eliminated nonetheless.
Experiments made with salt-bath nitriding and also with thermal gas nitriding produced no acceptable result because the hardening process was there not limited to the wiped surfaces proper but resulted in subjecting the components in question to nitriding as a whole. In view of the complex double-walled castings with their irregular bores, experience has shown that deformation occurs so that the desired high precision of the wiped areas is no longer ensured. In addition, the absorption of certain quantities of nitrogen in the base material results in a change in size, which cases substantial difficulties in respect of preserving thenecessary dimensional accuracy. Moreover, residues of the nitriding bath, which can virtually not be removed, are
formed particularly in salt-bath nitriding complex hollow components.
Despite the failure of the common nitriding processes, applicant has undertaken to achieve the desired properties using the ionitriding process. In so doing, it has surprisingly found that it is possible in socalled ionitriding by means of an electrical glow discharge in a gas atmosphere containing nitrogen, to produce, with adequate control of the ionitriding process, such components which have outstandingly good running properties without necessitating reworking of the components that have previously been processed to their final dimensions.
The present invention relates to such an iron or steel component, which is subject to friction, for a rotary piston machine, particularly for its double-walled side unit, central unit or trochoid housing made of cast iron, which is characterized in that the surfaces limited to the wiped areas are hardened by ionitriding with an iron nitride zone reduced to less than 10 microns thickness and with a surface roughness of a maximum of R 0.8 micron,with'a corrosion resistance relative to combustion residues of fuels increased by at least 300 percent, with a thermal resistance up to 500C over long periods or up to 800C over short'periods, and with a ductility reduced by a maximum of 10 percent as compared with the'basic material.
The invention furthermore relates to a method of producing the component subject to friction according to this invention, ionitriding being performed'by means of an electrical glow discharge iii a gas atmosphere containing nitrogen at an elevated temperature in a treat ment chamber, characterized in that the said component is provided with a coating inhibiting the electrical glow discharge on the surfaces outside the wiped surfaces proper, then ionitriding the surfaces of the wiped areas after inserting the component in the treatment chamber for at least five hours at a gas pressure of 0.1 5 mmHg and an operating voltage above 500 Volts, the said operating voltage and the gas pressure being so controlled that the iron nitride zone is partly removed by spattering metal particles from the surface and the thickness of the zone thus held below l0 microns. I I
The invention is explained in greater detail in FIGS. 1 through 4 of the enclosed drawing in whichv FIG. 1 shows a double-walled side driving disk of a rotating piston machine, 1
FIG. 3 a double-walled central unit of 'a rotary piston machine,shown partly in section,
FIG. 2 a double-walled trochoid housing of a rotary piston machine,
FIG. 4 a diagram of various wear resistances of nitrided wiped surfaces.
The components diagrammatically shown in FIGS.' 1 2 and 3 for single, double and" multi-chamber rotary piston machines are double-walled hollow bodies made of iron or steel, preferably cast iron. With the components shown in FIGS. 1, 2 and 3 the wiped areas of the visible portions are designated at Sand those of the invisible portions indicated by the dot-dash line 6. In operation, the rotating piston wipes these wiped areas with its sealing edges and, respectively, sealingstripsso that the entire wiped. area is subject to friction. The numerals 7, 8, 9 and 10 indicate some of the numerous perforations and connections which are required to supply and remove cooling water, fuel mixture, exhaust gases and the like. With such components of a rotary piston machine as shown diagrammatically in FIG. 1, 2 and 3, the wiped areas must naturally be completely smooth and, with the double sides of the central portion as per FIG. 3 they must be perfectly plane parallel on the front and, respectively, rear flat sides; any deformation of the complex hollow bodies during the hardening process would make the wiped areas and, respectively, the entire component useless.
With complex components of the type shown in FIGS. 1, 2 and 3, hardening of the wiped areas by means of bath nitriding is virtually impossible if only owing to the unavoidable residues, which can hardly be removed from the inside of the hollow body; at the same time the unsymmetrically arranged openings would render it impossible to avoid pronounced deformation during the nitriding treatment. Again, in thermal gas nitriding the openings 7, 8, 9, would cause heavy deformation of the entire component. In addition, the two said nitriding methods would result in that the distance between the plane parallel wiped areas would be increased owing to the absorption of nitrogen by the basic material so that additional processing of the said wiped surface would be required. In contradistinction, ionitriding of components of the type shown in FIGS. 1, 2 and 3 provides the possibility of equipping all surfaces located outside the wiped areas proper with suitable coatings which prevent the occurrence of an electrical glow discharge at those points and thus the penetration of nitrogen into these parts of the surface. For a coating, mechanical coatings or also a coating made by an applicable compound may, by way of example, be selected, which serve the purpose. The said coatings may also be limited to the direct vicinity of the openings since it is only they that would cause deformations of the component during nitriding; this applies particularly to insert disks which may be provided in the areas of the sides subject to wear in the bodies according to FIGS. 1 and 3.
After coating the areas of the surface not requiring ionitriding, the said components of a rotary piston machine or parts thereof are placed, individually or together with other associated components, in the treatment chamber usual for ionitriding and arranged in such a manner that an electrical glow discharge may freely form on the wiped surfaces to be ionitrided. The component should in the usual manner have a negative potential at least occasionally, as described in. greater detail in applicants patent specifications so that lengthy descriptions are superfluous.
In ionitriding the wiped surfaces of components, which are subject to wear, of rotary piston machines, however, it is of great importance in order to meet the great demands made of the resistance to wear of the wiped areas that the treatment is effected for at least 5 hours at a'gas pressure in the range of 0.1 and 5 mmI-Ig and an operating voltage in excess of 500 Volts, preferably between 600 and 1,000 Volts. The operating voltage and the gas pressure must be so regulated that the spattering of metal particles from the surface of the wiped areas is obtained and that the iron nitride zone created by the ionitriding process is partly removed. Despite the comparatively long period of treatment the ionitrided in the manner described above, the surface hardened by ionitriding is substantially limited to the wiped areas which are provided with an iron nitride zone of less than 10 microns and possess a surface roughness of a maximurriof R 0.8 micron. The Vickers hardness HV 0.2 of the ionitrided surface areas exceeds 450 lip/mm, and the wiped surfaces so ionitrided possess increased resistance to corrosion against the combustion residues of the usual fuels. The thermal resistance of the wiped areas and, respectively, the components amounts to about 500C over long periods, but to 800C and above over short periods. Against the basic material the wiped areas possess, despite the great hardness, a ductility which is reduced by not more than 10 percent. The above-mentioned favorable properties of the wiped areas hardened by ionitriding permit of expecting, in comparison with other surface hardening treatments, greater resistance to wear then those treated in other surface hardening processes. In order to prove the increase in wear resistance, a large number of wear tests were performed with Amsel wear testers. FIG. 4 shows the results in the form of a diagram.
It was found that, with ionitrided wiped surfaces according to the present invention, not only the mechanical wiping wear issmaller but also such wear as is caused by so-called tribochemical applications in the wear process. Connected therewith is the fact that wiped areas so treated also possess 'a substantially higher resistance to corrosion by combustion residues of fuels. As previously stated, the wiped surfaces of the components ionitrided according to this invention of rotary piston machines also possess greater thermal resistance than surfaces hardened by'other methods. By way of example, the thermal resistance obtained in induction hardening is always below 400C and, in case hardening the thermal resistance hardly exceeds C. On the other hand, the wiped surfaces treated in accordance with this invention reveal a thermal resistance of 400C over extended periods and of 800C or higher over short periods.
Life tests were finally performed on rotary piston machines of the one and two-chamber design with the components according to this invention. It has been found that the components according to this invention provide an increase in the operational life of such machines and, respectively, engines in the order of two or three times the original value. It has further been found that used components of this type can be reconditioned, which constitutes a considerable advantage over the treatment of the surfaces by spraying them with molybdenum.
What is claimed is:
l. A trochoid housing for a rotary piston machine, made of cast iron and provided with ionitrided hardened areas limited to the wiped surfaces; characterized in that the hardened areas throughout the wiped areas are provided with an iron nitride zone reduced to less than 10 microns thickness, with a surface roughness not exceeding R =0.8 micron, with a corrosion resistance relative to fuel combustion residues increased by at least 300 percent, with a thermal re proper prior to ionitriding, characterized in that the said areas are ionitrided after insertion in the treatment chamber during at least 5 hours at a gas pressure in the range of 0.1 5 mmHg and an operating voltage of more than 500 volts, the operating voltage and the gas pressure being so controlled that the sputtering of metal particles from the surface of the wiped areas partly reduces the iron nitride zone and keeps it below 10 microns.

Claims (2)

1. A trochoid housing for a rotary piston machine, made of cast iron and provided with ionitrided hardened areas limited to the wiped surfaces; characterized in that the hardened areas throughout the wiped areas are provided with an iron nitride zone reduced to less than 10 microns thickness, with a surface roughness not exceeding Ra 0.8 micron, with a corrosion resistance relative to fuel combustion residues increased by at least 300 percent, with a thermal resistance up to 500* C over long periods and, respectively, up to 800*C over short periods and with a ductility reduced by not more than 10 percent as compared to the basic material.
2. A method of producing a cast iron trochoid housing for a rotary piston machine in which ionitriding is performed by means of an electrical glow discharge in a gas atmosphere containing nitrogen at elevated temperature in a treatment chamber, the said housing being provided with means inhibiting the electrical glow discharge on the surfaces outside the wiped areas proper prior to ionitriding, characterized in that the said areas are ionitrided after insertion in the treatment chamber during at least 5 hours at a gas pressure in the range of 0.1 - 5 mmHg and an operating voltage of more than 500 volts, the operating voltage and the gas pressure being so controlled that the sputtering of metal particles from the surface of the wiped areas partly reduces the iron nitride zone and keeps it below 10 microns.
US3728051D 1970-11-16 1970-11-16 Iron or steel components of a rotary piston machine Expired - Lifetime US3728051A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8958970A 1970-11-16 1970-11-16

Publications (1)

Publication Number Publication Date
US3728051A true US3728051A (en) 1973-04-17

Family

ID=22218475

Family Applications (1)

Application Number Title Priority Date Filing Date
US3728051D Expired - Lifetime US3728051A (en) 1970-11-16 1970-11-16 Iron or steel components of a rotary piston machine

Country Status (1)

Country Link
US (1) US3728051A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298629A (en) * 1979-03-09 1981-11-03 Fujitsu Limited Method for forming a nitride insulating film on a silicon semiconductor substrate surface by direct nitridation
US4394234A (en) * 1979-02-02 1983-07-19 Hitachi, Ltd. Method of processing electrically conductive material by glow discharge
GB2193732A (en) * 1986-08-08 1988-02-17 Verdict Ion Technology Limited Improvements in tooling
US5753076A (en) * 1997-02-03 1998-05-19 Kimberly-Clark Worldwide, Inc. Method for creping tissue
US20170082194A1 (en) * 2015-09-22 2017-03-23 Ypf Tecnologia Sa Plunger with ion nitriding treatment for a hydraulic fracturing pump and a method for making said plunger
US10871161B2 (en) 2017-04-07 2020-12-22 Stackpole International Engineered Products, Ltd. Epitrochoidal vacuum pump
US20220216649A1 (en) * 2019-04-10 2022-07-07 Icotek Project Gmbh & Co. Kg Device for introducing cables through an opening

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2039487A (en) * 1929-05-28 1936-05-05 Nitralloy Corp Method of nitriding
US2916409A (en) * 1950-11-09 1959-12-08 Elektrophysikalische Anstalt Process and apparatus for the treatment of ferrous articles
US3033180A (en) * 1960-01-29 1962-05-08 Curtiss Wright Corp Rotating combustion engine seal construction
US3035205A (en) * 1950-08-03 1962-05-15 Berghaus Elektrophysik Anst Method and apparatus for controlling gas discharges
US3190772A (en) * 1960-02-10 1965-06-22 Berghaus Bernhard Method of hardening work in an electric glow discharge
GB1155864A (en) * 1965-07-06 1969-06-25 Berghaus Elektrophysik Anst A Method For Producing Wear-Resistant Surfaces On Spheroidal Graphite Iron
US3536602A (en) * 1967-01-27 1970-10-27 Gen Electric Glow inhibiting method for glow discharge apparatus
US3575537A (en) * 1968-06-06 1971-04-20 Toyo Kogyo Co Side housing of rotary piston engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2039487A (en) * 1929-05-28 1936-05-05 Nitralloy Corp Method of nitriding
US3035205A (en) * 1950-08-03 1962-05-15 Berghaus Elektrophysik Anst Method and apparatus for controlling gas discharges
US2916409A (en) * 1950-11-09 1959-12-08 Elektrophysikalische Anstalt Process and apparatus for the treatment of ferrous articles
US2946708A (en) * 1950-11-09 1960-07-26 Berghaus Elektrophysik Anst Nitriding with electric glow discharge
US3033180A (en) * 1960-01-29 1962-05-08 Curtiss Wright Corp Rotating combustion engine seal construction
US3190772A (en) * 1960-02-10 1965-06-22 Berghaus Bernhard Method of hardening work in an electric glow discharge
GB1155864A (en) * 1965-07-06 1969-06-25 Berghaus Elektrophysik Anst A Method For Producing Wear-Resistant Surfaces On Spheroidal Graphite Iron
US3536602A (en) * 1967-01-27 1970-10-27 Gen Electric Glow inhibiting method for glow discharge apparatus
US3575537A (en) * 1968-06-06 1971-04-20 Toyo Kogyo Co Side housing of rotary piston engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394234A (en) * 1979-02-02 1983-07-19 Hitachi, Ltd. Method of processing electrically conductive material by glow discharge
US4298629A (en) * 1979-03-09 1981-11-03 Fujitsu Limited Method for forming a nitride insulating film on a silicon semiconductor substrate surface by direct nitridation
GB2193732A (en) * 1986-08-08 1988-02-17 Verdict Ion Technology Limited Improvements in tooling
US5753076A (en) * 1997-02-03 1998-05-19 Kimberly-Clark Worldwide, Inc. Method for creping tissue
FR2759017A1 (en) * 1997-02-03 1998-08-07 Kimberly Clark Co PROCESS FOR CREATING THIN ABSORBENT PAPER
US20170082194A1 (en) * 2015-09-22 2017-03-23 Ypf Tecnologia Sa Plunger with ion nitriding treatment for a hydraulic fracturing pump and a method for making said plunger
US10260630B2 (en) * 2015-09-22 2019-04-16 Ypf Tecnologia Sa Plunger with ion nitriding treatment for a hydraulic fracturing pump and a method for making said plunger
US10871161B2 (en) 2017-04-07 2020-12-22 Stackpole International Engineered Products, Ltd. Epitrochoidal vacuum pump
US20220216649A1 (en) * 2019-04-10 2022-07-07 Icotek Project Gmbh & Co. Kg Device for introducing cables through an opening

Similar Documents

Publication Publication Date Title
US3819338A (en) Protective diffusion layer on nickel and/or cobalt-based alloys
US3885995A (en) Process for carburizing high alloy steels
US4531985A (en) Surface treatment of metal rings
O'Brien et al. Plasma(Ion) Nitriding
US3728051A (en) Iron or steel components of a rotary piston machine
GB2190100A (en) A titanium alloy and machine parts made therefrom
US4043847A (en) Hardening process for crankshafts
US4153477A (en) Friction stressed machine parts of cast iron with ledeburitic bearing surface and methods for their production
USRE28918E (en) Components of a rotary piston machine
US6519847B1 (en) Surface treatment of prefinished valve seat inserts
JPS60153456A (en) Steel piston ring
CN105112925A (en) High-wear-resistance chain
SU854276A3 (en) Method of treatment of sliding surface
CN105088133A (en) Manufacturing process of high-abrasion-resistance chain
JPH01158212A (en) Shaft subjected to oil leak preventing measure
JPS5924241B2 (en) Combination of side housing and side seal in rotary piston engine
GB2155046A (en) Surface treatment of metal rings
SU1740490A1 (en) Method for reconditioning of worn-out steel parts
JP2681863B2 (en) Cylinder liner and piston ring combinations for diesel engines
JPH01201459A (en) Parts combining high toughness with wear resistance
US3472651A (en) Engine components of cast iron having ni,cr,and ti as alloying elements
CN109207909A (en) A kind of metal connecting piece surface treatment method
US3439188A (en) Method for treating titanium
CN115418552B (en) Preparation method of nitrocarburizing low alloy steel machine tool friction plate
SU1087566A1 (en) Method for improving products of structural steels