US3720897A - Electrical inductive apparatus - Google Patents

Electrical inductive apparatus Download PDF

Info

Publication number
US3720897A
US3720897A US00170005A US3720897DA US3720897A US 3720897 A US3720897 A US 3720897A US 00170005 A US00170005 A US 00170005A US 3720897D A US3720897D A US 3720897DA US 3720897 A US3720897 A US 3720897A
Authority
US
United States
Prior art keywords
transformer
supporting structure
constructed
winding
winding tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00170005A
Inventor
L Feather
L Morris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Inc USA
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3720897A publication Critical patent/US3720897A/en
Anticipated expiration legal-status Critical
Assigned to ABB POWER T&D COMPANY, INC., A DE CORP. reassignment ABB POWER T&D COMPANY, INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: WESTINGHOUSE ELECTRIC CORPORATION, A CORP. OF PA.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support

Abstract

An arrangement for supporting a winding tube of a power transformer. The winding tube is supported and held in position by a supporting structure constructed of rigid plastic foam. Spaces or openings in the supporting structure, which are created by suitably shaped members, permit the liquid dielectric of the transformer to flow through the supporting structure to cool adjacent structures. The suitably shaped members are inserted between the winding tube and its supporting member before the plastic foam is placed therein, thereby defining the shape of the spaces or openings in the supporting structure.

Description

United States Patent 1191 Feather et a1.
1 lMal'Ch 13, 1973 1 1 ELECTRICAL iNDlUCTlli/E APPARATUS [75] Inventors: Landis E. Feather, Sharon, Pa.;
Louis Morris, Campbell, Ohio [73] Assignee: Westinghouse Electric Corporation,
Pittsburgh, Pa.
[22] Filed: Aug. 9, 11971 [21] Appl. No; 170,005
[52] 11.8. C1 ..336/60, 336/198 [51] Int. Cl ..H0lf 27/08 [581' Field of Search ..336/60, 205, 55, 198, 208;
[56] References Cited UNITED STATES PATENTS 1,360,752 11/1920 Johannesen ..336/60 3,138,773 6/1964 Nichols et a1 1 ..336/205 3,568,118 3/1971 Kuriyama ct a1. ..336/60 3,431,524 3/1969 Droverman i 336/60 3,151,304 9/1964 Miller i i 1 4 ..336/60 X 3,331,910 7/1967 Grimmer ..174/143 X FOREIGN PATENTS OR APPLICATIONS 512,761 2/1939 Great Britain ..336/60 233,608 11/1959 Australia 1 ..174/l5 C 1,074,801 7/1967 Great Britain ..336/60 Primary ExaminerThomas J. Kozma Attorney-A. T. Stratton et a1.
[57] ABSTRACT An arrangement for supporting a winding tube of a power transformer. The winding tube is supported and held in position by a supporting structure constructed of rigid plastic foam. Spaces or openings in the supporting structure, which are created by suitably shaped members, permit the liquid dielectric of the transformer to flow through the supporting structure to cool adjacent structures. The suitably shaped members are inserted between the winding tube and its supporting member before the plastic foam is placed therein, thereby defining the shape of the spaces or openings in the supporting structure.
18 Claims, 6 Drawing Figures PATENTEDMAR13 I975 3.720.897
SHEET 1 UF 2 FIG. I.
ELECTRIC AL INDUCTIVE APPARATUS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates, in general, to electrical inductive apparatus and, more specifically, to insulating and supporting means for the windings of core-form transformers.
2. Description of the Prior Art The construction of core-form transformers takes into consideration certain aspects of the electrical and mechanical performance of the transformer. The metallic laminations which form the magnetic core of the transformer must be mechanically held together for proper operation of the transformer. The most common method presently used includes the use of bolts which are inserted through holes in the laminations. While this provides sufficient mechanical strength, the electrical performance of the transformer suffers due to the core losses caused by the holes in the laminations.
It is also a requirement in power transformers that the magnetic core be cooled as effectively as possible. This is accomplished in liquid cooled power transformers by circulating the liquid dielectric, which is usually mineral insulating oil, along the surfaces of the core. This makes it necessary to provide a space or channel between the core and the winding positioned thereon to allow the flow of oil adjacent to the core. Since the innermost winding is subjected to inward forces during short circuits which tend to collapse the winding, there must be a compromise between rigid supporting members and cooling channels adjacent to the core.
Generally, the innermost winding is first wound on a rigid insulating tube, then the tube and the winding as sembly is slipped over the magnetic core. The tube is blocked to the core by inserting spacer sticks or rods between the core and the tube. This arrangement is undesirable for several reasons. The winding tube must be sufficiently thick to provide adequate mechanical support between spacer rod support points. As a result, the winding tube must be thicker than required by electrical considerations. It also positions the winding farther from the core than is electrically required.
The use of spacer rods also results in inadequately supported winding tubes. Due to variations in core width, spacer diameter, and winding tube size, some spacers may not completely fill the gap between the core and the tube, thus, the winding tube may be subjected to additional flexural stresses under short circuit conditions. To permit assembly when tolerances tend to reduce the gap, the tube is normally fitted loosely, which adds to the possibility of mechanical deformation of the winding tube. The spacer rod arrangement is very time consuming to assemble and there is a substantial possibility of damage to the tube when the rods are driven between the tube and the core.
Therefore, it is desirable and it is an object of this invention, to provide an economical, efficient, and satisfactory arrangement for supporting the windings of a power transformer.
SUMMARY OF THE INVENTION The invention disclosed herein provides a new and useful arrangement for supporting a winding tube of a power transformer which may be economically constructed and which performs efficiently. Suitably shaped spacing members are inserted in the region between the winding tube and the structure from which it is supported, such as the magnetic core. Plastic foam is then placed into the region and allowed to solidify, thus forming a supporting structure. The spaces provided by the spacing members allow the liquid dielectric of the transformer to flow through the supporting structure and conduct heat away from adjacent structures.
This arrangement permits the use of a winding tube having a smaller wall thickness than permitted by prior art arrangements since the winding tube is supported continuously around its circumference. Since the plastic foam conforms to the size and shape of the winding tube, all areas of the winding tube are sufficiently supported. Because of the ability of the foam to compensate for manufacturing tolerances, the winding tube is always solidly supported. Additionally, since the winding tube does not have to be oversized to allow for tolerances, the winding thereon is consistently closer to the magnetic core when the arrangement taught by this invention is used. The fact that the supporting structure 7 surrounds the magnetic core, and provides securing means therefor, allows modification of the conventional bolt arrangement for holding the laminations together. The elimination of some or all of the lamination bolts improves the efficiency of the transformer.
BRIEF DESCRIPTION OF THE DRAWINGS Further advantages and usages of this invention will become more apparent when considered in view of the following detailed description and drawings, in which:
FIG. 1 is an elevational view of a core-form transformer constructed according to the teachings of this invention;
FIG. 2 is a cross-sectional view of the winding structure taken along the line II-II of FIG. 1 and con structed according to the teachings of an embodiment of this invention;
FIG. 3 is a cross-sectional view of a winding structure constructed according to the teachings of another embodiment of this invention;
FIG. 4 is a partial cross-sectional view of a winding structure illustrating an embodiment of this invention wherein the windings are separated by a supporting structure;
FIG. 5 is an enlarged partial cross-sectional view illustrating a supporting structure arrangement which is located between the windings and constructed according to the teachings of an embodiment of this invention; and
FIG. 6 is an enlarged partial cross-sectional view illustrating a supporting structure arrangement which is located between the windings and constructed according to the teachings of another embodiment of this invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Throughout the following description, similar reference characters refer to similar members in all figures of the drawings.
Referring now to the drawings, and FIG. 1 in particular, there is shown a laminated magnetic core of a tranformer constructed according to the teachings of this invention. The magnetic core 10 includes legs l2, l4 and 16 which have positioned thereon the winding structures 18, 20 and 22, respectively. The magnetic core 10 is constructed of layers of metallic laminations, with the width of the laminations varied to provide the pattern of a cruciform magnetic core. The winding structures 18, 20 and 22 are rigidly attached to their respective core legs by the arrangement hereinafter described in detail.
FIG. 2 is a cross-sectional view of the winding structure 22 taken along the line IIII of FIG. 1. The winding structure 22 includes an outer winding 24 and an inner winding 26. The windings are separated by the vertical spacers 28 which allow the liquid dielectric, which is not illustrated, to flow vertically between the windings 24 and 26. The vertical spacers 30 are positioned between the inner winding 26 and the winding tube 32 for a similar reason.
The winding tube 32 is supported from the magnetic core 16 by the supporting structure 34. The magnetic core 16 provides a mounting member for the winding tube 32. The inner boundary of the supporting structure 34 has a corrugated shape which provides channels through which the liquid dielectric may flow. The corrugated boundary of the supporting structure 34 is shown in more detail in the enlarged portion of FIG. 2. A boundary layer 36 defines the inner boundary of the supporting structure 34. The boundary layer 36 is constructed of a corrugated material which is faced on one side by the face member or spacer 38. The corrugated material of the boundary layer 36 comprises any suitable material, such as paper board. The face member 38 may be constructed of a similar material or it may be constructed of a material, such as polyethylene film, which will dissolve when exposed to the hot liquid dielectric of the transformer. This permits the dielectric to directly contact the magnetic core 16. The face member 38 should be thin for minimum resistance to heat transfer, while the boundary layer 36 should be reasonably stiff in order to prevent collapse of the corrugations during assembly. A paper material having a thickness of from 7 to mils would be suitable composition for the boundary layer 36 material. The corrugations may be of coarse texture, such as the industry standard A fluting which is approximately /4 inch high. A synthetic film or fibrous mat could also be used for the face member 38.
The supporting structure 34 is constructed of a suitable solid insulating material, such as rigid plastic foam. A polyurethane foam having a density of from 6 to 10 lbs. per cubic foot should be adequate for most applications, however, foams with densities between 2 and 30 lbs. per cubic foot could also be used depending on the strength required. Rigid plastic foams comprising epoxides, phenolics or silicones could also be used.
Constructing the structure illustrated in FIG. 2 may be accomplished by several different methods. One convenient method is to attach the single-faced corrugated structure, comprising the boundary layer 36 and the face member or spacer 38, to the magnetic core 16 with a suitable adhesive. The adhesive is placed between the magnetic core 16 and the face member or spacer 38 and, since the boundary layer 36 is attached to the face member 38, the boundary 36 generally follows the contour of the magnetic core 16. The winding tube 32 is positioned around the magnetic core 16 and the bottom opening therebetween is blocked off. The plastic foam, in liquid form, is then injected into the region between the magnetic core 16 and the winding tube 32. The foam flows into the corrugations of the I boundary layer 36 to provide radially extending ridges 40 which secure the supporting structure 34 to the magnetic core 16 when the foam expands and solidifies. The spaces 42, from which the foam has been restricted by the boundary layer 36, provide the cooling channels through which the liquid dielectric of the transformer may flow.
Other arrangements may be used to provide spaces in the supporting core 34 for dielectric flow. FIG. 3 illustrates an arrangement whereby hollow cylindrical tubes 44 are placed adjacent to the magnetic core 16 prior to the injection of the supporting structure 34 material into the region between the magnetic core 16 and the winding tube 32. The tubes 44 may be constructed of a suitable material, such as paper board, and left in position after the foam becomes rigid. The tubes 44 may be suitably constructed so that they can be removed after the foam becomes rigid. By using cylindrical tubes 44, spaces are created in the supporting structure 34 which permit the flow of dielectric therethrough to adequately cool the magnetic core 16. The diameter of the tubes may be varied to increase or decrease the cooling channel area, provided that a sufficient amount of the supporting structure 34 contacts the magnetic core 16 to adequately support the winding tube 32. 1
Due to the closed-cell gas-filled nature of the plastic foam material, corona may develop in the supporting structure 34 if the stress between the magnetic core 16 and the inner winding 26 is large enough. Corona discharges in the supporting structure 34 may be prevented by providing a grounded shield between the magnetic core 16 and the inner winding 26. Such a shield would be provided by the conductive coating 35 which is applied to the inner portion of the winding tube 32, with a suitable lead attached to the coating 35 and to a point at ground potential. Other shielding arrangements may be used to prevent corona discharges in the supporting structure 34.
The teachings of this invention may also be applied to the other regions of a transformer which require supporting means. In three-winding transformers, the middle winding tends to collapse under short circuit conditions. FIG. 4 illustrates an embodiment of this invention wherein a third winding 45 is positioned around the winding 24 with vertical spacers 47 therebetween. The winding 24 is supported from'the winding 26 by the supporting structure 46 instead of using vertical spacers 28 as shown in FIGS. 2 and 3. The winding tube 50 and the insulating member 52 define the outer and inner boundaries, respectively, of the supporting structure 46. The insulating member 52, which provides a mounting member for the winding tube 50, may comprise the solid insulating material which is wrapped around the outside of the winding structure 26. The cylindrical tubes 48 are positioned in the supporting structure 46 to provide spaces for the flow of the liquid dielectric. The composition of the tubes 48 may be similar to the composition of the tubes 44 shown in FIG. 2. The placement of the tubes, and the diameter thereof, is dependent upon the desired mechanical and thermal properties of the supporting structure 46. The tubes 48 shown in FIG. 4 are substantially equally spaced at the same radial distance throughout the supporting structure 46. Although not illustrated, additional channel space area may be obtained by making the outside diameter of the tube 48 substantially equal to the width of the supporting structure d6, that is, the radial distance between the insulating member 52 and the winding tube 50.
The tubes 48 may be radially staggered throughout the supporting structure 46, as shown in FIG. 5, in order to place the liquid dielectric channel spaces adjacent to the surfaces which require cooling. The arrangement shown in FIG. 5 uses the corrugated members 54 and 56 to provide the spaces in the supporting structure 46. Although FIG. 5 illustrates liquid dielectric spaces adjacent to the winding tube 50 and to the insulating member 52, it is within the teachings of this invention that liquid dielectric spaces may be provided at either the inner or outer boundary only. The boundary layers 54 and 56 may be constructed of a material similar to that used to construct the boundary layer 36 illustrated in FIG. 2. It is also within the contemplation of this invention that face members may be attached to the corrugated boundary layers 54 and 56 to aid in the application of the boundary layer to the winding tube 50 and to the insulating member 52.
There has been disclosed a new and useful arrangement for supporting a winding tube of a power transformer. The winding tube is secured in position by a supporting structure which has spaces therein to provide channels for the flow of liquid dielectric therethrough. Since numerous changes may be made in the above described apparatus and different embodiments of the invention may be made without departing from the spirit thereof, it is intended that all of the matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting.
We claim as our invention:
l. A transformer comprising a winding tube having a winding disposed thereon, a mounting member for said winding tube, a supporting structure constructed of a rigid plastic foam disposed between said winding tube and said mounting member, said supporting structure having openings therethrough for providing channels through which liquid dielectric may flow.
2. The transformer of claim 1 wherein the mounting member comprises a leg ofa magnetic core.
3. The transformer of claim 1 wherein the mounting member comprises solid insulating material wrapped around a winding structure.
4. The transformer of claim 1 wherein the rigid plastic foam is selected from the group consisting of epoxides, phenolics and silicones.
5. The transformer of claim ll wherein the rigid plastic foam from which the supporting structure is constructed comprises rigid polyurethane foam.
6. The transformer of claim 1 wherein the openings in the sup orting structure are cglindrically shaped.
7. The ransformer of claim wherein the openings in the supporting structure are defined by hollow cylindrical tubes.
8. The transformer of claim 6 wherein the cylindrically shaped openings are substantially equally spaced at the same radial distance through the supporting structure.
9. The transformer of claim 6 wherein the cylindrically shaped openings are positioned throughout the supporting structure in a radially staggered pattern.
110. The transformer of claim 1 wherein the openings in the supporting structure are formed by a corrugated boundary of the supporting structure.
1!. The transformer of claim 10 wherein the corrugated boundary is defined by a boundary layer constructed of insulating material.
12. The transformer of claim 11 wherein the insulat ing material from which the boundary layer is constructed comprises paper board.
13. The transformer of claim ll wherein a spacer is positioned between said mounting member and said boundary layer.
14. The transformer of claim 13 wherein the spacer and the boundary layer are constructed of similar materials.
15. The transformer of claim 13 wherein the spacer is constructed of a material which dissolves in the liquid dielectric of the transformer.
16. The transformer of claim 13 wherein said spacer is constructed of polyethylene film.
17. The transformer of claim 13 wherein said spacer is constructed of paper.
18. The transformer of claim 13 wherein said spacer is constructed of fibrous mat.

Claims (18)

1. A transformer comprising a winding tube having a winding disposed thereon, a mounting member for said winding tube, a supporting structure constructed of a rigid plastic foam disposed between said winding tube and said mounting member, said supporting structure having openings therethrough for providing channels through which liquid dielectric may flow.
1. A transformer comprising a winding tube having a winding disposed thereon, a mounting member for said winding tube, a supporting structure constructed of a rigid plastic foam disposed between said winding tube and said mounting member, said supporting structure having openings therethrough for providing channels through which liquid dielectric may flow.
2. The transformer of claim 1 wherein the mounting member comprises a leg of a magnetic core.
3. The transformer of claim 1 wherein the mounting member comprises solid insulating material wrapped around a winding structure.
4. The transformer of claim 1 wherein the rigid plastic foam is selected from the group consisting of epoxides, phenolics and silicones.
5. The transformer of claim 1 wherein the rigid plastic foam from which the supporting structure is constructed comprises rigid polyurethane foam.
6. The transformer of claim 1 wherein the openings in the supporting structure are cylindrically shaped.
7. The transformer of claim 6 wherein the openings in the supporting structure are defined by hollow cylindrical tubes.
8. The transformer of claim 6 wherein the cylindrically shaped openings are substantially equally spaced at the same radial distance through the supporting structure.
9. The transformer of claim 6 wherein the cylindrically shaped openings are positioned throughout the supporting structure in a radially staggered pattern.
10. The transformer of claim 1 wherein the openings in the supporting structure are formed by a corrugated boundary of the supporting structure.
11. The transformer of claim 10 wherein the corrugated boundary is defined by a boundary layer constructed of insulating material.
12. The transformer of claim 11 wherein the insulating material from which the boundary layer is constructed comprises paper board.
13. The transformer of claim 11 wherein a spacer is positioned between said mounting member and said boundary layer.
14. The transformer of claim 13 wherein the spacer and the boundary layer are constructed of similar materials.
15. The transformer of claim 13 wherein the spacer is constructed of a material which dissolves in the liquid dielectric of the transformer.
16. The transformer of claim 13 wherein said spacer is constructed of polyethylene film.
17. The transformer of claim 13 wherein said spacer is constructed of paper.
US00170005A 1971-08-09 1971-08-09 Electrical inductive apparatus Expired - Lifetime US3720897A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17000571A 1971-08-09 1971-08-09

Publications (1)

Publication Number Publication Date
US3720897A true US3720897A (en) 1973-03-13

Family

ID=22618133

Family Applications (1)

Application Number Title Priority Date Filing Date
US00170005A Expired - Lifetime US3720897A (en) 1971-08-09 1971-08-09 Electrical inductive apparatus

Country Status (3)

Country Link
US (1) US3720897A (en)
CA (1) CA949662A (en)
YU (1) YU197272A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783426A (en) * 1973-01-09 1974-01-01 Westinghouse Electric Corp Electrical inductive apparatus having rigid foam supporting members and methods of providing same
US3810058A (en) * 1973-03-28 1974-05-07 Westinghouse Electric Corp Expandable coil bracing tubes for electrical inductive apparatus
US4035751A (en) * 1975-05-27 1977-07-12 Ainslie Walthew Device for inducing an electrical voltage
US4219791A (en) * 1978-11-24 1980-08-26 Westinghouse Electric Corp. Electrical inductive apparatus
US4663604A (en) * 1986-01-14 1987-05-05 General Electric Company Coil assembly and support system for a transformer and a transformer employing same
WO2000033331A1 (en) * 1998-11-30 2000-06-08 Buswell Harrie R Wire core inductive devices
US6239681B1 (en) * 1998-11-30 2001-05-29 Harrie R. Buswell Wire core for induction coils
WO2002059915A2 (en) * 2001-01-23 2002-08-01 Buswell Harrie R Wire core inductive devices having a biassing magnet and methods of making the same
WO2002059918A1 (en) * 2001-01-23 2002-08-01 Buswell Harrie R Wire core inductive devices having a flux coupling structure and methods of making the same
WO2002059916A1 (en) * 2001-01-23 2002-08-01 Buswell Harrie R Inductive devices having a wire core with wires of different shapes and methods of making the same
US6522231B2 (en) 1998-11-30 2003-02-18 Harrie R. Buswell Power conversion systems utilizing wire core inductive devices
US20040022294A1 (en) * 2000-08-09 2004-02-05 Kenji Yamamori Wire-wound apparatus and high-voltage pulse generating circuit using wire-wound apparatus
US20110001601A1 (en) * 2009-07-03 2011-01-06 Magic Technology Co., Ltd. Inductive element having a gap and a fabrication method thereof
WO2019232762A1 (en) 2018-06-07 2019-12-12 Siemens Aktiengesellschaft Core sealing assemblies, core-coil assemblies, and sealing methods
US11062835B2 (en) * 2014-10-07 2021-07-13 Abb Power Grids Switzerland Ag Vehicle transformer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1360752A (en) * 1918-08-05 1920-11-30 Gen Electric Stationary induction apparatus
GB512761A (en) * 1936-12-09 1939-09-25 Siemens Ag Improvements in or relating to electric inductors for use at high pressure
US3138773A (en) * 1959-12-01 1964-06-23 Gen Electric Electrical coils with permeable resin bonding permitting penetration of dielectric liquid therethrough
US3151304A (en) * 1963-08-26 1964-09-29 Westinghouse Electric Corp Transformer structures
GB1074801A (en) * 1963-03-28 1967-07-05 Ass Elect Ind Improvements relating to electric transformers
US3331910A (en) * 1965-10-04 1967-07-18 Westinghouse Electric Corp Condenser bushing having longitudinally extending ducts therethrough for the flow of oil to remove heat resulting from dielectric losses
US3431524A (en) * 1966-06-08 1969-03-04 Westinghouse Electric Corp Polyphase electrical transformer construction having vertically superposed winding structures with cooling ducts
US3568118A (en) * 1968-02-16 1971-03-02 Hitachi Ltd Transformer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1360752A (en) * 1918-08-05 1920-11-30 Gen Electric Stationary induction apparatus
GB512761A (en) * 1936-12-09 1939-09-25 Siemens Ag Improvements in or relating to electric inductors for use at high pressure
US3138773A (en) * 1959-12-01 1964-06-23 Gen Electric Electrical coils with permeable resin bonding permitting penetration of dielectric liquid therethrough
GB1074801A (en) * 1963-03-28 1967-07-05 Ass Elect Ind Improvements relating to electric transformers
US3151304A (en) * 1963-08-26 1964-09-29 Westinghouse Electric Corp Transformer structures
US3331910A (en) * 1965-10-04 1967-07-18 Westinghouse Electric Corp Condenser bushing having longitudinally extending ducts therethrough for the flow of oil to remove heat resulting from dielectric losses
US3431524A (en) * 1966-06-08 1969-03-04 Westinghouse Electric Corp Polyphase electrical transformer construction having vertically superposed winding structures with cooling ducts
US3568118A (en) * 1968-02-16 1971-03-02 Hitachi Ltd Transformer

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783426A (en) * 1973-01-09 1974-01-01 Westinghouse Electric Corp Electrical inductive apparatus having rigid foam supporting members and methods of providing same
US3810058A (en) * 1973-03-28 1974-05-07 Westinghouse Electric Corp Expandable coil bracing tubes for electrical inductive apparatus
US4035751A (en) * 1975-05-27 1977-07-12 Ainslie Walthew Device for inducing an electrical voltage
US4219791A (en) * 1978-11-24 1980-08-26 Westinghouse Electric Corp. Electrical inductive apparatus
US4663604A (en) * 1986-01-14 1987-05-05 General Electric Company Coil assembly and support system for a transformer and a transformer employing same
CN100392776C (en) * 1998-11-30 2008-06-04 哈里·R·巴斯韦尔 Wire core inductive devices
US6583698B2 (en) 1998-11-30 2003-06-24 Harrie R. Buswell Wire core inductive devices
US6268786B1 (en) * 1998-11-30 2001-07-31 Harrie R. Buswell Shielded wire core inductive devices
WO2000033331A1 (en) * 1998-11-30 2000-06-08 Buswell Harrie R Wire core inductive devices
US6239681B1 (en) * 1998-11-30 2001-05-29 Harrie R. Buswell Wire core for induction coils
US6522231B2 (en) 1998-11-30 2003-02-18 Harrie R. Buswell Power conversion systems utilizing wire core inductive devices
US7065122B2 (en) * 2000-08-09 2006-06-20 Ushio Inc. Wire-wound apparatus and high-voltage pulse generating circuit using wire-wound apparatus
US20040022294A1 (en) * 2000-08-09 2004-02-05 Kenji Yamamori Wire-wound apparatus and high-voltage pulse generating circuit using wire-wound apparatus
WO2002059915A3 (en) * 2001-01-23 2002-10-17 Harrie R Buswell Wire core inductive devices having a biassing magnet and methods of making the same
WO2002059918A1 (en) * 2001-01-23 2002-08-01 Buswell Harrie R Wire core inductive devices having a flux coupling structure and methods of making the same
US20040051617A1 (en) * 2001-01-23 2004-03-18 Buswell Harrie R. Wire core inductive devices having a biassing magnet and methods of making the same
US6885270B2 (en) 2001-01-23 2005-04-26 Harrie R. Buswell Wire core inductive devices having a biassing magnet and methods of making the same
US20050093671A1 (en) * 2001-01-23 2005-05-05 Buswell Harrie R. Inductive devices having a wire core with wires of different shapes and methods of making the same
US6891459B1 (en) 2001-01-23 2005-05-10 Harrie R. Buswell Inductive devices having a wire core with wires of different shapes and methods of making the same
US6954129B2 (en) 2001-01-23 2005-10-11 Buswell Harrie R Wire core inductive devices having a flux coupling structure and methods of making the same
WO2002059916A1 (en) * 2001-01-23 2002-08-01 Buswell Harrie R Inductive devices having a wire core with wires of different shapes and methods of making the same
WO2002059915A2 (en) * 2001-01-23 2002-08-01 Buswell Harrie R Wire core inductive devices having a biassing magnet and methods of making the same
US20110001601A1 (en) * 2009-07-03 2011-01-06 Magic Technology Co., Ltd. Inductive element having a gap and a fabrication method thereof
US8081055B2 (en) * 2009-07-03 2011-12-20 Magic Technology Co., Ltd. Inductive element having a gap and a fabrication method thereof
US11062835B2 (en) * 2014-10-07 2021-07-13 Abb Power Grids Switzerland Ag Vehicle transformer
WO2019232762A1 (en) 2018-06-07 2019-12-12 Siemens Aktiengesellschaft Core sealing assemblies, core-coil assemblies, and sealing methods
EP3791414A4 (en) * 2018-06-07 2022-04-13 Siemens Aktiengesellschaft Core sealing assemblies, core-coil assemblies, and sealing methods
US11355279B2 (en) 2018-06-07 2022-06-07 Siemens Energy Global GmbH & Co. KG Core sealing assemblies, core-coil assemblies, and sealing methods

Also Published As

Publication number Publication date
YU197272A (en) 1982-06-30
CA949662A (en) 1974-06-18

Similar Documents

Publication Publication Date Title
US3720897A (en) Electrical inductive apparatus
US3548355A (en) Foil coils with metallic back plates
US3774298A (en) Method of constructing a transformer winding assembly
US3213397A (en) Electrical winding spool for electrical apparatus
US2817066A (en) Electric transformer
KR20120095340A (en) Dry type transformer with improved cooling
US3173115A (en) High voltage potential transformer
US3708875A (en) Methods of constructing electrical inductive apparatus
US3559134A (en) Random wound encapsulated coil construction
US3299383A (en) Current transformer having fluid carry passages in high voltage conductor
US3579163A (en) Liquid-filled transformer with foamed insulation
US2783441A (en) Transformer
US3436704A (en) Electrical transformer construction
US3602814A (en) Encapsulated electric coil having barrier layer
US3810058A (en) Expandable coil bracing tubes for electrical inductive apparatus
US2993183A (en) Transformer structures
US3568118A (en) Transformer
US3440587A (en) Electrical induction apparatus construction
US2987684A (en) Electrical apparatus
US3705372A (en) Cast-type winding structure for electrical inductive apparatus
US3662460A (en) Method of making a random wound encapsulated coil
US2116404A (en) Electrical induction apparatus
US3602857A (en) Shielded winding with cooling ducts
US3626587A (en) Methods of constructing electrical transformers
US3585552A (en) Electrical apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABB POWER T&D COMPANY, INC., A DE CORP., PENNSYLV

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WESTINGHOUSE ELECTRIC CORPORATION, A CORP. OF PA.;REEL/FRAME:005368/0692

Effective date: 19891229