US3722789A - Centrifuge and self positioning tube holder therefor - Google Patents

Centrifuge and self positioning tube holder therefor Download PDF

Info

Publication number
US3722789A
US3722789A US00222043A US3722789DA US3722789A US 3722789 A US3722789 A US 3722789A US 00222043 A US00222043 A US 00222043A US 3722789D A US3722789D A US 3722789DA US 3722789 A US3722789 A US 3722789A
Authority
US
United States
Prior art keywords
weight
holder
rotor
axis
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00222043A
Other languages
English (en)
Inventor
E Kennedy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Hospital Supply Corp
Baxter International Inc
Original Assignee
American Hospital Supply Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Hospital Supply Corp filed Critical American Hospital Supply Corp
Application granted granted Critical
Publication of US3722789A publication Critical patent/US3722789A/en
Assigned to BAXTER TRAVENOL LABORATORIES, INC. A CORP. OF DE reassignment BAXTER TRAVENOL LABORATORIES, INC. A CORP. OF DE MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 11/25/1985 ILLINOIS Assignors: AMERICAN HOSPITAL SUPPLY CORPORATION INTO
Assigned to BAXTER INTERNATIONAL INC. reassignment BAXTER INTERNATIONAL INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 10/17/1988 Assignors: BAXTER TRAVENOL LABORATORIES, INC., A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0407Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
    • B04B5/0414Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes
    • B04B5/0421Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles comprising test tubes pivotably mounted

Definitions

  • FIG. I2 is a diagrammatic representation of FIG. I2
  • the present invention is concerned with a centrifuge having multiple position tubes in which changes in the position of each tube are achieved by varying the center of mass of each holder-tube assembly
  • the result is a centrifuge which overcomes the disadvantages of prior constructions and, specifically, one which is relatively simple in construction and operation and which does not require mechanical or electro-mechanical connections with the holders for the purpose of shifting such holders into each of their operating positions.
  • One aspect of the invention lies in the discovery that tube holders may be made to shift into different operating positions if such holders are equipped with movable weights which assume one position or another depending on the direction of rotation of the centrifuge rotor.
  • the weight is solid and takes the shape of a sphere; however, other shapes are believed suitable and it is conceivable that nonsolid (i.e., liquid) weights may be used.
  • the weight is retained in a .Ishaped guide passage or track and, when the rotor is at rest, is disposed in the intermediate zone between the leg portions of that passage.
  • the weight is directed into the short leg of the passage, whereas if the rotor is driven in its reverse direction the weight moves to the end of the longer leg. In either case, the weight moves along the respective leg of the passage, and is retained at the distal end of that leg during rotation of the rotor, by reason of centrifugal force acting upon the weight.
  • the center of mass of the holder-tube assembly is such that during rotor operation the holder pivots so that the open-ended tube slopes upwardly and inwardly.
  • such a tube position is suitable not only for centrifuging but also for filling the tubes while the rotor is in operation.
  • the weights assumes a second position adjacent the end of the longer leg, thereby reorienting the center of mass of the holder-tube assembly and causing the holder to pivot so that the tube extends generally upwardly in a decanting position.
  • Stops which may be adjustable, limit the extent of pivotal movement of the holder in each direction. Since such stops simply limit the extent of movement, the tube holders are essentially self-positioning in response to the condition of operation (i.e., direction of operation, or non-operation) of the rotor.
  • FIG. 1 is a perspective view, partially diagrammatic, of the rotor and motor portions of a centrifuge embodying the present invention
  • FIG. 2 is an enlarged perspective view showing a tube holder
  • FIG. 3 is another perspective view of the holder taken from the side opposite from that shown in FIG. 2;
  • FIG. 4 is a sectional view taken along line 4-4 of FIG. 2 and illustrating three positions of the weight in the passage of the holder;
  • FIG. 5 is a fragmentary top view of the rotor
  • FIG. 6 is an enlarged sectional view taken along line 66 of FIG. 5 and illustrating an adjustable stop for. a tube holder;
  • FIG. 7 is an enlarged vertical sectional view of a tub holder illustrating three positions of the weight within the holder passage
  • FIG. 8 is a top plan view taken along line 8--8 of FIG. 7;
  • FIG. 9 is a vertical sectional view showing the relative positions of the parts when the rotor is at rest.
  • FIG. 10 is a schematic representation accompanying FIG. 9 and indicating that when the rotor is viewed in the direction of line 10-l0 of FIG. 9 such' rotor is stationary or at rest;
  • FIGS; 11 and 12 correspond with FIGS. 9 and 10 bu illustrate the relationship of parts when the rotor rotates in a clockwise direction, as during a filling operation;
  • FIGS. 13 and 14 also correspond with FIGS. 9 and 10 but illustrate the relationship of parts when the rotor turns in a counterclockwise direction as during a decanting operation.
  • centrifuge is operatively connected to the rotor to drive the rotor selectively and reversibly in either direction about a vertical axis of centrifugation 14. It is to be understood that the centrifuge is also equipped with a housing, cover, and related parts; however, such elements have been omitted from the drawings for clarity of illustration.
  • each holder 11 takes the form of a body which may be molded from plastic, metal, or other suitable material.
  • a horizontal bore 15 receives a pin 16 (FIG. 9) which supports each holder upon the rotor for tipping movement about a pivot axis 17, each such axis being tangent to a horizontal line circumscribing the vertical axis of centrifugation 14.
  • each holder is supported by pin 16 within a recess 18 of the rotor.
  • the flat top surface 11a of .each holder is flush with the top surface 100 of the cylindrical rotor when the rotor is at rest (FIGS. land 9).
  • the open-topped centrifuge tubes 12 are received within cylindrical cavities 19 which extend downwardly from top surfaces 11a of the holders.
  • the tubes In the case of a centrifuge intended for use in clinical laboratories, it is preferable that the tubes be formed as separate parts and be removable from the cavities in which they are supported.
  • the cylindrical tubes 12 may be formed of glass, plastic, or any other suitable material and may, in the embodiment shown in the drawings, be inserted into or removed from the cavities 19. It is to be understood, however, that in some applications it may be desirable to mount the tubes permanently within the cavities, or to form such tubes as integral parts of the holders.
  • each holder 11 is also provided with an internal J- shaped passage or track 20 having a relatively short leg 200, a relatively long leg 20b and an arcuate connecting portion 20c.
  • the legs 20a and 20b of the passage extend along a sloping plane parallel with pivot axis 17 of the holder. Specifically, the legs of the passage extend upwardly and outwardly and in radial directions from the vertical axis of centrifugation 14.
  • the connecting portion 20c of the passage is disposed below pivot axis 17. It is to be noted that the distal end 20d of the short leg of the passage is also disposed below pivot axis 17 but that the distal end 20e of leg 20b is disposed above axis 17.
  • a weight in the form of a ball or sphere 21 is movable along the length of passage 20 between a first operating position or station A adjacent the distal end of passage leg 20a, an intermediate position or station B along arcuate connecting portion 200, and a second operating position or station C adjacent the distal end of leg 20b (FIGS. 4, 7 and 8). While a spherical weight is preferred because of the low frictional resistance to movement along the length of the passage, it is believed apparent that such weight need not be spherical or even solid (it might, for example, be liquid) and, if solid, need not take the form of a single member or element. Thus, the weight might be a body of material in particulate form, such as granules, microspheres, etc.
  • the weight in whatever form it takes, be capable of moving under the influence of centrifugal force from the intermediate or rest position 13 into either of the operating positions A and C, and of returning (when the rotor is at rest) under the influence of gravity back into the rest position B.
  • weight 21 moves into one operating station or the other depends on the direction of rotation of the rotor 10. As previously indicated, and as shown in FIGS. 9 and 10, weight 21 is in its "rest position B in the passages connecting portion 200 when the rotor is stationary. It will be observed that the connecting portion constitutes the lowermost region of the J-shaped passage 20. Under such conditions, the mass of body 21 is insufficient to cause the holder 11 to pivot in a counterclockwise direction about the axis of pin 16 and, consequently, centrifuge tube 12 remains in the generally upstanding position illustrated in FIG. 9.
  • weight 21 is urged by its own inertia into the shorter leg 20a of the passage.
  • centrifugal force acting upon the weight urges it outwardly into position A at the distal end 20b of the shorter leg.
  • FIG. 11 reveals thatthe tipped position of tube 12 may be used advantageously to achieve automatic filling of the tube.
  • rotor 10 is provided with a central manifold chamber 23 having radially extending discharge ports or nozzles 24 alignable with the open ends of the centrifuge tubes 12 when such tubes are tipped upwardly and inwardly as illustrated in the drawing. Liquid from the manifold chamber is discharged from the nozzles under the influence of centrifugal force and passes into the open ends of the tubes as shown in FIG. 11.
  • each weight 21 of each holder returns to position B, and the centrifugetubes 12 again assume their generally vertical positionsas indicated in FIG. 9.
  • the motor is simply reversed to drive the rotor in its reverse or counterclockwise direction (FIGS. 13 and 14).
  • the inertia of each weight 21 directs such weight into the longer leg 20b of the passage and centrifugal force urges the weight into position C at the distal end of that leg.
  • stop means 25 takes the form of an adjustable screw element, the threaded adjustment of that element determining 'just how far the holder 11 pivots as it moves into its decanting position. It is to be understood that a similar screw element may be threadedly mounted in wall 22 of the rotor so that adjustment of the extent of inward tipping movement of the holder may also be made.
  • tube 12 When the holder is in the decanting position of FIG. 13, or in the rest position of FIG. 9, tube 12 has been described as being in a generally vertical or upstanding position. It will be observed from FIGS. 9 and 13 that the tube actually slopes outwardly to a slight but discernible extent. The precise extent may, as already indicated, be adjusted by threading or unthreading stop member 25. The purpose of such adjustment is to insure that at a given operating speed, and with any given liquid contained in tube 12, a predetermined amount of that liquid will be discharged from the open end of the tube under the influence of centrifugal force without at the same time discharging any solid material contained within the tube.
  • the centrifuge may therefore be used as a sample washing device, a sample in tube 12 being first mixed with a washing fluid (normally water) introduced forceably into the tube under centrifugal force in the filling step of FIG. 11, and then discharged from the tube (following centrifugation) in the decanting step of FIG. 13.
  • a washing fluid normally water
  • the solid material is designated by the numeral 26 and the liquid by numeral 27.
  • the connecting portion c of passage 20 is arcuate. Because of the arcuate shape of portion 20c, the weight 21 is guided smoothly into passage portions 20a of 20b, depending upon the direction of rotation of the rotor. However, it is to be understood that portion 20c may be of somewhat different shape, such as of a V- shaped configuration, or even of a right angular configuration, and still achieve to an appreciable extent the function and advantages of the illustrated construction.
  • a centrifuge having a rotor mounted for rotation about a substantially vertical axis of centrifugation and having a plurality of circumferentially-spaced holders adapted to support plural open-topped centrifuge containers, each of said holders being mounted for pivotal movement about a pivot axis generally tangent to a horizontal line circumscribing said axis of centrifugation, and motor means for rotating said rotor, wherein the improvement comprises said motor means being operatively connected to said rotor for selective rotation of said rotor in forward and reverse directions, each holder being provided with a weight shiftable with respect to such holder between a first position when said rotor turns in its forward direction and a second position when said rotor turns in its reverse direction, said weight when in said first position urging said holder to pivot the open top of said container inwardly towards said axis of centrifugation and when in said second position urging said holder to pivot the open top of said container outwardly away from said axis of centrifugation.
  • each holder is provided with a guide passage supporting said weight for movement between its respective positions.
  • said guide passage is generally J-shaped having a relatively long leg portion, a relatively short leg portion, and an intermediate connecting portion, said weight being disposed adjacent the distal end of said short leg portion when said weight is in its first position and being disposed adjacent the distal end of said long leg portion when said weight is in its second position.
  • a centrifuge having a rotor mounted for rotation about a substantially vertical axis of centrifugation and having a plurality of circumferentially-spaced holders equipped with a plurality of open-topped centrifuge tubes, each of said holders being mounted for pivotal movement about a pivot axis generally tangent to a horizontal line circumscribing said axis of centrifugation, and motor means for turning said rotor, wherein 'the improvement comprises said motor means being selectively reversible for turning said rotor in forward and reverse directions, each holder being provided with a weight movably mounted with respect thereto and being shiftable under the influence of centrifugal force from a rest position when said rotor is stationaryinto a first operating position when said rotor turns in its forward direction and into a second operating position when said rotor turns in its reverse direction, said weight when in said first operating position orienting the mass center of said holder and tube to pivot said holder so that the top of said tube tips inwardly towards said axis
  • said last-mentioned means includes a manifold chamber and a plurality of nozzles projecting outwardly from said rotor and communicating with said chamber, each nozzle registering with one of said tubes for discharging fluid therein when said tubes are in their filling-centrifuging positions.
  • each holder is provided with a guide passage supporting said weight for movement between its respective positions.
US00222043A 1972-01-31 1972-01-31 Centrifuge and self positioning tube holder therefor Expired - Lifetime US3722789A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22204372A 1972-01-31 1972-01-31

Publications (1)

Publication Number Publication Date
US3722789A true US3722789A (en) 1973-03-27

Family

ID=22830541

Family Applications (1)

Application Number Title Priority Date Filing Date
US00222043A Expired - Lifetime US3722789A (en) 1972-01-31 1972-01-31 Centrifuge and self positioning tube holder therefor

Country Status (8)

Country Link
US (1) US3722789A (fr)
JP (1) JPS5635512B2 (fr)
BE (1) BE793544A (fr)
CA (1) CA957667A (fr)
CH (1) CH566172A5 (fr)
DE (1) DE2304395A1 (fr)
FR (1) FR2169921B1 (fr)
GB (1) GB1363816A (fr)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850368A (en) * 1973-02-12 1974-11-26 Kennametal Inc Apparatus for centrifugal compaction
DE2425165A1 (de) * 1973-05-25 1974-12-12 Du Pont Vorrichtung zur zentrifugalen behandlung bzw. zum waschen von biologischen proben
US3951334A (en) * 1975-07-07 1976-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for automatically positioning centrifuge tubes
US4190530A (en) * 1978-04-03 1980-02-26 E. I. Du Pont De Nemours And Company Centrifugal method and apparatus for processing fluid materials
US4221324A (en) * 1977-12-05 1980-09-09 Raymond Frey Centrifuge with variable angle of attack
US4285463A (en) * 1979-11-01 1981-08-25 American Hospital Supply Corporation Decanting centrifuge
US5610074A (en) * 1993-02-24 1997-03-11 Beritashvili; David R. Centrifugal method and apparatus for isolating a substance from a mixture of substances in a sample liquid
US5707331A (en) * 1995-05-05 1998-01-13 John R. Wells Automatic multiple-decanting centrifuge
US6398972B1 (en) 1999-04-12 2002-06-04 Harvest Technologies Corporation Method for producing platelet rich plasma and/or platelet concentrate
US6623959B2 (en) 2001-06-13 2003-09-23 Ethicon, Inc. Devices and methods for cell harvesting
US20030216238A1 (en) * 2002-05-17 2003-11-20 Hitachi Koki Co., Ltd. Bio cell cleaning centrifuge having bio cell cleaning rotor provided with cleaning liquid distributor
US20030216237A1 (en) * 2002-05-17 2003-11-20 Hitachi Koki Co., Ltd. Bio cell cleaning centrifuge having detachable chamber body
US20040071569A1 (en) * 2002-08-02 2004-04-15 Ellsworth James R. Decanting centrifuge with vibration isolation
US20040208797A1 (en) * 1999-01-29 2004-10-21 Michal Lebl Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses
USRE38730E1 (en) * 1995-05-05 2005-04-26 Harvest Technologies Corporation Automatic multiple-decanting centrifuge and method of treating physiological fluids
US20050277538A1 (en) * 2004-06-14 2005-12-15 Michael Sherman Automated device for homogenization and resuspension of substances, disintegration of cells, disruption of tissues and centrifugation of these media
US20060094865A1 (en) * 2004-10-29 2006-05-04 Kapur Terri A Intraoperative method for isolating and concentrating autologous growth factors and for forming residual autologous growth factor compositions
US20070037684A1 (en) * 2005-08-10 2007-02-15 Moscone Kenneth J Sr Centrifuge bucket design
US20070110638A1 (en) * 2005-09-14 2007-05-17 Heiner David L Continuous polymer synthesizer
US20080207211A1 (en) * 2004-09-15 2008-08-28 Samsung Electronics Co., Ltd. Method and apparatus for indicating preferred layer information in multimedia broadcast/multicast service (MBMS)
US20150005150A1 (en) * 2013-07-01 2015-01-01 Chopin Technologies Shaking and centrifuging device
US20150003183A1 (en) * 2013-07-01 2015-01-01 Chopin Technologies Shaking device
US20160047834A1 (en) * 2011-01-21 2016-02-18 Theranos, Inc. Systems and methods for sample use maximization
US9581588B2 (en) 2007-10-02 2017-02-28 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9592508B2 (en) 2011-09-25 2017-03-14 Theranos, Inc. Systems and methods for fluid handling
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US9645143B2 (en) 2011-09-25 2017-05-09 Theranos, Inc. Systems and methods for multi-analysis
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
EP3421134A1 (fr) * 2017-06-27 2019-01-02 Tecan Trading Ag Unité de traitement centrifuge
US10207272B2 (en) * 2015-04-19 2019-02-19 VitroSolutions, LLC Method and device for placement of microscopic sample into the tube
US11162936B2 (en) 2011-09-13 2021-11-02 Labrador Diagnostics Llc Systems and methods for multi-analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2635745C2 (de) * 1976-08-09 1982-11-11 Becton, Dickinson and Co., 07652 Paramus, N.J. Zentrifuge

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850368A (en) * 1973-02-12 1974-11-26 Kennametal Inc Apparatus for centrifugal compaction
DE2425165A1 (de) * 1973-05-25 1974-12-12 Du Pont Vorrichtung zur zentrifugalen behandlung bzw. zum waschen von biologischen proben
US3877634A (en) * 1973-05-25 1975-04-15 Du Pont Cell washing centrifuge apparatus and system
US3951334A (en) * 1975-07-07 1976-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for automatically positioning centrifuge tubes
US4221324A (en) * 1977-12-05 1980-09-09 Raymond Frey Centrifuge with variable angle of attack
US4190530A (en) * 1978-04-03 1980-02-26 E. I. Du Pont De Nemours And Company Centrifugal method and apparatus for processing fluid materials
US4285463A (en) * 1979-11-01 1981-08-25 American Hospital Supply Corporation Decanting centrifuge
EP0140391A2 (fr) * 1979-11-01 1985-05-08 Baxter Travenol Laboratories, Inc. Montage de tête de rotor
EP0143370A2 (fr) * 1979-11-01 1985-06-05 Baxter Travenol Laboratories, Inc. Montage de tête de rotor
EP0140391A3 (fr) * 1979-11-01 1985-12-11 Baxter Travenol Laboratories, Inc. Montage de tête de rotor
EP0143370A3 (fr) * 1979-11-01 1985-12-11 Baxter Travenol Laboratories, Inc. Montage de tête de rotor
US5610074A (en) * 1993-02-24 1997-03-11 Beritashvili; David R. Centrifugal method and apparatus for isolating a substance from a mixture of substances in a sample liquid
US5707331A (en) * 1995-05-05 1998-01-13 John R. Wells Automatic multiple-decanting centrifuge
US5895346A (en) * 1995-05-05 1999-04-20 Wells; John R. Automatic multiple-decanting centrifuge
AU706177B2 (en) * 1995-05-05 1999-06-10 Harvest Technologies Corporation Automatic multiple-decanting centrifuge
USRE38730E1 (en) * 1995-05-05 2005-04-26 Harvest Technologies Corporation Automatic multiple-decanting centrifuge and method of treating physiological fluids
USRE38757E1 (en) * 1995-05-05 2005-07-12 Harvest Technologies Corporation Automatic multiple-decanting centrifuge and container therefor
US8178652B2 (en) 1999-01-29 2012-05-15 Illumina, Inc. Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses
US7977456B2 (en) 1999-01-29 2011-07-12 Illumina, Inc. Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses
US8394923B2 (en) 1999-01-29 2013-03-12 Illumina, Inc. Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses
US20040208797A1 (en) * 1999-01-29 2004-10-21 Michal Lebl Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses
US6846460B1 (en) * 1999-01-29 2005-01-25 Illumina, Inc. Apparatus and method for separation of liquid phases of different density and for fluorous phase organic syntheses
US6398972B1 (en) 1999-04-12 2002-06-04 Harvest Technologies Corporation Method for producing platelet rich plasma and/or platelet concentrate
US6623959B2 (en) 2001-06-13 2003-09-23 Ethicon, Inc. Devices and methods for cell harvesting
US20030216237A1 (en) * 2002-05-17 2003-11-20 Hitachi Koki Co., Ltd. Bio cell cleaning centrifuge having detachable chamber body
US6857997B2 (en) * 2002-05-17 2005-02-22 Hitachi Koki Co., Ltd. Bio cell cleaning centrifuge having bio cell cleaning rotor provided with cleaning liquid distributor
US6846281B2 (en) * 2002-05-17 2005-01-25 Hitachi Koki Co., Ltd. Bio cell cleaning centrifuge having detachable chamber body
US20030216238A1 (en) * 2002-05-17 2003-11-20 Hitachi Koki Co., Ltd. Bio cell cleaning centrifuge having bio cell cleaning rotor provided with cleaning liquid distributor
US8152708B2 (en) * 2002-08-02 2012-04-10 Harvest Technologies Corporation Decanting centrifuge with sliding engagement between decant ring and processing unit
US20040071569A1 (en) * 2002-08-02 2004-04-15 Ellsworth James R. Decanting centrifuge with vibration isolation
US20070142196A1 (en) * 2002-08-02 2007-06-21 Ellsworth James R Decanting centrifuge with vibration isolation
US20110160031A1 (en) * 2002-08-02 2011-06-30 Harvest Technologies Corporation Decanting centrifuge with vibration isolation
US7699766B2 (en) 2002-08-02 2010-04-20 Harvest Technologies Corporation Decanting centrifuge with vibration isolation
US20050277538A1 (en) * 2004-06-14 2005-12-15 Michael Sherman Automated device for homogenization and resuspension of substances, disintegration of cells, disruption of tissues and centrifugation of these media
US7204637B2 (en) * 2004-06-14 2007-04-17 Michael Sherman Automated device for homogenization and resuspension of substances, disintegration of cells, disruption of tissues and centrifugation of these media
US20080207211A1 (en) * 2004-09-15 2008-08-28 Samsung Electronics Co., Ltd. Method and apparatus for indicating preferred layer information in multimedia broadcast/multicast service (MBMS)
US20060094865A1 (en) * 2004-10-29 2006-05-04 Kapur Terri A Intraoperative method for isolating and concentrating autologous growth factors and for forming residual autologous growth factor compositions
US20070037684A1 (en) * 2005-08-10 2007-02-15 Moscone Kenneth J Sr Centrifuge bucket design
US7422554B2 (en) * 2005-08-10 2008-09-09 The Drucker Company, Inc. Centrifuge with aerodynamic rotor and bucket design
US20070110638A1 (en) * 2005-09-14 2007-05-17 Heiner David L Continuous polymer synthesizer
US20110136696A1 (en) * 2005-09-14 2011-06-09 Illumina, Inc. Continuous polymer synthesizer
US7914739B2 (en) 2005-09-14 2011-03-29 Illumina, Inc. Continuous polymer synthesizer
US20070117178A1 (en) * 2005-09-14 2007-05-24 Heiner David L Continuous polymer synthesizer
US8731721B2 (en) 2005-09-14 2014-05-20 Illumina, Inc. Continuous polymer synthesizer
US11137391B2 (en) 2007-10-02 2021-10-05 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11061022B2 (en) 2007-10-02 2021-07-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US10634667B2 (en) 2007-10-02 2020-04-28 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US9581588B2 (en) 2007-10-02 2017-02-28 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9588109B2 (en) 2007-10-02 2017-03-07 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US11366106B2 (en) 2007-10-02 2022-06-21 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11199538B2 (en) 2007-10-02 2021-12-14 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US10670588B2 (en) 2007-10-02 2020-06-02 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US10900958B2 (en) 2007-10-02 2021-01-26 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11092593B2 (en) 2007-10-02 2021-08-17 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11143647B2 (en) 2007-10-02 2021-10-12 Labrador Diagnostics, LLC Modular point-of-care devices, systems, and uses thereof
US11899010B2 (en) 2007-10-02 2024-02-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11199489B2 (en) 2011-01-20 2021-12-14 Labrador Diagnostics Llc Systems and methods for sample use maximization
US9677993B2 (en) * 2011-01-21 2017-06-13 Theranos, Inc. Systems and methods for sample use maximization
US11644410B2 (en) 2011-01-21 2023-05-09 Labrador Diagnostics Llc Systems and methods for sample use maximization
US10876956B2 (en) 2011-01-21 2020-12-29 Labrador Diagnostics Llc Systems and methods for sample use maximization
US20160047834A1 (en) * 2011-01-21 2016-02-18 Theranos, Inc. Systems and methods for sample use maximization
US10557786B2 (en) 2011-01-21 2020-02-11 Theranos Ip Company, Llc Systems and methods for sample use maximization
US11162936B2 (en) 2011-09-13 2021-11-02 Labrador Diagnostics Llc Systems and methods for multi-analysis
US10534009B2 (en) 2011-09-25 2020-01-14 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10976330B2 (en) 2011-09-25 2021-04-13 Labrador Diagnostics Llc Fluid handling apparatus and configurations
US10371710B2 (en) 2011-09-25 2019-08-06 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US9645143B2 (en) 2011-09-25 2017-05-09 Theranos, Inc. Systems and methods for multi-analysis
US10557863B2 (en) 2011-09-25 2020-02-11 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10627418B2 (en) 2011-09-25 2020-04-21 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10518265B2 (en) 2011-09-25 2019-12-31 Theranos Ip Company, Llc Systems and methods for fluid handling
US11524299B2 (en) 2011-09-25 2022-12-13 Labrador Diagnostics Llc Systems and methods for fluid handling
US10018643B2 (en) 2011-09-25 2018-07-10 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US9592508B2 (en) 2011-09-25 2017-03-14 Theranos, Inc. Systems and methods for fluid handling
US11009516B2 (en) 2011-09-25 2021-05-18 Labrador Diagnostics Llc Systems and methods for multi-analysis
US11054432B2 (en) 2011-09-25 2021-07-06 Labrador Diagnostics Llc Systems and methods for multi-purpose analysis
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US9952240B2 (en) 2011-09-25 2018-04-24 Theranos Ip Company, Llc Systems and methods for multi-analysis
US9719990B2 (en) 2011-09-25 2017-08-01 Theranos, Inc. Systems and methods for multi-analysis
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
US10010837B2 (en) * 2013-07-01 2018-07-03 Chopin Technologies Shaking device
US20150003183A1 (en) * 2013-07-01 2015-01-01 Chopin Technologies Shaking device
US20150005150A1 (en) * 2013-07-01 2015-01-01 Chopin Technologies Shaking and centrifuging device
US10207272B2 (en) * 2015-04-19 2019-02-19 VitroSolutions, LLC Method and device for placement of microscopic sample into the tube
WO2019001855A1 (fr) * 2017-06-27 2019-01-03 Tecan Trading Ag Unité de traitement centrifuge
CN110769939B (zh) * 2017-06-27 2021-12-10 帝肯贸易股份公司 离心处理单元
EP3421134A1 (fr) * 2017-06-27 2019-01-02 Tecan Trading Ag Unité de traitement centrifuge
US11660611B2 (en) 2017-06-27 2023-05-30 Tecan Trading Ag Centrifugal processing unit including a blocking element
CN110769939A (zh) * 2017-06-27 2020-02-07 泰肯贸易股份公司 离心处理单元

Also Published As

Publication number Publication date
FR2169921A1 (fr) 1973-09-14
JPS5635512B2 (fr) 1981-08-18
GB1363816A (en) 1974-08-21
BE793544A (fr) 1973-04-16
CA957667A (en) 1974-11-12
FR2169921B1 (fr) 1976-05-14
JPS4887467A (fr) 1973-11-17
DE2304395A1 (de) 1973-08-09
CH566172A5 (fr) 1975-09-15

Similar Documents

Publication Publication Date Title
US3722789A (en) Centrifuge and self positioning tube holder therefor
US3951334A (en) Method and apparatus for automatically positioning centrifuge tubes
US5195825A (en) Device for mixing at least one aqueous fluid substance
US3726146A (en) Gyroscopic device
JPH05119044A (ja) 液体充填コンテナのストツパの除去及び挿入のための装置
JP4045465B2 (ja) 選択可能角度遠心機
US6387327B1 (en) Apparatus for the preparation and the performance of sedimentation velocity tests on organic liquids and other substances
US4449964A (en) Decanting centrifuge
US1898365A (en) Drink mixer with ultra-violet ray attachments
US5511880A (en) Method and apparatus for storing and mixing a plurality of fluids and body fluid sampling cartridge using same
US1756249A (en) Nonspillable container
FR2511153A1 (fr) Support de reaction a recipients multiples pour tests de doses liquides
US4708233A (en) Method and apparatus for arranging capped capsules in a single direction
WO1992009879A1 (fr) Dispositif servant a tester rapidement la vitesse de sedimentation
CN109813883A (zh) 用于免疫分析仪的排杯系统
US2438273A (en) Wobble basket washing machine
US3989138A (en) Orientation device for subjects
CA1259974A (fr) Automatisme centrifuge d'equilibrage
GB2082930A (en) Magnetic stirring element
CN106215732B (zh) 一种药粉搅拌器
JP3663232B2 (ja) 物品供給装置
JPH06277484A (ja) 比重の異なった媒体の混合法
KR900004844Y1 (ko) 컵음료 자동판매기에 있어서의 컵 반출기구
JPH0638786B2 (ja) 回転棚の排水装置
US1575846A (en) Centrifugal machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAXTER TRAVENOL LABORATORIES, INC. A CORP. OF DE

Free format text: MERGER;ASSIGNOR:AMERICAN HOSPITAL SUPPLY CORPORATION INTO;REEL/FRAME:004760/0345

Effective date: 19870126

AS Assignment

Owner name: BAXTER INTERNATIONAL INC.

Free format text: CHANGE OF NAME;ASSIGNOR:BAXTER TRAVENOL LABORATORIES, INC., A CORP. OF DE;REEL/FRAME:005050/0870

Effective date: 19880518