US3722679A - Method and means for froth flotation concentration utilizing an aerator having a venturi passage - Google Patents

Method and means for froth flotation concentration utilizing an aerator having a venturi passage Download PDF

Info

Publication number
US3722679A
US3722679A US00074998A US3722679DA US3722679A US 3722679 A US3722679 A US 3722679A US 00074998 A US00074998 A US 00074998A US 3722679D A US3722679D A US 3722679DA US 3722679 A US3722679 A US 3722679A
Authority
US
United States
Prior art keywords
pulp
gas
intake
flow
venturi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00074998A
Other languages
English (en)
Inventor
L Logue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3722679A publication Critical patent/US3722679A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1431Dissolved air flotation machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • B01F23/23231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit
    • B01F23/232311Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit the conduits being vertical draft pipes with a lower intake end and an upper exit end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23311Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a hollow stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2334Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer
    • B01F23/23341Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer with tubes surrounding the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2336Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer
    • B01F23/23362Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer the gas being introduced under the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/235Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids for making foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/2366Parts; Accessories
    • B01F23/2368Mixing receptacles, e.g. tanks, vessels or reactors, being completely closed, e.g. hermetically closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/454Mixing liquids with liquids; Emulsifying using flow mixing by injecting a mixture of liquid and gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • B01F25/211Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers the injectors being surrounded by guiding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/3203Gas driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7179Feed mechanisms characterised by the means for feeding the components to the mixer using sprayers, nozzles or jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1412Flotation machines with baffles, e.g. at the wall for redirecting settling solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1443Feed or discharge mechanisms for flotation tanks
    • B03D1/1462Discharge mechanisms for the froth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1443Feed or discharge mechanisms for flotation tanks
    • B03D1/1475Flotation tanks having means for discharging the pulp, e.g. as a bleed stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/16Flotation machines with impellers; Subaeration machines
    • B03D1/22Flotation machines with impellers; Subaeration machines with external blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/24Pneumatic
    • B03D1/242Nozzles for injecting gas into the flotation tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/24Pneumatic
    • B03D1/26Air lift machines
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D5/00Purification of the pulp suspension by mechanical means; Apparatus therefor
    • D21D5/02Straining or screening the pulp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1125Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/32015Flow driven
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/75Flowing liquid aspirates gas

Definitions

  • ABSTRACT Method and means concepts are disclosed for concentration of minerals and the like by froth flotation treatment in a cell utilizing a venturi tube aerator in a submerged upright position having a shorter flaring portion of a wider angle at its intake end and a longer portion of lesser angle at its upper discharge end with induced flow from intake to discharge causing dissolution of gas in the pulp flow through the intake portion and precipitation of dissolved gas on reagent coated mineral of the pulp flow through the discharge portion.
  • the flotation machine in which the novel aerating practices of my invention are performed is of the general class of mechanical machines with venturi aerator assist added, inclusive of some form of pump means providing an induced elevating flow directed to produce a speciflozone of increased pressure for gas dissolution followed by a zone of rapid reduction in pressure for efficient gas precipitation from solution.
  • the pulp mass under treatment and carrying the selectively conditioned mineral particles is then flowed to the surface of the flotation cell without the turbulence that often peels the bubbles from attachment to their particles in other flotation cells.
  • the flotation machines predominantly used in commercial-plants' are of the mechanical agitation type wherein violent agitation creates areas of increased and decreased pressure within the circulating liquid pulp body conducive to gas precipitation onto selected mineral particles.
  • the intensity of the mechanical agitation and the swirl imparted to the circulating pulp result in considerable impedance to bubble-attached particles rising directly to the surface and passing from the treatment.
  • the circulating pulp is first directed into a zone of increased pressure for air dissolution and on passing the constriction where the velocity of pulp flow decreases, the pressure decreases rapidly causing precipitation of dissolved air on coated mineral particles and flows to discharge without turbulence which would strip particles from bubbles.
  • Another object of my invention is to provide flotation concentration apparatus which is simple, durable and efficient and provides controls for aerating gas distribution by promoting gas dissolution and selective precipitation which assist in the recovery of a high grade concentrate.
  • a further object of my invention is to provide a venturi tube assist assembly as the aerating stage of a flotation concentration, said assembly being capable of regulating gas-dissolving pressures established at the intake end of a venturi cone and rapid pressure reduction resulting adjacent the throat end thereof for producing selective bubble precipitation onto reagent coated mineral surfaces in the concentration treatment.
  • Still another object of my invention is to provide an induced circulation of conditioned pulp through a venturitube stage inclusive of pumping means for establishing the rate ofinduced flow through said stage.
  • Yet a further object of my invention is to provide flotation concentration apparatus provided with a venturi assist aerator promoting pulp circulation in conjunction with controlled gas dissolution and gas precipitation so as to provide a surface overflow discharge action in which an ample quantity of air bubbles travels with and on the conditioned concentrate material directed onto the surface in a direct travel to discharge.
  • the present invention provides a novel type of dissolved air" flotation applicable to materials other than minerals of which napthalene, textile wastes, paper mill white water, colloidal suspensions in sewage plant effluents, colloidal suspensions of turbid river waters and industrial plant effluents are representative.
  • FIG. I is a vertical central section through one embodiment of a flotation cell provided with a venturi tube assist assembly according to my invention
  • FIG. 2 is a bottom plan view of the rotary bladed impeller shown in FIG. 1 and arranged as the impeller of the pumping assembly providing the induced flow and desired pressure through the venturi assembly;
  • FIG. 3 is a fragmentary vertical section of another arrangement of a venturi tube aerator in relation to the overflow discharge of the cell utilizing features of my invention
  • FIG. 4 is a vertical section through another embodiment of a flotation cell and venturi tube aerator according to my invention, in. which the induced flow through the venturi section is imparted by a high pressure air jet and by an air lift action;
  • FIG. 5 is still another vertical section through another embodiment of a flotation cell and venturi tube aerator according to my invention in which a pump assembly controls induced flow through the venturi section and provides high pressure for maximum gas dissolution for dissolved air" processes;
  • FIG. 6 is a fragmentary front elevation, partially broken to show interior parts in section, of a centrifugal pump assembly installed-at the bottom or intake end of I with reference to the structural embodiment shown in FIG. 1.
  • the flotation cell 10 of this embodiment may be of any suitable dimension and is here shown as being of substantial vertical extent with side froth overflows 11a and 11b adjacent its top and adjacent weirs l2 determining the effective overflow level.
  • the lengthwise dimension of cell has not been shown and may be varied from a length permitting use of a plurality of aerator units to a simple combination of one tank and one aerator.
  • the cell 10 is provided with a pulp inlet (not shown) at one end and a pulp discharge outlet (not shown) at its opposite end so as to operate continuously and a high degree of recirculation is provided for several treatment cycles of the feed flow in each cell.
  • a motor 17 and suitable. belt transmission 18 provide the drive for shaft 16 at its upper end which is supported in a bearing assembly 19.
  • Shaft 16 carries at its lower end a hollow hub member 21 and a bladed impeller 22 carried by the hub.
  • Shaft 16 depends vertically through the structure defining the venturi tube assist passage 24 which is the aerator stage of this assembly. At its lower end, the entrance of passage 24 is open and spaced from the bottom of cell 10 by'a plurality of baffles 23 so as to entrain circulating pulp from cell 10.
  • the gas delivered into shaft 16 through branch 15 discharges at the bot- After passing constriction 30, there is a sharp pressure drop in the flow resulting in air precipitation.
  • the portion of passage 24 enclosed by the venturi portion 27a is the intake portion A cone included angle usually is in the range of 5 to 7%".
  • This arrangement produces uniform laminar flow lines with substantially no turbulence.
  • FIG. 1 provides two means of controlling the rate and amount of gas dissolution and of gas precipitation, namely, changing the size of the constriction 30 and changing the motor and transmission assembly which regulates the speed of impeller 22. Vanes 26 prevent turbulent flow of matter acted on by the impeller and shield 29 prevents breaking of bubbles in the overflow at 28 while directing such discharged flow outwardly and onto the froth or the scum passing to the weirs l2.
  • FIG. 4 is an air injection type of cell without supplemental mechanical action.
  • the cell 10a of this form is essentially a duplicate of cell 10 and has side overflows 11a and 11b regulated by adjustable weir members 12.
  • the venturi tube housing portions 27a and 27b are the same as shown in FIG. 1, as are the overflow 28, shield 29 and passage 24.
  • Air or other aerating gas under relatively high pressure is delivered through a supply line 15a entering the cell at its bottom and discharging through an upwardly directed nozzle 32.
  • cell 10a is fed with a conditioned pulp at one endand discharges treated pulp at its opposite end so as to maintain a progressive circulation between feed and discharge.
  • Gas is delivered through nozzle 32 at a selected volume and due to the crowding effect of portion 27a substantial quantities-of the gas dissolve in the liquid of the pulp before passing constriction 30.
  • a pressure drop of progressively increasing magnitude precipitates gas from solution in fine bubble formation.
  • the aerated material is directed by the deflector or shield 29 across side overflows 11a and 11b in the same manner as in FIG. 1. Circulation in this embodiment results from the educer action of the air jet and the air lift forces in the exit section of the venturi assembly.
  • the air jet constitutes the sole pumping means of this assembly.
  • FIG. 3 illustrates another method of discharging the aerated pulp from the exit open end 38 of the portion 37b.
  • air in excess of normal requirements may be needed in the form of bubbles supplied to the base of the froth column to carry the selected minerals to the froth discharge lip.
  • the tank 10b is generally similar to tank 10 and has side overflows 11a and 11b at its top controlled by adjustable weirs 12.
  • the upper or downstream portion 37b of the aerator assembly terminates in an open end 38 submerged in the pulp body 36 in the upper part of cell 10b below the overflow level.
  • the aerated pulp discharges across end 38 into pulp body 36 and provides a high degree of contact to concentrate solids in the upper portion of the pulp body.
  • Supports 34 are provided for attachment of rods 35 or, other connectors which stabilize the upper portion of body 38 while permitting descent of settling solids to recirculate through the venturi assist aerator, which may have its pumping action of the type shown in the several embodiments herein.
  • This arrangement would usually be preferred in dissolved air treatment circuits as the product separated by this flotation method often reports to the surface of the treatment vessel as a scum rather than in the froth form associated with froth flotation.
  • FIG. illustrates an arrangement in which a centrifugal pump 40 induces the circulation through the venturi assist passage 24 defined by conical portions 27a and 27b.
  • the arrangement shown in FIG. 5 is particularly adaptable to flotation separations of the type commonly referred to as dissolved air flotation which utilize a relatively small volume of air as compared to the air requirements of the usual froth flotation process.
  • the intake 41 to pump 40 is a relatively elongated, large volume conduit having a slight constriction 42 intermediate its ends, and gas is induced into intake 41 through a valve-controlled branch 43 adjacent said constriction.
  • the extended end of intake 41 terminates in an upper portion of cell 100 which is essentially a duplication of cell except for the circulation features.
  • the pump discharge containing a substantial amount of dissolved gas is conducted to an upwardly directed nozzle 44, the discharge end of which is enclosed within an open-ended flaring baffle 45.
  • a nozzle diameter is chosen to develop a predetermined pressure with the pump capacity, for example 5060 lbs. per square inch.
  • the quantity of air induced into the pump intake is on the order of 3-5 percent of pump flow and under the high pressure in the discharge line,
  • FIG; 5 arrangement permits utilizing the energy from the nozzle discharge in a jet pump assembly for improved efficiency and reduced turbulence in producing the required flow through the pressure zone in the intake portion 27a of the venturi passage 24.
  • the pumping action induces a recirculating flow passing between the open intake end of passage 24 and the bottom of cell 100.
  • FIG. 6 Still another aerator embodiment is shown in FIG. 6 which may be incorporated in flotation cells, such as 10.
  • a hollow shaft 16a of the general form of shaft 16 of FIG. 1 and similarly driven carries at its lower end a hollow impeller similar to a centrifugal pump runner having peripheral ports 51 between a central air intake 52 on its top and an enlarged intake 53 at its bottom for recirculating pulp.
  • a bottom casing section 54 is disposed in spaced but close proximity to runner 50 and has a flanged portion providing a seat for a corresponding flanged section at the bottom of venturi portion 57a which is generally similar to section 27a of FIG. 1.
  • the entrance to cone portion 57a contains a series of blades 56 disposed in radial arrangement on its interior surface adjacent the bottom of the enclosure as shown in FIG. 7 to eliminate swirl in the pressure discharge from runner50.
  • the impeller or runner 50 is designed with a blade width greater than needed to supply the pulp volume passing through the intake opening 53.
  • the air requirement for the system is added under pressure through the hollow shaft 16a and gas intake 52 and is drawn into the runner 50 for mixing with the pulp flow by the internal suction in the impeller created by the additional blade width described above.
  • the action within this venturi tube assembly is similar to that of FIG. 1.
  • the pressure required to force the circulated volume of the pulp-gas mixture through the constriction 30 results in gas going into solution in the entrance cone 57a. This gas is released from solution for selective precipitation on the condition particles by pressure drop at and beyond constriction 30.
  • the various forms of froth'flotation apparatus disclosed herein have features in common, both structural and functional, which provide a highly efficient apparatus assembly and mode of operation in this art.
  • the treatment in a given cell includes the circulation of a conditioned pulp between a feed inlet at one end and a discharge outlet at the opposite end extending throughout several cycles and providing sufficient contact between the conditioned mineral surfaces and the aerating gas to obtain a high percentage recovery of the concentrate mineral with little entrainment of other solids of the pulp which tend to lessen grade.
  • a submerged venturi tube is disposed in an upright position having a lower conical portion at the cell bottom and an upper conical portion at the top.
  • the intake of the lower portion is near but spaced from the bottom of the cell to admit'a recirculating flow and the discharge outlet of the upper portion is at the approximate level of the froth overflow from the cell.
  • the bottom portion is shorter and of wider angle and the upper portion is longer and of a lesser angle with a constriction separating the two said portions.
  • Such a venturi tube contains the aerator assembly of the apparatus including means for delivering an aerating gas under pressure into the intake or bottom portion in sufficient volume to provide a rapid upward flow, usually induced by a pumping means causing dissolution of a substantial quantity of aerating gas in the laminar flow through the inlet portion, and after the pressure drop initiated at the'constriction, a continuing precipitation of dissolved gas onto the coated mineral surfaces occurs during the progress of the laminar flow through the discharge section.
  • the deflecting and shielding member directs the discharge in a gentle spreading movement onto the pulp surface without an abrupt change in direction.
  • the discharge flow progresses unobstructed to the froth overflows and in such travel the surface is maintained essentially quiescent with most of the froth comprising fine bubbles which hold attached mineral particles in the flow until it passes over the overflow lips in the discharge action.
  • Pumping means have beenincluded in all the forms and in most operations it is preferable that the pumping action provides a high volume induced flow through the venturi tube establishing pressures in the venturi passage which dissolve substantial quantities of aerating gas in the intake portion and the provision of the constriction and the venturi shaping of the passage causes an effective degree of precipitation of such gas onto coated mineral surfaces during the progress of the flow from constriction to outlet.
  • a flotation cell for a body of circulating pulp of substantial vertical extent having a top overflow for concentrate
  • an aerator assembly submerged in and extending substantially throughout the vertical extent of the pulp body, said assembly including a body shaped as a venturi tube with a lower intake portion narrowing upwardly and of a length short with respect to the length of the tube, an upper discharge portion of greater length than the intake portion and flaring upwardly at a lesser angle than the angle of narrowing of said lower portion and a constriction.between the portions, means for admitting pulp from the pulp body to said intake portion of said tube, means for delivering an aerating gas under pressure into the intake end of the venturi passage and for producing an upward flow of pulp through said tube, and meansat the discharge end ofthe upper portion for directing the discharge therefrom outwardly and onto the surface of the pulp body.
  • a flotation cell for a body of top overflow for concentrate
  • an aerator assembly submerged in and extending substantially throughout the vertical extent of the pulp body, said assembly including a tubular body defining an upright venturi passage open at its ends and shielded from the pulp body intermediate its ends, said tubular body having oppositely flaring wall portions, the lower portion constituting the intake end and being of a length short with respect to the passage and flaring at a greater angle to the vertical than the flare of the upper portion, the intersection between said flaring portions forming a constriction to flow, means for admitting pulp from the pulp body to the lower portion of said tubular body,
  • the method of froth flotation concentration which comprises:
  • a confined submerged zone extending throughout substantially the vertical extent of the pulp body interiorly thereof having a lower intake for pulp from the confined body, admitting pulp to the lower intake and mixing aerating gas and pulp in the confined zone, moving the pulp and gas mixture upwardly through the confined zone by an induced flow and discharging the mixture from the zone onto the confined body and toward the overflow in proximity to the elevation of the overflow, providing in said confined submerged zone a venturi portion intermediate the ends thereof and separated from the pulp body for establishing a selected pressure within said induced flow so as to dissolve gas in a lower portion of said flow and a lower pressure above the venturi portion to cause rapid gas precipitation from solution onto surfaces of pulp particles in the upper portion of said flow,
  • a confined submerged zone for mixing aerating gas and pulp extending throughout substantially the verticalextent of the pulp body interiorly thereof and having adjacent itslower end an intake for pulp from the confined body, moving the pulp and gas mixture entering the intake in an induced flow to an upper pulp discharge in proximity to the elevation of the overflow, said induced flow being produced by a pumping action, said submerged zone including a venturi portion shielded from the pulp body intermediate its ends for establishing selected pressures within said induced flow so as to dissolve gas in a lower portion of said flow and to cause rapid gas precipitation from solution onto pulp particle surfaces in the upper portion of said flow,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Paper (AREA)
US00074998A 1970-09-24 1970-09-24 Method and means for froth flotation concentration utilizing an aerator having a venturi passage Expired - Lifetime US3722679A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7499870A 1970-09-24 1970-09-24

Publications (1)

Publication Number Publication Date
US3722679A true US3722679A (en) 1973-03-27

Family

ID=22122906

Family Applications (1)

Application Number Title Priority Date Filing Date
US00074998A Expired - Lifetime US3722679A (en) 1970-09-24 1970-09-24 Method and means for froth flotation concentration utilizing an aerator having a venturi passage

Country Status (6)

Country Link
US (1) US3722679A (enrdf_load_stackoverflow)
JP (1) JPS5310522B1 (enrdf_load_stackoverflow)
AU (1) AU467804B2 (enrdf_load_stackoverflow)
CA (1) CA951838A (enrdf_load_stackoverflow)
GB (1) GB1369053A (enrdf_load_stackoverflow)
ZA (1) ZA715894B (enrdf_load_stackoverflow)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849991A (en) * 1972-09-13 1974-11-26 P Niederwemmer Irrigation system
US3867488A (en) * 1972-12-19 1975-02-18 Hancel W Porterfield Sparger Waste
US3931370A (en) * 1974-01-10 1976-01-06 Atara Corporation Double funnel with baffle cascade aeration unit
US3966599A (en) * 1971-11-26 1976-06-29 Ecodyne Corporation Method and apparatus
US3979294A (en) * 1971-11-22 1976-09-07 Kaelin J R Clarification plant
US3986934A (en) * 1973-08-30 1976-10-19 Mueller Hans Apparatus for aerobic cultivation of micro-organisms
US4018859A (en) * 1972-12-01 1977-04-19 Mueller Hans Arrangement for aerating of liquids
US4070423A (en) * 1974-08-05 1978-01-24 Pierce Roger C Apparatus for diffusion in bodies of liquid
US4126550A (en) * 1977-10-26 1978-11-21 Christian Doerschlag Flash reactor
US4145383A (en) * 1976-09-01 1979-03-20 Howard Machinery Limited Slurry aeration method and apparatus
US4162972A (en) * 1977-04-29 1979-07-31 Green Gerald G Enclosed flotation device
US4255262A (en) * 1979-03-26 1981-03-10 U.S. Filter Corporation Hydraulic powered mixing apparatus
EP0025813A1 (de) * 1979-09-21 1981-04-01 GKSS-Forschungszentrum Geesthacht GmbH Vorrichtung zur Wasserreinigung und/oder -belüftung durch Entspannungsflotation
US4290979A (en) * 1979-02-24 1981-09-22 Eiichi Sugiura Aeration apparatus
US4336144A (en) * 1979-03-06 1982-06-22 Franklin Jr Grover C Method for mixing gases with liquids
US4358413A (en) * 1980-02-01 1982-11-09 Christian Brucker Device for dispersing a liquid in a gas phase
US4477341A (en) * 1981-11-07 1984-10-16 J. M. Voith Gmbh Injector apparatus having a constriction in a following adjoining mixing pipe
US4486361A (en) * 1980-01-09 1984-12-04 Degremont Apparatus for introducing gas into a liquid mass
FR2552343A1 (fr) * 1983-09-27 1985-03-29 Rech Geolog Miniere Procede et appareil de separation par flottation
US4556523A (en) * 1983-08-09 1985-12-03 Alsthom-Atlantique Microbubble injector
US4707308A (en) * 1983-11-28 1987-11-17 Ryall Ronald W Apparatus for circulating water
US4708829A (en) * 1983-10-27 1987-11-24 Sunds Defibrator Aktiebolag Apparatus for the removal of impurities from fiber suspensions
WO1991015287A1 (en) * 1990-04-03 1991-10-17 Union Carbide Industrial Gases Technology Corporation Apparatus and method for sparging a gas into a liquid
US5154898A (en) * 1988-08-24 1992-10-13 Exxon Research And Engineering Company High interfacial area multiphase reactor
US5332534A (en) * 1992-02-21 1994-07-26 Heinrich Frings Gmbh & Co Kg Process and system for increasing the gas uptake by a liquid being aerated
US5549854A (en) * 1994-05-20 1996-08-27 Outokumpu Engineering Contractors Oy Method and apparatus for forming controlled vortexes and for recirculating gas
WO1999058248A1 (en) * 1998-05-08 1999-11-18 Anglo American Research Laboratories (Pty) Ltd. Froth flotation
US6129212A (en) * 1996-04-17 2000-10-10 Voith Sulzer Stoffaufbereitung Gmbh Flotation process and mixing device
US6273402B1 (en) * 2000-01-10 2001-08-14 Praxair Technology, Inc. Submersible in-situ oxygenator
WO2003064017A1 (en) * 2002-01-28 2003-08-07 Anthony Gibson Wynes Mixing apparatus
WO2004060565A1 (en) * 2003-01-02 2004-07-22 Outokumpu Oyj Guiding device for a flotation machine
EP1932439A1 (en) 2006-12-14 2008-06-18 Inoxpa, S.A. Must clarification machine
US20080142424A1 (en) * 2004-02-03 2008-06-19 Matsuedoken Co., Ltd. Gas-Liquid Dissolving Apparatus
EP1900693A4 (en) * 2005-06-20 2008-08-13 Ohr Lab Corp BALLAST WATER TREATMENT DEVICE
CN101439315B (zh) * 2008-12-17 2013-03-13 中国铝业股份有限公司 一种无传动浮选槽
CN108273668A (zh) * 2018-03-28 2018-07-13 中国矿业大学 一种基于强湍流混合矿化的快速浮选系统及浮选方法
US10507472B2 (en) * 2015-12-18 2019-12-17 Outotec (Finland) Oy Method for constructing a flotation apparatus, flotation apparatus, method and system for flotation and use
CN111093816A (zh) * 2017-09-22 2020-05-01 阿法拉伐股份有限公司 液体混合物喷嘴、流动系统和用于将颗粒分散在液体混合物中的方法
CN116037325A (zh) * 2023-01-10 2023-05-02 武汉工程大学 一种组合发泡矿化浮选机
CN116748021A (zh) * 2023-08-23 2023-09-15 山东省物化探勘查院 一种可调节式矿石浮选设备
US20240066475A1 (en) * 2021-04-27 2024-02-29 Satvinder Pal Singh Randhawa Aeration equipment for wastewater treatment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472271A (en) * 1982-08-25 1984-09-18 Freeport Kaolin Company Froth flotation apparatus and process
DE4416261C1 (de) * 1994-05-07 1995-06-01 Kali & Salz Ag Verfahren und Vorrichtung zur rührerlosen Flotation von Stoffen mit geringem Hydrophobierungsgrad und/oder geringer Stabilität im Schaumverband, insbesondere von Salzgemengen
RU2123888C1 (ru) * 1997-01-08 1998-12-27 Акционерное общество "Уралкалий" Способ получения калийных удобрений из калийсодержащих руд
RU2121884C1 (ru) * 1997-11-04 1998-11-20 Открытое Акционерное Общество "Уралэнергоцветмет" Флотационная пневматическая колонная машина
CN107234007B (zh) * 2017-06-23 2022-11-01 湖南中工矿业工程技术有限公司 一种自动故障检测微泡枪及检测和控制方法
CN113090946B (zh) * 2021-04-06 2022-04-05 西南石油大学 一种促进掺氢天然气管道内天然气与氢气混合的蚌式管道结构

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979294A (en) * 1971-11-22 1976-09-07 Kaelin J R Clarification plant
US3966599A (en) * 1971-11-26 1976-06-29 Ecodyne Corporation Method and apparatus
US3849991A (en) * 1972-09-13 1974-11-26 P Niederwemmer Irrigation system
US4018859A (en) * 1972-12-01 1977-04-19 Mueller Hans Arrangement for aerating of liquids
US3867488A (en) * 1972-12-19 1975-02-18 Hancel W Porterfield Sparger Waste
US3986934A (en) * 1973-08-30 1976-10-19 Mueller Hans Apparatus for aerobic cultivation of micro-organisms
US3931370A (en) * 1974-01-10 1976-01-06 Atara Corporation Double funnel with baffle cascade aeration unit
US4070423A (en) * 1974-08-05 1978-01-24 Pierce Roger C Apparatus for diffusion in bodies of liquid
US4145383A (en) * 1976-09-01 1979-03-20 Howard Machinery Limited Slurry aeration method and apparatus
US4162972A (en) * 1977-04-29 1979-07-31 Green Gerald G Enclosed flotation device
US4126550A (en) * 1977-10-26 1978-11-21 Christian Doerschlag Flash reactor
US4290979A (en) * 1979-02-24 1981-09-22 Eiichi Sugiura Aeration apparatus
US4336144A (en) * 1979-03-06 1982-06-22 Franklin Jr Grover C Method for mixing gases with liquids
US4255262A (en) * 1979-03-26 1981-03-10 U.S. Filter Corporation Hydraulic powered mixing apparatus
EP0025813A1 (de) * 1979-09-21 1981-04-01 GKSS-Forschungszentrum Geesthacht GmbH Vorrichtung zur Wasserreinigung und/oder -belüftung durch Entspannungsflotation
US4486361A (en) * 1980-01-09 1984-12-04 Degremont Apparatus for introducing gas into a liquid mass
US4358413A (en) * 1980-02-01 1982-11-09 Christian Brucker Device for dispersing a liquid in a gas phase
US4477341A (en) * 1981-11-07 1984-10-16 J. M. Voith Gmbh Injector apparatus having a constriction in a following adjoining mixing pipe
US4556523A (en) * 1983-08-09 1985-12-03 Alsthom-Atlantique Microbubble injector
FR2552343A1 (fr) * 1983-09-27 1985-03-29 Rech Geolog Miniere Procede et appareil de separation par flottation
US4708829A (en) * 1983-10-27 1987-11-24 Sunds Defibrator Aktiebolag Apparatus for the removal of impurities from fiber suspensions
US4707308A (en) * 1983-11-28 1987-11-17 Ryall Ronald W Apparatus for circulating water
US5154898A (en) * 1988-08-24 1992-10-13 Exxon Research And Engineering Company High interfacial area multiphase reactor
WO1991015287A1 (en) * 1990-04-03 1991-10-17 Union Carbide Industrial Gases Technology Corporation Apparatus and method for sparging a gas into a liquid
US5332534A (en) * 1992-02-21 1994-07-26 Heinrich Frings Gmbh & Co Kg Process and system for increasing the gas uptake by a liquid being aerated
US5549854A (en) * 1994-05-20 1996-08-27 Outokumpu Engineering Contractors Oy Method and apparatus for forming controlled vortexes and for recirculating gas
US6129212A (en) * 1996-04-17 2000-10-10 Voith Sulzer Stoffaufbereitung Gmbh Flotation process and mixing device
WO1999058248A1 (en) * 1998-05-08 1999-11-18 Anglo American Research Laboratories (Pty) Ltd. Froth flotation
US6273402B1 (en) * 2000-01-10 2001-08-14 Praxair Technology, Inc. Submersible in-situ oxygenator
WO2003064017A1 (en) * 2002-01-28 2003-08-07 Anthony Gibson Wynes Mixing apparatus
US20050056951A1 (en) * 2002-01-28 2005-03-17 Wynes Anthony G. Mixing apparatus
US7240897B2 (en) 2002-01-28 2007-07-10 Wynes Anthony G Mixing apparatus
WO2004060565A1 (en) * 2003-01-02 2004-07-22 Outokumpu Oyj Guiding device for a flotation machine
US7571899B2 (en) * 2004-02-03 2009-08-11 Matsuedoken Co., Ltd. Gas-liquid dissolving apparatus
US20080142424A1 (en) * 2004-02-03 2008-06-19 Matsuedoken Co., Ltd. Gas-Liquid Dissolving Apparatus
EP1900693A4 (en) * 2005-06-20 2008-08-13 Ohr Lab Corp BALLAST WATER TREATMENT DEVICE
ES2317768A1 (es) * 2006-12-14 2009-04-16 Inoxpa, S.A. Maquina para el clarificado de mosto.
EP1932439A1 (en) 2006-12-14 2008-06-18 Inoxpa, S.A. Must clarification machine
ES2317768B1 (es) * 2006-12-14 2010-02-09 Inoxpa, S.A. Maquina para el clarificado de mosto.
CN101439315B (zh) * 2008-12-17 2013-03-13 中国铝业股份有限公司 一种无传动浮选槽
US10507472B2 (en) * 2015-12-18 2019-12-17 Outotec (Finland) Oy Method for constructing a flotation apparatus, flotation apparatus, method and system for flotation and use
CN111093816A (zh) * 2017-09-22 2020-05-01 阿法拉伐股份有限公司 液体混合物喷嘴、流动系统和用于将颗粒分散在液体混合物中的方法
CN108273668A (zh) * 2018-03-28 2018-07-13 中国矿业大学 一种基于强湍流混合矿化的快速浮选系统及浮选方法
CN108273668B (zh) * 2018-03-28 2024-03-01 中国矿业大学 一种基于强湍流混合矿化的快速浮选系统及浮选方法
US20240066475A1 (en) * 2021-04-27 2024-02-29 Satvinder Pal Singh Randhawa Aeration equipment for wastewater treatment
US11931703B1 (en) * 2021-04-27 2024-03-19 Satvinder Pal Singh Randhawa Aeration equipment for wastewater treatment
CN116037325A (zh) * 2023-01-10 2023-05-02 武汉工程大学 一种组合发泡矿化浮选机
CN116748021A (zh) * 2023-08-23 2023-09-15 山东省物化探勘查院 一种可调节式矿石浮选设备
CN116748021B (zh) * 2023-08-23 2023-11-07 山东省物化探勘查院 一种可调节式矿石浮选设备

Also Published As

Publication number Publication date
AU467804B2 (en) 1975-12-11
ZA715894B (en) 1972-05-31
GB1369053A (en) 1974-10-02
JPS5310522B1 (enrdf_load_stackoverflow) 1978-04-14
AU3319771A (en) 1973-03-15
CA951838A (en) 1974-07-23

Similar Documents

Publication Publication Date Title
US3722679A (en) Method and means for froth flotation concentration utilizing an aerator having a venturi passage
US9919320B2 (en) Method and apparatus for contacting bubbles and particles in a flotation separation system
US3271304A (en) Venturi aerator and aerating process for waste treatment
US5431286A (en) Recirculating column flotation apparatus
US5660718A (en) Method and apparatus for separation by flotation
US2944802A (en) Froth flotation and aeration apparatus
US4278546A (en) Treatment of a liquid by circulation and gas contacting
US4255262A (en) Hydraulic powered mixing apparatus
US1374446A (en) Apparatus for treating liquids with gases
US2061564A (en) Diffusion impeller deflector
US2189779A (en) Emulsifying means and method
US2609097A (en) Flotation machine
US7267232B2 (en) Flotation device and method of froth flotation
US2077445A (en) Aerator or agitator
CN108246155A (zh) 一种复合煤泥浮选高剪切预处理装置
US2616676A (en) Aerator
CN208244521U (zh) 一种复合煤泥浮选高剪切预处理装置
US2713477A (en) Dual aerating apparatus and method
US3409130A (en) Flotation apparatus
US1374445A (en) Apparatus for treating liquids with gases
CN108246154A (zh) 一种多效能浮选高剪切调浆装置
US2246559A (en) Aerating apparatus
CA1116322A (en) Apparatus for the treatment of impure liquids
JPS63209791A (ja) 曝気装置
CN208244522U (zh) 一种多效能浮选高剪切调浆装置