US3722181A - Chromatographic packing with chemically bonded organic stationary phases - Google Patents
Chromatographic packing with chemically bonded organic stationary phases Download PDFInfo
- Publication number
- US3722181A US3722181A US00039665A US3722181DA US3722181A US 3722181 A US3722181 A US 3722181A US 00039665 A US00039665 A US 00039665A US 3722181D A US3722181D A US 3722181DA US 3722181 A US3722181 A US 3722181A
- Authority
- US
- United States
- Prior art keywords
- stationary phase
- substrate
- aromatic hydrocarbon
- bonded
- packing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005526 G1 to G0 transition Effects 0.000 title claims abstract description 79
- 238000012856 packing Methods 0.000 title claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 60
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 28
- 230000008569 process Effects 0.000 claims abstract description 19
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 229920000642 polymer Polymers 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 25
- 238000013375 chromatographic separation Methods 0.000 claims description 16
- 239000012530 fluid Substances 0.000 claims description 7
- 230000035515 penetration Effects 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 8
- 239000012071 phase Substances 0.000 description 51
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 39
- 239000000203 mixture Substances 0.000 description 37
- 239000003153 chemical reaction reagent Substances 0.000 description 32
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 28
- -1 aromatic hydrocarbon radical Chemical class 0.000 description 27
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 25
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 22
- 239000007788 liquid Substances 0.000 description 21
- 239000002904 solvent Substances 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 239000011521 glass Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- 150000002825 nitriles Chemical class 0.000 description 14
- 229910000077 silane Inorganic materials 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000006116 polymerization reaction Methods 0.000 description 13
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 238000004817 gas chromatography Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- 238000004811 liquid chromatography Methods 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 230000007062 hydrolysis Effects 0.000 description 7
- 238000006460 hydrolysis reaction Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 238000000921 elemental analysis Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229960001866 silicon dioxide Drugs 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- GBQYMXVQHATSCC-UHFFFAOYSA-N 3-triethoxysilylpropanenitrile Chemical compound CCO[Si](OCC)(OCC)CCC#N GBQYMXVQHATSCC-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 229940124530 sulfonamide Drugs 0.000 description 3
- 238000004809 thin layer chromatography Methods 0.000 description 3
- PKJBWOWQJHHAHG-UHFFFAOYSA-N 1-bromo-4-phenylbenzene Chemical group C1=CC(Br)=CC=C1C1=CC=CC=C1 PKJBWOWQJHHAHG-UHFFFAOYSA-N 0.000 description 2
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 238000003965 capillary gas chromatography Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 150000001367 organochlorosilanes Chemical class 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 2
- 150000004819 silanols Chemical class 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical compound C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- YJSLDPPMMSGNOX-UHFFFAOYSA-N 1,1,2,2,3,3,3-heptafluoropropyl-tris(trifluoromethoxy)silane Chemical compound FC(F)(F)O[Si](OC(F)(F)F)(OC(F)(F)F)C(F)(F)C(F)(F)C(F)(F)F YJSLDPPMMSGNOX-UHFFFAOYSA-N 0.000 description 1
- HEWZVZIVELJPQZ-UHFFFAOYSA-N 2,2-dimethoxypropane Chemical compound COC(C)(C)OC HEWZVZIVELJPQZ-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101100439696 Medicago sativa CHS4-2 gene Proteins 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- YGZSVWMBUCGDCV-UHFFFAOYSA-N chloro(methyl)silane Chemical class C[SiH2]Cl YGZSVWMBUCGDCV-UHFFFAOYSA-N 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical class Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 239000012501 chromatography medium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- ZZNQQQWFKKTOSD-UHFFFAOYSA-N diethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OCC)(OCC)C1=CC=CC=C1 ZZNQQQWFKKTOSD-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical group C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000005055 methyl trichlorosilane Chemical group 0.000 description 1
- NCWQJOGVLLNWEO-UHFFFAOYSA-N methylsilicon Chemical compound [Si]C NCWQJOGVLLNWEO-UHFFFAOYSA-N 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical group C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 238000004810 partition chromatography Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 238000000079 presaturation Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229940024463 silicone emollient and protective product Drugs 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- FHVAUDREWWXPRW-UHFFFAOYSA-N triethoxy(pentyl)silane Chemical compound CCCCC[Si](OCC)(OCC)OCC FHVAUDREWWXPRW-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/282—Porous sorbents
- B01J20/283—Porous sorbents based on silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/286—Phases chemically bonded to a substrate, e.g. to silica or to polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3214—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
- B01J20/3217—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
- B01J20/3219—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3257—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3257—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
- B01J20/3261—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising a cyclic structure not containing any of the heteroatoms nitrogen, oxygen or sulfur, e.g. aromatic structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3268—Macromolecular compounds
- B01J20/3272—Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3268—Macromolecular compounds
- B01J20/3276—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/22—Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/001—Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
Definitions
- ABSTRACT A process for making a chromatographic packing having'a polymeric stationary phase in which molecules having the formula Mar. 27, 1973 wherein R is a hydroxyl, or an aliphatic or aromatic hydrocarbon monovalent radical, and
- R is a monovalent aliphatic or aromatic hydrocarbon radical
- the polymeric stationary phase has a repeating unit of the formula wherein A is --O or a monovalent aliphatic or aromatic hydrocarbon radical, Y and is chemically bonded to the-surface of the substrate by an where silicon is part of a repeating unit.
- polymolecular silicones have been reacted to chromatographic supports by employing two series of steps.
- dimethyldichlorosilane or methyltrichlorosilane is bonded to the silica substrate.
- organochlorosilanes are attached to the above methylchlorosilanes. Due to the 'use of highly reactive chlorosilanes in both series of steps, the extent of reaction in each series is difficult to control, which usually results in films of variable thickness.
- the first series of steps places methyl groups on the substrate surface which reduces the effective polarity of the packing. This clearly represents a detriment when polarity is desired.
- the second series of steps does not permit the use :of volatile organochlorosiles, thus restricting the choice of resultant stationary phases.
- the particular organochlorosilanes that would be required as starting reagents toplace certain functional (e.g., amino) groups on the. surface would be self-reactive and thus selfdestructive.
- R is a monovalent aliphatic or aromatic hydrocarbon.
- R or K may contain atoms other than carbon and hydrogen.
- the bonded polymolecular stationary phase has arepeating unit with the formula wherein A is a monovalent aliphatic or aromatic hydrocarbon radical.
- the stationary phase is bonded to the polyvalent metaLcontaining substrate surface through an linkage, where M is the metal and is part of a repeating unit.
- the chemically bonded stationary phase may be produced with a variety of functional groups, resulting in chromatographic packing with widely diverse selectivity.
- the resulting packings may vary from extremely polar to non-polar according to the needs of the particular separation to be performed.
- bonded stationary phase is controlled by controlling the quantities of starting materials.
- bonded stationary phase may be deposited that is controllably monomolecularly or polymolecularly thick.
- a polymolecular layer of predetermined thickness which will allow for precise diffusions, may be bonded to the substrate.
- compositions of these blends are determined by controlling the concentrations of initial reactants.
- a particularly .useful type of blend is one by which the degree ,of cross-linking in the bonded and polymerized stationary phase can be controlled. Greater concentrations of starting reagents in which R 'is a hydroxyl result in higher degree of cross-linking, which is particularly useful for gas chromatography (hereinafterreferred to as G.C.). On the other hand, greater concentrations of compounds with R being non-hydroxyl result in less cross-linking which is desired for liquid chromatography (hereinafter referred to as L.C. The extreme degrees of cross-linking are obtained by using either one of these (hydroxyl or non-hydroxyl) alone.
- FIG. 1 is a diagrammatical representation of a crosssection of a preferred chromatographic support material.
- FIG. 2 is a schematic cross-section of a polymeric stationary phase chemically bonded to a substrate.
- FIG. 3 shows the chemical structure of the polymeric stationary phase.
- FIG. 4 is a part of the liquid chromatographic separation of sulfonamides using the present invention.
- FIG. 5 compares liquid chromatographic HETP v. Carrier Velocity Plots of the present invention with the prior art.
- FIG. 6 is a plot of the'liquid chromatographic separation of thiolhydroxamates using the present invention.
- FIG. 9 compares chromatograms showing the selectivity in gas chromatography of the ether bondedphase of the present invention.
- FIG. 10 is a plot showing the relative bleed rate of a nitrile stationarybonded-phase of the present invention as against a column of the prior art.
- FIG. 1 l is a plot of a thermograviometric curve for a vention.
- FIG. 12 is a plot of. gas chromatographic separation of aromatic hydrocarbons with a nitrile bondedphase.
- Chromatographic packings may be prepared having chemically bonded organic stationary phases with'a variety of functional groups, resulting in widely diverse chromatographic selectivity. Bonded-phase packings may be prepared for gas and liquid chromatography on a variety of substrates.
- the composition of the substrate is not critical, except that its surface must be capable of chemically reacting with silanols. Silicacontaining substrates are preferred, although any polyvalent metal-containing substrate may be used where the valence of the metal is from-three'through five.
- useful substrates include diatomaceous earths, silica gel, glasses, sand, alu- V chemically bonded nitrile packing of the present inminosilicates', quartz, porous silica beads, and clays. Additionally, non-alkaline metal oxides, alumina,
- thoria titania, zirconia, and non-alkaline metals with an oxide skin may be utilized.
- the shape of the particles is not critical. Examples of shapes include rings, polyhedra, saddles, platelets, fibers, hollow tubes, rods, or cylinders. Spherical supports are preferred because of their regular and reproducible packing characteristics and ease and con- .veniencein handling.
- the controlled surface porosity, support of FIG. 1 (described in U.S. Pat. No. 3,505,785 and sold under the trade name Zipax by E. I. du Pont de Nemours and Company, Wilmington, Del.) is a preferred embodiment of a support structure. It has an impervious core 11, preferably of glass or other ceramic material and a porous coating 15 made up of sequentially adsorbed monolayers 13 of microparticles. It consists of discrete spherical particles having a large number of superficial shallow pores l2 and no deep pores. It has regular and reproducible packing characteristics,' ease and convenience in handling, and desirable characteristics for high-speed, high-efficiency gas and liquid chromatography.
- the support or. substrate surface prefferably has a high initial population of metal-hydroxy, or preferably -SiOI-I groups. This is best accomplished by treating the surface with acid or base. The preferred procedure is to heat the support with concentrated nitric or hydrochloric acid on a steam bath for several hours. Excess acid or base should be removed from the surface by thorough washing before the support is dried for reaction with the silane reagents.
- the reagents employed to produce the chemically bonded organic stationary phase are silanols having the formula where R and R are given above. They are preferably prepared from silicate esters with the formula where R and R5 are alkoxy, R is alkoxy or R and R is given above. 1
- Table I A list of commercially available reagents is shown in Table I. Table II gives other reagents which are not presentlyv known to be commercially available. Their structures encompass a variety of configurations. These may be synthesized according to the general techniques contained in Chemistry of the Silicones, by R. G. Rochow, John Wiley & Sons, New York, 2nd Ed. l.
- Methyltriethoxysilane (a, c).. CH Si(O C1115);
- Methyltrimethoxysilane (b). CHJSI(O CH3);
- a silicate ester when used as the reagent, must first more than about a lOO-fold equivalent excess.
- the hydrolysis is northis hydrolysis include: mally run at elevated temperatures (preferably the 50 boiling point of the non-aqueous solvent) for a period 1. high or low pH (b or id of about 30 minutes to several hours.
- the hydrolysis is preferably carried Pamal P y f P h sllahee before eafihon out by refluxingthe reagent in a non-aqueous solvent to the substrate 15 essemlal h produclng a m ly containing several molar excesses of water with an acid bonded Stational'y Phase haymg the requll'ed thlckness catalyst.
- the solvent in addition to having some soluand porosity.
- initiation of polymerization may be deterbility for water should be non-reactive with the reagent mmed y p e g a Small amount of the -e f water or the (acid or base) catalyst. It should boil in the ing luti n In Water.
- the appearance of cloudiness mrange of about 25 to 300C, preferably 50 to 200C. dicates that the prepolymerization, having progressed Ethers such as tetrahydrofuran and dioxane have to the point where at least part of the silane reagent is worked satisfactorily. insoluble in water, is sufficient.
- the reaction of the prepolymerized silane to the substrate, followed by the final polymerization, is carried out at temperatures from about 50 to 350C, a range of lO-250C. being' preferred. Times required for this step vary from a few minutes to several hours, but usually l-3 hours is adequate for the preferred temperature range.
- silane ester reagents may be prepolymerized and reacted to the chromatographic substrates.
- silane ester reagent is deposited on the chromatographic substrate by evaporation from a suitable volatile solvent.
- the reagent is then hydrolyzed and prepolymerized by passing moist air or steam through the coated support.
- the reaction with the surface and polymerization is then carried out by heating.
- silicate ester reagent contained in a volatile unreactive solvent such as tetrahydrofuran is hydrolyzed and prepolymerized by adding aqueous hydrochloric acid and refluxing the mixture.
- the substrate is added to this solution.
- the volatile organic solvent is then removed by low temperature vacuum distillation. A large excess of toluene, xylene or other suita ble solvent is added to the wet powder and the watersolvent azeotrope is continuously removed until the reaction and polymerization is complete.
- a final extraction step may be used to remove any silane not bonded to the substrate.
- the solvents used in this step should have some solubility for the unbonded polymer which insures that the polymer left on the substrate is indeed chemically bonded thereto.
- silane molecules may also be used in the prepolymerization, reaction, and polymerization steps. In this manner, bonded stationary phases having blends of various properties suitable for particular separations may be developed.
- a particularly useful type of blend is the one controlling the extent of cross-linking in the polymerization process.
- Packings for gas chromatography generally require a highly cross-linked structure, in order for the polymer to have optimum stability at high temperatures.
- packings for liquid chromatography should have a less cross-linked polymeric phase. This lower order of cross-linking permits better penetration of the carrier, with subsequent improved 1 accessibility of the solute into the solvated polymeric structure.
- the chemically bonded stationary phases also possess unique chemical and physical properties because of theirability to swell in certain solvents and to form gelatinous, ordered structures which function as selective stationary gel phases.
- R Si (OR') reagents to the usual trialkoxysilicate, R Si (OR') reagents.
- the addition of dialkoxysilicates to the reaction significantly reduces the cross-linking, since the other group (R") attached to the silicon atom does not engage in the polymerization.
- the addition of the modifying functional group R also may impart desirable physical and chemical properties to the bonded phase.
- the reaction of the silicate reagents to the substrate surface proceeds very close to quantitatively.
- a monolayer film may be produced, for example, where it is desired to effect selective adsorption.
- a substrate with a polymolecular layer is utilized.
- the polymeric stationary phase is basically a three-dimensional porous network of repetitive, functional groups of the silane structure, chemically bonded to the support surface by an A schematic cross-section representation of the porous polymer structure is shown in FIG. 2 where the substrate is indicated at 20, the chemically bonded stationary phase at 21, a portion of polymer at 22, and the pores at 23.
- FIG. 3 gives an exploded schematic representation of the claimed structure of a piece of polymer 22.
- This chemically-bonded organic phase should have an average thickness of 30 A to 10,000 A, with 502,000 A being preferred. This preferred range encompasses sufficient thickness to ensure the desired chromatographic interactions without being so large (thick) so as to greatly affect column efficiency as a result of resistance to mass transfer of the solute within the polymeric phase.
- the bonded stationary phase should have about 20 to 95 percent of its volume consisting of pores, with a range of 35 to percent preferred.
- the polymer should be sufiiciently porous to allow penetration by the carrier phase and the sample components, while having sufficient cross-linking to ensure that the desired mechanical and chemical stability will be obtained.
- the substrate is a particulate support. These particles are coated with the stationary phase and packed into columns. In the present invention, this stationary phase is chemically bonded to the support particles, which are then packed into columns in the usual way. However, the present invention is also useful in other forms of chromatography.
- the stationary phase may be bonded to a substrate of silica gel. Also, where a capillary tube without p a particulate support is used for the column, a stationa- 'ry phase may be bonded directly onto the column wall diatomaceous earth with one of the bonded polymers.
- This chromatographically active material is coated in thin layers on plates in the usual manner. The plates are usually glass and flat, but other materials and shapes may be used.
- EXAMPLE 1 Preparation of Ether/Zipax" Packing for Liquid Chromatography Twenty-five grams of 40 microns Zipax and 150 ml. of concentrated nitric acid are placed in a 250 ml. beaker and heated on a steam bath for 2hours with occasional stirring. The resulting support is. washed free of acid by repeatedly slurrying with distilled water. The
- FIG. 5 shows I comparative HETP (height equivalent to a theoretical plate), versus linear carrier velocity plots for. two
- I columns made from the same original 325-400 mes Zipax supports.
- One column embodies mechanicallyheld I percent Bfi-oxydipropionitrile as the stationary phase, while the other consists of a' 0.94 percent ether bonded-phase.
- HETP data .for the bonded I phase column is slightly higher than that for the conventional liquid-liquid column for two solutes of which acetophenone is essentially unretarded and benzyl alcohol is moderately retained.
- the ether bonded-phase column was operated at input pressures up to5,000 psi and carrier linear velocities up to 40 cm./sec. Even under these very drastic conditions, the column showed little degradation, as evidenced by the especially'marked points 25 in the FIG. 5 plot. Operation of conventional liquid-liquid chromatographic columns at carriervelocities of 40 cm./sec. is very difficult, because of the loss of mechanically held stationary phase.
- FIG. 6 The uniqueness of the etherfbonded-phase for liquid chromatographic separations is further illustrated in FIG. 6.
- This synthetic mixture of the thiolhydroxamates shown was separated in a 1 meter X 2:1 mm. i.d., column of the 325-400 mesh Zipax containing 0.94 percent ether bonded-phase, the column being operated at 27C., with a carrier of 1.0 percent chloroform in hexane.
- These compounds are difficult to separate with conventional liquid-liquid chromatographic systems because of their polyfunc tionality and their, high polarity. They are strongly retained on most conventional stationary phases, and
- the resulting bonded-phase showed 0.23, 0.232 percent carbon, 0.032, 0.034 percent hydrogen, and 0.087, 0.089 percent nitrogen.
- the packing material contained 0.83 percent silicone polymer (calculated on the structure proposed below), or 90 percent of theoretiabsolute methanol.
- the a-cyanoacetanilide peak in FIG. 7 has a HETP of 1.89 mm. at a flowrate of 4.35 cc./min., which corresponds to 8.0 theoretical plates/sec. (4.8 effective plates/sec). When operated at a carrier linear velocity of 1 cm./sec. or less, this column demonstrates HETP of less than 1 mm. for similar solutes.
- the efficiency of the bonded-phase liquid chromatographic columns depends on the type and polarity of the carrier used. Columns with nitrile bonded-phase packing show poor efficiency with hexane as carrier. However, as' the polarity of the carrieris increased, so does the efficiency of the column .(equal solute partition ratios). s
- This hydrolysis mixture is then added to 20 grams of 400 mesh- Zipax contained in a shallow evaporating dish, and the solvent removed while gently stirring the mixture under warm air from a heat gun. The resulting mixture is then heatedfor 1 hour at 150C. in a circulating air oven. The treated support is then transferred to a 500 ml. round-bottom flask which contains 200 ml. of absolute methanol. The mixture is refluxed for l5 minutes, the
- FIG. 8 Use of the -ether bonded-phase packing for a gas chromatographic separation is shown in FIG. 8. This separation was carried out on a 1 meter X A inch o.d., inch i.d. glass column, using helium carrier gas flowrate of 50 cc./min. andla flame ionization detector sensitivity of l X 10* amp. full-scale, with a Beckman GC-4 gas chromatograph. 0.2 Microliters of the test mixture was injected at an initial column temperature of C., and the temperature of the column was continuously increased at 133C. per minute. The versatility of this column permits the separation of both low boiling compounds (hexane) and very high boiling 1 compounds (di-normal butyl-phthalate). The bleed of 'thisfether bonded-phase column at high temperatures is minimal, as evidenced by the slight increase in baseline of the chromatogram approaching 300C. for
- FIG. 9 The unique selectivity of the chemically bonded polymeric ether packing for gas chromatographic separations is illustrated in FIG. 9.
- the upper curve shows the separation of a mixture of aliphatic hydrocarbons and 4-bromobiphenyl on a column of 1.1 percent bonded ether on Zipax" support operated at 275C.
- the lower curve is the same mixture chromatographed under identical conditions on a 1.0 percent Carboxwax M (aliphatic polyether) column, except that the temperature was 200C.
- the separation factors were very high for these compounds on the ether bonded-phase column operated at- 275C., compared to those on Carbowax 20M at 200C.
- a similar pattern is apparent for the aromatic compound, 4-bromobiphenyl; its retention time on the ether" column at 275C. is 1.4 minutes, as compared to 0.25
- FIG. 10 The very high temperature stability of the B- cyanoethyl bonded-phase packing is illustrated in FIG. 10.
- This figure shows thebackground current of a flame ionization detector operated at l X 10 amp., full-scale, when a V4 inch o.d. Vs inch i.d. glass column of fl-cyanoethyl bonded-phase was programmed from 100 to'. 300C.
- the background current obtained under the same conditions (slightly displaced upward on the scale to show differences) for a similar column of 1 percent General Electric XE-60 (25 percent cyanoethyl, methyl silicon polymer), mechanically dispersed on 100-120 mesh Zipax support.- vBoth of these columns were conditioned at 250C.
- the bonded nitrile packing shows essentially no fbleed at 275C.'
- the conventional XE-60 column starts to show significant background at about 225C.
- the nitrile column is stable to at least 300C., while the Co., Inc., Wilmington, Del.) operated at a heating rate of 10C. per minute, using a flow of 85 cc'./min. of air.
- the curve shows the weight loss on a 100 mg. sample of the nitrile material as a function of temperature; This study indicates that the organic polymeric phase is essentially stable to about 325C, then begins to degrade slowly at higher temperatures.
- EXAMPLE 6 Ion Exchange Bonded-Phase for Liquid Chromatography by passing concentrated nitric acid through the tubing while heating over a steam bath. The capillary is then thoroughly washed with distilled water to-eliminate all acid, rinsed with reagent grade acetone and dried with dry nitrogen. About 50 ml. of a 5 percent (by weight) solution of Union Carbide Silane A-16 (amyltriethox ysilane) is passed through the capillary, dry nitrogen I connected to the tubing, and the excess solution removed by the pressure of the gas. The flow of dry nitrogen is continued through the capillary .until all of the excess solvent has been evaporated, leaving a thin I film of A-16 onthe interior surface of the glass.
- A-16 amyltriethox ysilane
- tract ed beads are filtered off on a sintered glass stream of moist air (relative humidity of about 85 percent) is then passed through the capillary until the silane ester is completely hydrolyzed, as evidenced by no more ethanol being evolved from the tubing.
- the capillary is then placed in a 110C. oven and a stream of dry nitrogen slowly passed through the tubing for several hours.
- capillary bondedephase column is particularly useful for separating complex mixtures of aliphatic and substituted aromatic hydrocarbons.
- This weak anion exchange packing can be used to separate a wide variety of acidic compounds, or other materials which are retained on this basic chromatographic medium.
- the amino functionality can'also be quaternized to a strongly basic tetraalkylammonium derivation by well-known organic reactions.
- the quaternized form is a useful strong anion exchanger.
- said metal of said substrate having a valence of 3 ,5, said stationary phase being chemically'bonded to the surface of said substrate by an linkage, wherein M is said polyvalent metal and wherein A is O- or a monovalent aliphatic or aromatic hydrocarbon radical and R is a monovalent or aliphaticor aromatic hydrocarbon radical,
- said metal of said substrate having a valence of 35, said stationary phase being chemically bonded to the surface of said substrate by an linkage, wherein M is said polyvalent metal and is part of one of said repeating units of said stationary phase.
- An apparatus for use in chromatographic separations comprising a resolving zone through which,
- said resolving zone comprising a packing having a polyvalent metalcontaining substrate and a stationary phasehaving an average thickness of about 3.0 A to 10,000 A, said stationary phase comprising a'porous polymer having the repeating unit of the formula 4 7 wherein A is -O or a monovalent aliphatic or aromatic hydrocarbon radical and R is a monovalent aliphatic or aromatic hydrocarbon radical, I
- said metal of said substrate having a valence. of 3-5, said stationary phase being chemically bonded to the surface of said substrate by an linkage, wherein M is said polyvalent metal and is part of one of said repeating units of said stationary phase, and said polymer comprising 5 to 80 percent of the volume of said stationary phase.
- An improved process for performing chromato graphic separations comprising:
- said material and said carrier fluid wit a packing having a polyvalent metal-containing substrate and a stationary phase having an average thickness of about from 30 A to 10,000 A, said stationary phase comprising a porous polymer having the repeating unit of the formula wherein A is --O- or a monovalent aliphatic or aromatic hydrocarbon radical and R is a monovalent or aliphatic or aromatic hydrocarbon radical,
- said metal of said substrate having a valence of 3.5
- M is said polyvalent metal and is part of one of said repeating units of said stationary phase, and said polymer Comprising about to 80 per cent of the volume of said stationary phase.
- said packing comprises at least two copolyrneriied portions, A inthe first of said portions being O, and A in the second of said portions being a monovalent aliphatic or aro- 17.
- said resolving zone is disposed within a column.
- packing comprises a thin layer upon a surface.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicon Polymers (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3966570A | 1970-05-22 | 1970-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3722181A true US3722181A (en) | 1973-03-27 |
Family
ID=21906710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00039665A Expired - Lifetime US3722181A (en) | 1970-05-22 | 1970-05-22 | Chromatographic packing with chemically bonded organic stationary phases |
Country Status (8)
Country | Link |
---|---|
US (1) | US3722181A (enrdf_load_stackoverflow) |
JP (2) | JPS5217078B1 (enrdf_load_stackoverflow) |
CH (1) | CH578732A5 (enrdf_load_stackoverflow) |
DE (1) | DE2125428C2 (enrdf_load_stackoverflow) |
FR (1) | FR2093601A5 (enrdf_load_stackoverflow) |
GB (1) | GB1354357A (enrdf_load_stackoverflow) |
NL (1) | NL7107016A (enrdf_load_stackoverflow) |
SE (1) | SE399647B (enrdf_load_stackoverflow) |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3878092A (en) * | 1973-03-12 | 1975-04-15 | Phillips Petroleum Co | Chromatographic colums |
US3922392A (en) * | 1972-05-27 | 1975-11-25 | Merck Patent Gmbh | Process for coating nonporous material with a porous silicon dioxide layer |
US3983299A (en) * | 1974-03-04 | 1976-09-28 | Purdue Research Foundation | Bonded carbohydrate stationary phases for chromatography |
US3984349A (en) * | 1971-07-26 | 1976-10-05 | Societe Rhone-Progil | Modified porous bodies |
US3987058A (en) * | 1975-02-27 | 1976-10-19 | The United States Of America As Represented By The Secretary Of Agriculture | Preparation and uses of stable, bound stationary phases |
US4005046A (en) * | 1974-11-12 | 1977-01-25 | Dow Corning Limited | Catalysts and carriers therefor |
US4029583A (en) * | 1975-02-28 | 1977-06-14 | Purdue Research Foundation | Chromatographic supports and methods and apparatus for preparing the same |
US4045353A (en) * | 1974-10-15 | 1977-08-30 | Toyo Soda Manufacturing Co., Ltd. | High-energy radiation induced polymerization on a chromatographic solid support |
US4118316A (en) * | 1976-10-13 | 1978-10-03 | Calgon Corporation | Quaternized siliceous supports for gel permeation chromatography |
US4140653A (en) * | 1975-09-30 | 1979-02-20 | Toyo Soda Manufacturing Co., Ltd. | Solid support for liquid chromatography |
US4169790A (en) * | 1975-05-02 | 1979-10-02 | South African Inventions Development Corporation | Solid surface texture suitable for a stationary phase for chromatography |
US4199330A (en) * | 1978-02-13 | 1980-04-22 | The Dow Chemical Company | Bonded organo-pellicular packings for chromatographic columns |
US4209554A (en) * | 1979-02-22 | 1980-06-24 | Scm Corporation | Polydentate metal salts used in the process for the deactivation of glass surfaces and capillary columns therewith |
US4242227A (en) * | 1979-07-31 | 1980-12-30 | The Dow Chemical Company | Chromatographic column packing having a bonded organosiloxane coating |
US4243753A (en) * | 1978-02-27 | 1981-01-06 | Purdue Research Foundation | Apparatus for enzyme detection |
US4324689A (en) * | 1980-02-26 | 1982-04-13 | Shah Ramesh M | High carbon content chromatographic packing and method for making same |
US4540486A (en) * | 1983-11-25 | 1985-09-10 | J. T. Baker Chemical Company | Polyethylenimine bound chromatographic packing |
US4551245A (en) * | 1985-04-22 | 1985-11-05 | J. T. Baker Chemical Co. | Acylated polyethylenimine bound chromatographic packing |
US4591455A (en) * | 1982-11-24 | 1986-05-27 | Pedro B. Macedo | Purification of contaminated liquid |
US4648975A (en) * | 1983-08-17 | 1987-03-10 | Pedro B. Macedo | Process of using improved silica-based chromatographic supports containing additives |
US4705725A (en) * | 1986-11-28 | 1987-11-10 | E. I. Du Pont De Nemours And Company | Substrates with sterically-protected, stable, covalently-bonded organo-silane films |
US4737316A (en) * | 1982-11-24 | 1988-04-12 | Pedro B. Macedo | Purification of contaminated liquid |
US4743377A (en) * | 1985-07-02 | 1988-05-10 | Shiseido Company Ltd. | Packing material for liquid chromatography |
US4746572A (en) * | 1986-11-28 | 1988-05-24 | E. I. Dupont De Nemours And Company | Structures surface modified with bidentate silanes |
US4756971A (en) * | 1984-12-28 | 1988-07-12 | Ksv-Chemicals Oy | Surface treatment agents and polymers comprising substituted phenyl silanes and siloxanes |
US4828704A (en) * | 1985-03-15 | 1989-05-09 | Cosmo Oil Company, Ltd. | Thin-layer rod for chromatography |
US4874518A (en) * | 1985-11-01 | 1989-10-17 | E. I. Du Pont De Nemours And Company | Porous silica microspheres having a silanol enriched surface |
US5032266A (en) * | 1985-11-01 | 1991-07-16 | E. I. Du Pont De Nemours And Company | Porous silica microspheres having silanol-enriched and silanized surfaces |
US5055194A (en) * | 1989-07-28 | 1991-10-08 | University Of Pennsylvania | Support for high performance liquid chromatography in a magnetically stabilized fluidized bed |
US5087597A (en) * | 1990-07-19 | 1992-02-11 | Armada De La Republica De Venezuela | Carbon dioxide adsorbent and method for producing the adsorbent |
US5108595A (en) * | 1985-11-01 | 1992-04-28 | E. I. Du Pont De Nemours And Company | Porous silica microspheres having silanol-enriched and silanized surfaces |
US5154822A (en) * | 1986-07-28 | 1992-10-13 | 3I Research Exploitation Limited | Bonded chromatographic stationary phase |
US5248426A (en) * | 1992-02-10 | 1993-09-28 | Dionex Corporation | Ion chromatography system using electrochemical suppression and detector effluent recycle |
US5518622A (en) * | 1992-02-10 | 1996-05-21 | Dionex Corporation | Electrochemical pretreatment system for liquid sample analysis |
US5637135A (en) * | 1995-06-26 | 1997-06-10 | Capillary Technology Corporation | Chromatographic stationary phases and adsorbents from hybrid organic-inorganic sol-gels |
US5667674A (en) * | 1996-01-11 | 1997-09-16 | Minnesota Mining And Manufacturing Company | Adsorption medium and method of preparing same |
US5759405A (en) * | 1995-03-03 | 1998-06-02 | Alltech Associates, Inc. | Apparatuses and methods for electrochemically modifying the retention of species on chromatography material |
US5762803A (en) * | 1994-07-20 | 1998-06-09 | Cu Chemie Uetikon Ag | Silicon dioxide based microspheres for rapid chromatographic separation of biomolecules |
US5869724A (en) * | 1997-06-20 | 1999-02-09 | Hewlett-Packard Company | Asymmetric bidentate silanes |
US5915269A (en) * | 1997-04-15 | 1999-06-22 | The Perkin-Elmer Corporation | Method and apparatus to compensate for gas chromatograph column permeability |
US5935443A (en) * | 1995-03-03 | 1999-08-10 | Alltech Associates, Inc. | Electrochemically regenerated ion neutralization and concentration devices and systems |
US5948531A (en) * | 1997-06-20 | 1999-09-07 | Hewlett-Packard Company | Propylene-bridged bidentate silanes |
WO2002072225A1 (en) * | 2001-03-09 | 2002-09-19 | University Of South Florida | High efficiency sol-gel gas chromatography column |
US20040129141A1 (en) * | 2002-03-08 | 2004-07-08 | Abdul Malik | High efficiency sol-gel gas chromatography column |
US20060005877A1 (en) * | 2004-07-06 | 2006-01-12 | General Electric Company | Passivated, dye-sensitized oxide semiconductor electrode, solar cell using same, and method |
WO2006039507A2 (en) | 2004-10-01 | 2006-04-13 | Phenomenex, Inc. | Ph stable chromatographic media using templated multilayer organic/inorganic grafting |
US20070187313A1 (en) * | 2005-12-16 | 2007-08-16 | Akzo Nobel N.V. | Silica based material |
US20090311533A1 (en) * | 2008-06-13 | 2009-12-17 | Wu Chen | Porous silica microspheres having organosilane modified surfaces |
US9340443B2 (en) | 2012-12-13 | 2016-05-17 | Corning Incorporated | Bulk annealing of glass sheets |
US9889635B2 (en) | 2012-12-13 | 2018-02-13 | Corning Incorporated | Facilitated processing for controlling bonding between sheet and carrier |
US10014177B2 (en) | 2012-12-13 | 2018-07-03 | Corning Incorporated | Methods for processing electronic devices |
US10046542B2 (en) | 2014-01-27 | 2018-08-14 | Corning Incorporated | Articles and methods for controlled bonding of thin sheets with carriers |
US10086584B2 (en) | 2012-12-13 | 2018-10-02 | Corning Incorporated | Glass articles and methods for controlled bonding of glass sheets with carriers |
US10510576B2 (en) | 2013-10-14 | 2019-12-17 | Corning Incorporated | Carrier-bonding methods and articles for semiconductor and interposer processing |
US10543662B2 (en) | 2012-02-08 | 2020-01-28 | Corning Incorporated | Device modified substrate article and methods for making |
US11097509B2 (en) | 2016-08-30 | 2021-08-24 | Corning Incorporated | Siloxane plasma polymers for sheet bonding |
US11167532B2 (en) | 2015-05-19 | 2021-11-09 | Corning Incorporated | Articles and methods for bonding sheets with carriers |
US11192340B2 (en) | 2014-04-09 | 2021-12-07 | Corning Incorporated | Device modified substrate article and methods for making |
US11331692B2 (en) | 2017-12-15 | 2022-05-17 | Corning Incorporated | Methods for treating a substrate and method for making articles comprising bonded sheets |
US11535553B2 (en) | 2016-08-31 | 2022-12-27 | Corning Incorporated | Articles of controllably bonded sheets and methods for making same |
US11905201B2 (en) | 2015-06-26 | 2024-02-20 | Corning Incorporated | Methods and articles including a sheet and a carrier |
US11999135B2 (en) | 2017-08-18 | 2024-06-04 | Corning Incorporated | Temporary bonding using polycationic polymers |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5489691A (en) * | 1977-12-24 | 1979-07-16 | Nippon Bunko Kogyo Kk | Open tube type capillary column for micro rapid liquid chromatography and production thereof |
DE3427923A1 (de) * | 1984-07-28 | 1986-01-30 | Merck Patent Gmbh, 6100 Darmstadt | Trennmaterial fuer die duennschichtchromatographie |
US4755294A (en) * | 1984-11-06 | 1988-07-05 | Societe Anonyme Dite Compagnie Francaise De Raffinage | Stationary phase, preparation thereof and chromatographic column containing same |
CN113000028A (zh) * | 2021-04-27 | 2021-06-22 | 临沂海普新材料科技有限公司 | 一种用于废酸中磷酸回收的吸附剂制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3500616A (en) * | 1968-05-08 | 1970-03-17 | Mine Safety Appliances Co | Adsorbent for gas-solid chromatography |
US3514925A (en) * | 1967-09-05 | 1970-06-02 | Mine Safety Appliances Co | Gas chromatography column and method of making same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5217078A (en) * | 1975-07-31 | 1977-02-08 | Yokogawa Hokushin Electric Corp | Cable abnormal point detecting system |
-
1970
- 1970-05-22 US US00039665A patent/US3722181A/en not_active Expired - Lifetime
-
1971
- 1971-05-18 SE SE7106455A patent/SE399647B/xx unknown
- 1971-05-21 NL NL7107016A patent/NL7107016A/xx unknown
- 1971-05-21 CH CH750371A patent/CH578732A5/xx not_active IP Right Cessation
- 1971-05-21 DE DE2125428A patent/DE2125428C2/de not_active Expired
- 1971-05-21 JP JP46034153A patent/JPS5217078B1/ja active Pending
- 1971-05-21 FR FR7118488A patent/FR2093601A5/fr not_active Expired
- 1971-05-24 GB GB1669871A patent/GB1354357A/en not_active Expired
-
1973
- 1973-12-26 JP JP48144158A patent/JPS49125098A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3514925A (en) * | 1967-09-05 | 1970-06-02 | Mine Safety Appliances Co | Gas chromatography column and method of making same |
US3500616A (en) * | 1968-05-08 | 1970-03-17 | Mine Safety Appliances Co | Adsorbent for gas-solid chromatography |
Cited By (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3984349A (en) * | 1971-07-26 | 1976-10-05 | Societe Rhone-Progil | Modified porous bodies |
US3922392A (en) * | 1972-05-27 | 1975-11-25 | Merck Patent Gmbh | Process for coating nonporous material with a porous silicon dioxide layer |
US3878092A (en) * | 1973-03-12 | 1975-04-15 | Phillips Petroleum Co | Chromatographic colums |
US3983299A (en) * | 1974-03-04 | 1976-09-28 | Purdue Research Foundation | Bonded carbohydrate stationary phases for chromatography |
US4045353A (en) * | 1974-10-15 | 1977-08-30 | Toyo Soda Manufacturing Co., Ltd. | High-energy radiation induced polymerization on a chromatographic solid support |
US4005046A (en) * | 1974-11-12 | 1977-01-25 | Dow Corning Limited | Catalysts and carriers therefor |
US3987058A (en) * | 1975-02-27 | 1976-10-19 | The United States Of America As Represented By The Secretary Of Agriculture | Preparation and uses of stable, bound stationary phases |
US4029583A (en) * | 1975-02-28 | 1977-06-14 | Purdue Research Foundation | Chromatographic supports and methods and apparatus for preparing the same |
US4169790A (en) * | 1975-05-02 | 1979-10-02 | South African Inventions Development Corporation | Solid surface texture suitable for a stationary phase for chromatography |
US4140653A (en) * | 1975-09-30 | 1979-02-20 | Toyo Soda Manufacturing Co., Ltd. | Solid support for liquid chromatography |
US4118316A (en) * | 1976-10-13 | 1978-10-03 | Calgon Corporation | Quaternized siliceous supports for gel permeation chromatography |
US4199330A (en) * | 1978-02-13 | 1980-04-22 | The Dow Chemical Company | Bonded organo-pellicular packings for chromatographic columns |
US4243753A (en) * | 1978-02-27 | 1981-01-06 | Purdue Research Foundation | Apparatus for enzyme detection |
US4209554A (en) * | 1979-02-22 | 1980-06-24 | Scm Corporation | Polydentate metal salts used in the process for the deactivation of glass surfaces and capillary columns therewith |
US4242227A (en) * | 1979-07-31 | 1980-12-30 | The Dow Chemical Company | Chromatographic column packing having a bonded organosiloxane coating |
US4324689A (en) * | 1980-02-26 | 1982-04-13 | Shah Ramesh M | High carbon content chromatographic packing and method for making same |
US4591455A (en) * | 1982-11-24 | 1986-05-27 | Pedro B. Macedo | Purification of contaminated liquid |
US4737316A (en) * | 1982-11-24 | 1988-04-12 | Pedro B. Macedo | Purification of contaminated liquid |
US4648975A (en) * | 1983-08-17 | 1987-03-10 | Pedro B. Macedo | Process of using improved silica-based chromatographic supports containing additives |
US4540486A (en) * | 1983-11-25 | 1985-09-10 | J. T. Baker Chemical Company | Polyethylenimine bound chromatographic packing |
US4756971A (en) * | 1984-12-28 | 1988-07-12 | Ksv-Chemicals Oy | Surface treatment agents and polymers comprising substituted phenyl silanes and siloxanes |
US4828704A (en) * | 1985-03-15 | 1989-05-09 | Cosmo Oil Company, Ltd. | Thin-layer rod for chromatography |
US4551245A (en) * | 1985-04-22 | 1985-11-05 | J. T. Baker Chemical Co. | Acylated polyethylenimine bound chromatographic packing |
US4743377A (en) * | 1985-07-02 | 1988-05-10 | Shiseido Company Ltd. | Packing material for liquid chromatography |
US4874518A (en) * | 1985-11-01 | 1989-10-17 | E. I. Du Pont De Nemours And Company | Porous silica microspheres having a silanol enriched surface |
US5108595A (en) * | 1985-11-01 | 1992-04-28 | E. I. Du Pont De Nemours And Company | Porous silica microspheres having silanol-enriched and silanized surfaces |
US5032266A (en) * | 1985-11-01 | 1991-07-16 | E. I. Du Pont De Nemours And Company | Porous silica microspheres having silanol-enriched and silanized surfaces |
US5154822A (en) * | 1986-07-28 | 1992-10-13 | 3I Research Exploitation Limited | Bonded chromatographic stationary phase |
US4705725A (en) * | 1986-11-28 | 1987-11-10 | E. I. Du Pont De Nemours And Company | Substrates with sterically-protected, stable, covalently-bonded organo-silane films |
US4847159A (en) * | 1986-11-28 | 1989-07-11 | E. I. Du Pont De Nemours And Company | Substrates coated with organo-silanes that are sterically-protected |
US4746572A (en) * | 1986-11-28 | 1988-05-24 | E. I. Dupont De Nemours And Company | Structures surface modified with bidentate silanes |
US5055194A (en) * | 1989-07-28 | 1991-10-08 | University Of Pennsylvania | Support for high performance liquid chromatography in a magnetically stabilized fluidized bed |
US5087597A (en) * | 1990-07-19 | 1992-02-11 | Armada De La Republica De Venezuela | Carbon dioxide adsorbent and method for producing the adsorbent |
US5248426A (en) * | 1992-02-10 | 1993-09-28 | Dionex Corporation | Ion chromatography system using electrochemical suppression and detector effluent recycle |
US5352360A (en) * | 1992-02-10 | 1994-10-04 | Dionex Corporation | Ion chromatography system using electrochemical suppression and detector effluent recycle |
US5518622A (en) * | 1992-02-10 | 1996-05-21 | Dionex Corporation | Electrochemical pretreatment system for liquid sample analysis |
US5597481A (en) * | 1992-02-10 | 1997-01-28 | Dionex Corporation | Electrochemical pretreatment system for liquid sample analysis |
US5762803A (en) * | 1994-07-20 | 1998-06-09 | Cu Chemie Uetikon Ag | Silicon dioxide based microspheres for rapid chromatographic separation of biomolecules |
US5759405A (en) * | 1995-03-03 | 1998-06-02 | Alltech Associates, Inc. | Apparatuses and methods for electrochemically modifying the retention of species on chromatography material |
US6235197B1 (en) | 1995-03-03 | 2001-05-22 | Alltech Associates, Inc. | Electrochemically regenerated ion neutralization and concentration devices and systems |
US7364646B2 (en) | 1995-03-03 | 2008-04-29 | Dionex Corporation | High-purity eluant generator |
US7780834B2 (en) | 1995-03-03 | 2010-08-24 | Dionex Corporation | Apparatuses and methods for electrochemically modifying the retention of species on chromatography material |
US20030209439A1 (en) * | 1995-03-03 | 2003-11-13 | Alltech Associates, Inc. | High-purity eluant generator |
US20050252774A1 (en) * | 1995-03-03 | 2005-11-17 | Anderson James M Jr | Method and apparatus for generating a high purity eluant |
US5935443A (en) * | 1995-03-03 | 1999-08-10 | Alltech Associates, Inc. | Electrochemically regenerated ion neutralization and concentration devices and systems |
US7531075B2 (en) | 1995-03-03 | 2009-05-12 | Dionex Corporation | Method and apparatus for generating a high purity eluant |
US6558551B1 (en) | 1995-03-03 | 2003-05-06 | Alltech Associates, Inc. | Method and system for generating a high purity eluant |
US6093327A (en) * | 1995-03-03 | 2000-07-25 | Anderson, Jr.; James M. | Apparatuses and methods for electrochemically modifying the retention of species on chromatography material |
US20080190850A1 (en) * | 1995-03-03 | 2008-08-14 | Dionex Corporation | Apparatuses and methods for electrochemically modifying the retention of species on chromatography material |
US5637135A (en) * | 1995-06-26 | 1997-06-10 | Capillary Technology Corporation | Chromatographic stationary phases and adsorbents from hybrid organic-inorganic sol-gels |
US5667674A (en) * | 1996-01-11 | 1997-09-16 | Minnesota Mining And Manufacturing Company | Adsorption medium and method of preparing same |
US5968652A (en) * | 1996-01-11 | 1999-10-19 | 3M Innovative Properties Company | Silane coated particle |
US5876595A (en) * | 1996-01-11 | 1999-03-02 | Minnesota Mining And Manufacturing Company | Adsorption medium and method of preparing same |
US5915269A (en) * | 1997-04-15 | 1999-06-22 | The Perkin-Elmer Corporation | Method and apparatus to compensate for gas chromatograph column permeability |
US5948531A (en) * | 1997-06-20 | 1999-09-07 | Hewlett-Packard Company | Propylene-bridged bidentate silanes |
US5869724A (en) * | 1997-06-20 | 1999-02-09 | Hewlett-Packard Company | Asymmetric bidentate silanes |
US8685240B2 (en) | 2001-03-09 | 2014-04-01 | University Of South Florida | High efficiency sol-gel gas chromatography column |
WO2002072225A1 (en) * | 2001-03-09 | 2002-09-19 | University Of South Florida | High efficiency sol-gel gas chromatography column |
US20070062874A1 (en) * | 2001-03-09 | 2007-03-22 | Abdul Malik | High efficiency sol-gel gas chromatography column |
US20040129141A1 (en) * | 2002-03-08 | 2004-07-08 | Abdul Malik | High efficiency sol-gel gas chromatography column |
US20060005877A1 (en) * | 2004-07-06 | 2006-01-12 | General Electric Company | Passivated, dye-sensitized oxide semiconductor electrode, solar cell using same, and method |
WO2006039507A2 (en) | 2004-10-01 | 2006-04-13 | Phenomenex, Inc. | Ph stable chromatographic media using templated multilayer organic/inorganic grafting |
EP1804950B1 (en) * | 2004-10-01 | 2016-06-01 | Phenomenex, Inc. | Ph stable chromatographic media using templated multilayer organic/inorganic grafting |
US9308520B2 (en) | 2005-12-16 | 2016-04-12 | Akzo Nobel N.V. | Silica based material |
US20070187313A1 (en) * | 2005-12-16 | 2007-08-16 | Akzo Nobel N.V. | Silica based material |
US20090311533A1 (en) * | 2008-06-13 | 2009-12-17 | Wu Chen | Porous silica microspheres having organosilane modified surfaces |
US8277883B2 (en) * | 2008-06-13 | 2012-10-02 | Agilent Technologies, Inc. | Porous silica microspheres having organosilane modified surfaces |
US10543662B2 (en) | 2012-02-08 | 2020-01-28 | Corning Incorporated | Device modified substrate article and methods for making |
US9340443B2 (en) | 2012-12-13 | 2016-05-17 | Corning Incorporated | Bulk annealing of glass sheets |
US9889635B2 (en) | 2012-12-13 | 2018-02-13 | Corning Incorporated | Facilitated processing for controlling bonding between sheet and carrier |
US10014177B2 (en) | 2012-12-13 | 2018-07-03 | Corning Incorporated | Methods for processing electronic devices |
US10086584B2 (en) | 2012-12-13 | 2018-10-02 | Corning Incorporated | Glass articles and methods for controlled bonding of glass sheets with carriers |
US10538452B2 (en) | 2012-12-13 | 2020-01-21 | Corning Incorporated | Bulk annealing of glass sheets |
US10510576B2 (en) | 2013-10-14 | 2019-12-17 | Corning Incorporated | Carrier-bonding methods and articles for semiconductor and interposer processing |
US10046542B2 (en) | 2014-01-27 | 2018-08-14 | Corning Incorporated | Articles and methods for controlled bonding of thin sheets with carriers |
US11123954B2 (en) | 2014-01-27 | 2021-09-21 | Corning Incorporated | Articles and methods for controlled bonding of thin sheets with carriers |
US11192340B2 (en) | 2014-04-09 | 2021-12-07 | Corning Incorporated | Device modified substrate article and methods for making |
US11167532B2 (en) | 2015-05-19 | 2021-11-09 | Corning Incorporated | Articles and methods for bonding sheets with carriers |
US11660841B2 (en) | 2015-05-19 | 2023-05-30 | Corning Incorporated | Articles and methods for bonding sheets with carriers |
US11905201B2 (en) | 2015-06-26 | 2024-02-20 | Corning Incorporated | Methods and articles including a sheet and a carrier |
US11097509B2 (en) | 2016-08-30 | 2021-08-24 | Corning Incorporated | Siloxane plasma polymers for sheet bonding |
US12122138B2 (en) | 2016-08-30 | 2024-10-22 | Corning Incorporated | Siloxane plasma polymers for sheet bonding |
US11535553B2 (en) | 2016-08-31 | 2022-12-27 | Corning Incorporated | Articles of controllably bonded sheets and methods for making same |
US12344548B2 (en) | 2016-08-31 | 2025-07-01 | Corning Incorporated | Methods for making controllably bonded sheets |
US11999135B2 (en) | 2017-08-18 | 2024-06-04 | Corning Incorporated | Temporary bonding using polycationic polymers |
US11331692B2 (en) | 2017-12-15 | 2022-05-17 | Corning Incorporated | Methods for treating a substrate and method for making articles comprising bonded sheets |
Also Published As
Publication number | Publication date |
---|---|
DE2125428A1 (de) | 1971-12-02 |
JPS5217078B1 (enrdf_load_stackoverflow) | 1977-05-13 |
FR2093601A5 (enrdf_load_stackoverflow) | 1972-01-28 |
JPS49125098A (enrdf_load_stackoverflow) | 1974-11-29 |
SE399647B (sv) | 1978-02-27 |
DE2125428C2 (de) | 1984-05-30 |
NL7107016A (enrdf_load_stackoverflow) | 1971-11-24 |
GB1354357A (en) | 1974-06-05 |
CH578732A5 (enrdf_load_stackoverflow) | 1976-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3722181A (en) | Chromatographic packing with chemically bonded organic stationary phases | |
US3795313A (en) | Chromatographic packing with chemically bonded organic stationary phases | |
US4017528A (en) | Preparation of organically modified silicon dioxides | |
US4746572A (en) | Structures surface modified with bidentate silanes | |
Unger et al. | Recent developments in the evaluation of chemically bonded silica packings for liquid chromatography | |
US5326738A (en) | Stable, covalently-bonded supports for chemical separation apparatus made through a hydride intermediate | |
Figge et al. | Stationary phases for reversed-phase liquid chromatography: Coating of silica by polymers of various polarities | |
EP0269080B1 (en) | Substrates with sterically-protected, stable, covalently-bonded organo-silane films | |
US5637135A (en) | Chromatographic stationary phases and adsorbents from hybrid organic-inorganic sol-gels | |
Kirkland et al. | Controlled surface porosity supports with chemically-bonded organic stationary phases for gas and liquid chromatography | |
Fadeev et al. | Study of penetration of water into hydrophobized porous silicas | |
EP1804950B1 (en) | Ph stable chromatographic media using templated multilayer organic/inorganic grafting | |
CN101987293B (zh) | 基于硅胶表面共聚反应的色谱分离材料及其制备 | |
Ek et al. | Gas-phase deposition of aminopropylalkoxysilanes on porous silica | |
EP0268243A2 (en) | Packing material and process for its production | |
JP2007534460A (ja) | クロマトグラフィシステムおよび用途に用いるためのポリシラザン熱硬化性ポリマー | |
US4996277A (en) | Novel oligoethylene oxide-containing alkenes, alkoxysilanes, and polysiloxanes | |
US3666530A (en) | Novel silicious silicone bonded materials | |
US5869724A (en) | Asymmetric bidentate silanes | |
EP0160988B1 (en) | Stable silica-based ether bonded phases for biopolymer separations | |
JPH04212058A (ja) | 液体クロマトグラフィー用充填剤の製造方法 | |
US5948531A (en) | Propylene-bridged bidentate silanes | |
CN100386142C (zh) | 一种合成键合型多糖类手性固定相的方法 | |
US20070251870A1 (en) | Chromatographic stationary phase | |
CN112237898B (zh) | 一种强阴离子型固相萃取柱填料及其制备方法 |