US3720596A - Apparatus for the hard-chrome plating of large metallic surfaces - Google Patents

Apparatus for the hard-chrome plating of large metallic surfaces Download PDF

Info

Publication number
US3720596A
US3720596A US00062783A US3720596DA US3720596A US 3720596 A US3720596 A US 3720596A US 00062783 A US00062783 A US 00062783A US 3720596D A US3720596D A US 3720596DA US 3720596 A US3720596 A US 3720596A
Authority
US
United States
Prior art keywords
anode
tank
shields
plating
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00062783A
Inventor
A Draghicescu
A Radoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INST CERCETARI TECHNOLOGICE PE
INST DE CERCETARI TECHNOLOGICE PENTRU CONSTRUCTII DE MASINI RU
Original Assignee
INST CERCETARI TECHNOLOGICE PE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST CERCETARI TECHNOLOGICE PE filed Critical INST CERCETARI TECHNOLOGICE PE
Application granted granted Critical
Publication of US3720596A publication Critical patent/US3720596A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/008Current shielding devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S204/00Chemistry: electrical and wave energy
    • Y10S204/07Current distribution within the bath

Definitions

  • ABSTRACT An apparatus for the hard-chromium plating elongated bodies of large surface area wherein the body is advanced in stages through the chromium plating bath relative to the anode, and chromium plating is carried out during the transverse in which the substrate is stationary.
  • a pair of equipotential screens is provided in axially spaced relationship at each end of the plating zone, at least one of the screens being positioned upon the previously coated portion of the substrate at a location in which the prior plating has reached its maximum thickness.
  • Our present invention relates to an apparatus for the hard-chromium plating of-large-surface elongated bodies or substrates and especially elongated shafts, rods, bars and the like which may be used in mechanical-engineering systems, in petroleum engineering and in naval engineering, including (but not exclusively) pistons and other rams, elevator-support tubes and shafts, turbine shafts, the power shafts for the screws of ships and like elongated metallic bodies which may have a length of the order of tens of meters.
  • the hard-chromium plating of a body requires a certain electrical current density to obtain the desired degree and quality of the coating and, as the surface area of the body to be plated increases, a corresponding increase in the current-supply capacity of the power source is necessary.
  • Electroplating processes using high-intensity (highamplitude) electroplating currents, large quantities of electrolyte and large tanks and other installations have heretofore created control and supervisory difficulties, thereby preventing the obtention of uniform hardchromium plating over the entire surface of a large body, and rendering the plating of large bodies nonreproducible.
  • the hard-chromium plating of elongated bodies of the character described has heretofore been troublesome and difficult.
  • Another object of our invention is the provision of an improved apparatus for the hard-chromium plating of large bodies for the purposes and of the character described.
  • Another object of this invention is to provide an apparatus for the hard-chromium plating of elongated bodies, e.g. of a length of the order of tens of meters, which makes use of current sources of unexpectedly low amplitude capacity, uses relatively small amounts of electrolyte, is readily controlled and supervised, and gives rise to uniform reproducible coatings over the entire length of the body.
  • At least one such screen is provided (at the junction between a prior plating increment and the zone to be subsequently plated) on the prior plating in a region in which the latter is of its maximum thickness.
  • the equipotential screens according to this invention, have a conductive peripheral outline at the same potential as the cathode or workpiece and geometrically similar to the periphery thereof, so that when the plated body is of circular section, the screens are likewise of circular outline.
  • the apparatus for hard-chromium plating elongated metallic bodies of tens of meters in length may include a tank for the chromium plating bath which has a length corresponding to a small fraction of the length of the workpiece and is provided with a seal at its opposite ends so that the workpiece may be advanced in stages through this tank.
  • the anode is a sleeve surrounding the workpiece over the .major part of the length increment within the tank with all around uniform clearance and has a configuration geometrically similar to the cross section of the workpiece and the equipotential screens mentioned earlier.
  • the latter are provided with means enabling them to be shifted along the workpiece to be detached or replaced thereon axially outwardly of the anode, the internal diameter of the latter preferably being greater than the diameter of the metallic screens or shields.
  • the apparatus may also be provided with polarityreversing means whereby the workpiece may be connected to the positive terminal of the source while the counterelectrode is connected to the negative terminal for a brief anodization of the workpiece prior to hardchromium plating, the anodization serving to increase the strength of the bond between the chromium coating and the substrate.
  • FIG. 1 is an elevational view, partly in longitudinal cross section in a vertical plane through a chromium plating tank according to this invention
  • FIG. 2 is a longitudinal partial section in a vertical plane through an equipotential screen according to this invention.
  • FIG. 2A is a section along line "A IIA of FIG. 2;
  • FIG. 3 is an elevational diagram showing the positions of the anode and screen during the initial plating operation.
  • FIG. 4 is a diagram similar to FIG. 3 showing the positions of the screens during the subsequent plating operation.
  • the system as illustrated in FIG. 1 is an apparatus for the hard-chromium plating of an elongated body I of circular cross section, whose exterior is rough from a preliminary degreasing and/or descaling operation, which extends through the chromium plating tank 2 through openings 2a provided in the end walls 2b and 2c, thereof. These openings are provided with a glandtype seal as represented at 3 to prevent escape of the chromium plating electrolyte 2d in which the region la of the body 1 within the bath 2d is immersed.
  • anode 4 Coaxial with the body la and extending over the major part of the length thereof within the tank 2 is an anode 4 of geometrically similar configuration (cylindrical when the body 1 is a shaft of circular cross section) composed of an antimony-lead or a lead-tin-silver alloy and perforated with holes 4a.
  • the anode 4 is spaced by 100 to 150 mm from the workpiece.
  • the surface of the anode relative to the cathodic workpiece is in a ratio therewith ranging between 221 and 1:1.
  • a pair of shields 5a and 5b which are best shown in FIG. 2 and may be spaced from the anode 4 by a distance of 40 to 60 mm.
  • the holes or apertures 4a in the anode 4 are provided in longitudinally extending arrays with successive arrays about the periphery of the anode being staggered by approximately half the distance between the holes of each array.
  • each shield 5a (or 5b as seen in FIG. 3) comprises a pair of semicircular ring members 6 held together by screws 6a through lugs provided on the ring halves (FIG. 2A) and composed of electrically insulating material.
  • a metalic band 8 has a cylindrical sleeve 8a fixed to the outer periphery of the ring halves 6 by screws 7 and axially overhangs the ring at 8b while being provided with an inwardly turned flange 8c, the inner periphery 8d of which spacedly surrounds the workpiece 1 when the ring is placed thereon.
  • a reversible power supply is provided for the hard-chromium plating apparatus.
  • This power supply comprises the usual line source 10 of alternating current which energizes a rectifier arrangement 12 via a current-controlling component 11 such as an autotransformer.
  • a reversing switch 13 of the double-poled/double-throw type is ganged with a single-pole/single-throw switch 14 so that, when the switch is in the position illustrated, the positive terminal 12a of the rectifier can be connected to the workpiece I while the negative terminal 12b is connected to the anode 4. In this position switch 14 is opened and the shields 5a and 5b are de-energized.
  • SPECIFIC EXAMPLE Using the apparatus of FIGS. 1 4 a shaft of circular cross section with a length of 30 m was introduced into the chromium-plating tank 2.
  • the anode 4 was provided with holes 40 with diameter of 5 to ID mm and an interhole spacing of about 10 to 20 mm. The rows of holes were circumferentially spaced by about 10 to 30 mm.
  • the surface area of the anode 4 confronting the workpiece had a ratio to the workpiece area of about 1.5:1 and the anode is spaced by 125 mm from the workpiece.
  • the shields 5a and 5b were mounted at a distance of about 40 to 60 mm from the anode 4 and positioned as described below.
  • the electroplating is carried out at 40 to 60 A/dm (FIG. 3) to form a coating C of the desired thickness.
  • This coating has a stretch C of uniform thickness terminating in a tapering portion C, of diminishing thickness terminating in a plane P which is the plane of the flange 8c of the shield 5b.
  • the axial length of the tapering portion C is also represented by the distance d.
  • the junction of the tapered portion and the uniform-thickness portion is represented at C,.
  • the workpiece 1 is advanced through the tank by a distance equal approximately to the axial length of the anode 4 and the distance d with the portion of the workpiece emerging from the tank being suggested to washing, e.g. via a spray nozzle 15 and drying as represented by the heating coil 16.
  • shield 5b is mounted so that its flange 8a lies in the plane P of the junction between the tapered portion C and then conducts uniform thickness portion C, while a section shield or screen 5a is placed downstream at the other end of the plating zone at a distance d of 40 to 60 mm from the anode 4 and in the case of the present Example, at about 50 mm from the end of this anode. Again plating is carried out under the indicated conditions, whereupon the shields are shifted to the next increment, etc.
  • a tapered plating is formed over the previous tapered portion so that the junction between the two increments has the same thickness as the plating between these junctions.
  • a brief anodization is preferably can ried out under the conditions indicated above to insure adhesion of the plating.
  • An apparatus for the hard-chromium plating of large elongated metallic bodies comprising:
  • a tank having a pair of longitudinally spaced end walls provided with axially aligned openings adapted to receive an elongated generally cylindrical body forming a metallic surface to be plated and of a length in excess of that of said tank;
  • sealing means at each of said openings hugging said body while enabling same to be advanced in increments through said tank;
  • anode received in said tank and surrounding said body, said anode having a configuration geometrically similar to the cross section of said body and a pair of conductive shields mounted on said body and spaced from said anode on either side thereof, said shields each comprising a nonconductive ring hugging said body and an annular metal band mounted on said ring;
  • circuit means for cathodically energizing said body and anodically energizing said anode to effect electroplating of the portion of the body surrounded by said anode between said shields.
  • said anode is a perforated sleeve surrounding said body over a distance ranging from to I50 mm and is provided with staggered longitudinal arrays of apertures having diameters ranging from 5 to 10 mm such that the surface area of the anode confronting said body has a ratio to the surface area of the body juxtaposed therewith ranging from 2:1 to 1:], said shields being positioned at distances of 40 to 60 mm from said anode, said circuit means including polarity-reversing means for anodizing the surface of said body against said anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

An apparatus for the hard-chromium plating elongated bodies of large surface area wherein the body is advanced in stages through the chromium plating bath relative to the anode, and chromium plating is carried out during the transverse in which the substrate is stationary. A pair of equipotential screens is provided in axially spaced relationship at each end of the plating zone, at least one of the screens being positioned upon the previously coated portion of the substrate at a location in which the prior plating has reached its maximum thickness.

Description

United States Patent 1191 Draghicescu et al.
[ 1Mal'ch 13, 1973 [75] Inventors: Antoaneta M. Draghicescu; Aurel C.
Radoi, both of Bucharest, Romania [73] Assignee: Institutul De Cercetari Technologice Pentru Constructii De Masini [22] Filed: June 15, 1970 [2]] Appl. No.: 62,783
Related US. Application Data [62] Division of Ser. No. 813,828, April 7, 1968, Pat. No.
52 us c1 .204/211, 204/206, 204/010. 7 51 1m. (:1. "801k 3/04 581 Field or Search ..204/27, 32 R, 206, 207, 211, 204/010. 7,25
[56] References Cited UNITED STATES PATENTS 3,346,466 10/1967 Golden 6161. .204/207 1,910,150 5/1933- COWpGFCOlCS ....204/DlG. 7 3,582,479 6/1971 Urban et al ..204/211 Csanyi ..204/206 Helmke ..204/32 R OTHER PUBLICATIONS F. A. Lowenheim, Ed. Modern Electroplating J. Wiley & Sons, Inc. New York (1963). 2nd Ed. pp. 551-552 and 554-555.
Primary Examiner-John H. Mack Assistant Examiner-W. I. Solomon Attorney-Karl F. Ross [57] ABSTRACT An apparatus for the hard-chromium plating elongated bodies of large surface area wherein the body is advanced in stages through the chromium plating bath relative to the anode, and chromium plating is carried out during the transverse in which the substrate is stationary. A pair of equipotential screens is provided in axially spaced relationship at each end of the plating zone, at least one of the screens being positioned upon the previously coated portion of the substrate at a location in which the prior plating has reached its maximum thickness.
3 Claims, 5 Drawing Figures Hard-Chrome Plafing Bath PATENTEUIHARI 3191s 'SHEEI 20F 4 Anfoanefa M. Draghicescu Aurel C. Redo! Invenfors.
Attorney PATENTEBHARI 3131s 3 ,5
SHEET 3 BF 4 Fig 3.
Anfoanefa M. Draghicescu Aurel C. Rec/oi In venfors.
By marl RM Attorney PATENTEnM/m 1 3191s SHEET nor 4 Um v o Anfoanefa M. Draghice'scu Aurel C. Radoi APPARATUS FOR THE HARD-CHROME PLATING F LARGE METALLIC SURFACES CROSS-REFERENCE TO RELATED APPLICATION This application is related to application Ser. No. 813,828, now US. Pat. No. 3,616,287.
FIELD OF THE INVENTION Our present invention relates to an apparatus for the hard-chromium plating of-large-surface elongated bodies or substrates and especially elongated shafts, rods, bars and the like which may be used in mechanical-engineering systems, in petroleum engineering and in naval engineering, including (but not exclusively) pistons and other rams, elevator-support tubes and shafts, turbine shafts, the power shafts for the screws of ships and like elongated metallic bodies which may have a length of the order of tens of meters.
BACKGROUND OF THE INVENTION Various methods have been provided heretofore for the hard-chromium plating of large-surface bodies, such methods generally requiring plating tanks and installations of correspondingly large dimensions and high-intensity amplitude) electroplating-current sources.
The hard-chromium plating of a body requires a certain electrical current density to obtain the desired degree and quality of the coating and, as the surface area of the body to be plated increases, a corresponding increase in the current-supply capacity of the power source is necessary.
Electroplating processes using high-intensity (highamplitude) electroplating currents, large quantities of electrolyte and large tanks and other installations have heretofore created control and supervisory difficulties, thereby preventing the obtention of uniform hardchromium plating over the entire surface of a large body, and rendering the plating of large bodies nonreproducible. In fact, the hard-chromium plating of elongated bodies of the character described has heretofore been troublesome and difficult.
OBJECTS OF THE INVENTION It is the principal object of the present invention to provide an improved apparatus coating large-surface bodies by hard-chromium electroplating.
Another object of our invention is the provision of an improved apparatus for the hard-chromium plating of large bodies for the purposes and of the character described.
Another object of this invention is to provide an apparatus for the hard-chromium plating of elongated bodies, e.g. of a length of the order of tens of meters, which makes use of current sources of unexpectedly low amplitude capacity, uses relatively small amounts of electrolyte, is readily controlled and supervised, and gives rise to uniform reproducible coatings over the entire length of the body.
SUMMARY OF THE INVENTION These objects and others which will become apparent hereinafter are attained, in accordance with the present invention, by a system of hard-chromium plating elongated bodies whereby the body is advanced in stages through an electroplating bath relative to the counterelectrode or anode which is juxtaposed with only a portion or increment of the length of the body to be plated. Flanking this anode and maintained at the potential of the cathode or substrate, there is provided a pair of equipotential screens which surround the body and define the plating zone for each increment or plating stage.
After an initial plating of the substrate or workpiece, at least one such screen is provided (at the junction between a prior plating increment and the zone to be subsequently plated) on the prior plating in a region in which the latter is of its maximum thickness. The equipotential screens, according to this invention, have a conductive peripheral outline at the same potential as the cathode or workpiece and geometrically similar to the periphery thereof, so that when the plated body is of circular section, the screens are likewise of circular outline.
We have found that a pair of conductive shields, spaced outwardly from the cathodic workpiece or substrate by a holder or nonconductive material, cause the plating in the immediate regions of these screens and within the plating zone to taper off in a remarkably uniform manner. Thus, when an equipotential screen or shield is provided at the end of a preceding plating zone, the coating in this region tapers from its maximum thickness to zero at the equipotential screen, the coating terminating in a plane of the edge of the conductive screen perpendicular to the major dimension or direction of elongation of the workpiece body.
Thus, by using two such screens, one of which is positioned so that its plane of plating termination lies precisely at the end of the preceding taper at the thickest coating in the prior plating zone, it is possible to overlap the taper coating to obtain a hard-chromium plating of constant thickness over the length of the substrate, in spite of the fact that the latter is electroplated in increments or stages.
According to another aspect of this invention, the apparatus for hard-chromium plating elongated metallic bodies of tens of meters in length may include a tank for the chromium plating bath which has a length corresponding to a small fraction of the length of the workpiece and is provided with a seal at its opposite ends so that the workpiece may be advanced in stages through this tank.
The anode, according to this invention, is a sleeve surrounding the workpiece over the .major part of the length increment within the tank with all around uniform clearance and has a configuration geometrically similar to the cross section of the workpiece and the equipotential screens mentioned earlier. The latter are provided with means enabling them to be shifted along the workpiece to be detached or replaced thereon axially outwardly of the anode, the internal diameter of the latter preferably being greater than the diameter of the metallic screens or shields.
The apparatus may also be provided with polarityreversing means whereby the workpiece may be connected to the positive terminal of the source while the counterelectrode is connected to the negative terminal for a brief anodization of the workpiece prior to hardchromium plating, the anodization serving to increase the strength of the bond between the chromium coating and the substrate.
DESCRIPTION OF THE DRAWING The above and other objects, features and advantages of the present invention will become more readily apparent from the following description, reference being made to the accompanying drawing in which:
FIG. 1 is an elevational view, partly in longitudinal cross section in a vertical plane through a chromium plating tank according to this invention;
FIG. 2 is a longitudinal partial section in a vertical plane through an equipotential screen according to this invention;
FIG. 2A is a section along line "A IIA of FIG. 2;
FIG. 3 is an elevational diagram showing the positions of the anode and screen during the initial plating operation; and
FIG. 4 is a diagram similar to FIG. 3 showing the positions of the screens during the subsequent plating operation.
SPECIFIC DESCRIPTION The system as illustrated in FIG. 1 is an apparatus for the hard-chromium plating of an elongated body I of circular cross section, whose exterior is rough from a preliminary degreasing and/or descaling operation, which extends through the chromium plating tank 2 through openings 2a provided in the end walls 2b and 2c, thereof. These openings are provided with a glandtype seal as represented at 3 to prevent escape of the chromium plating electrolyte 2d in which the region la of the body 1 within the bath 2d is immersed.
Coaxial with the body la and extending over the major part of the length thereof within the tank 2 is an anode 4 of geometrically similar configuration (cylindrical when the body 1 is a shaft of circular cross section) composed of an antimony-lead or a lead-tin-silver alloy and perforated with holes 4a. The anode 4 is spaced by 100 to 150 mm from the workpiece. The surface of the anode relative to the cathodic workpiece is in a ratio therewith ranging between 221 and 1:1.
Outwardly of the anode 4 is provided a pair of shields 5a and 5b which are best shown in FIG. 2 and may be spaced from the anode 4 by a distance of 40 to 60 mm.
The holes or apertures 4a in the anode 4 are provided in longitudinally extending arrays with successive arrays about the periphery of the anode being staggered by approximately half the distance between the holes of each array.
As can be seen from FIGS. 2 and 2A, each shield 5a (or 5b as seen in FIG. 3) comprises a pair of semicircular ring members 6 held together by screws 6a through lugs provided on the ring halves (FIG. 2A) and composed of electrically insulating material. A metalic band 8 has a cylindrical sleeve 8a fixed to the outer periphery of the ring halves 6 by screws 7 and axially overhangs the ring at 8b while being provided with an inwardly turned flange 8c, the inner periphery 8d of which spacedly surrounds the workpiece 1 when the ring is placed thereon.
As shown in FIG. 1, a reversible power supply is provided for the hard-chromium plating apparatus. This power supply comprises the usual line source 10 of alternating current which energizes a rectifier arrangement 12 via a current-controlling component 11 such as an autotransformer. A reversing switch 13 of the double-poled/double-throw type is ganged with a single-pole/single-throw switch 14 so that, when the switch is in the position illustrated, the positive terminal 12a of the rectifier can be connected to the workpiece I while the negative terminal 12b is connected to the anode 4. In this position switch 14 is opened and the shields 5a and 5b are de-energized.
When the switch arrangement 13, 14 is reversed, the positive terminal 12a is connected to the anode 4 and the negative terminal 12b to the workpiece 1 while switch 14 closes to apply the cathode potential to the shields 5a and 5b.
SPECIFIC EXAMPLE Using the apparatus of FIGS. 1 4 a shaft of circular cross section with a length of 30 m was introduced into the chromium-plating tank 2. The anode 4 was provided with holes 40 with diameter of 5 to ID mm and an interhole spacing of about 10 to 20 mm. The rows of holes were circumferentially spaced by about 10 to 30 mm. The surface area of the anode 4 confronting the workpiece had a ratio to the workpiece area of about 1.5:1 and the anode is spaced by 125 mm from the workpiece. The shields 5a and 5b were mounted at a distance of about 40 to 60 mm from the anode 4 and positioned as described below.
For the initial chromium-plating operating only a single shield 5b, positioned at a distance d about 50 mm from the anode 4 was used as shown in FIG. 3. A conventional hard-chromium plating electrolyte containing 200 to 250 g/l chromium trioxide (CrO )and 2 to 2.5 g/l sulfate ion and constituted as described in the Encyclopedia of Electrochemistry, pages 201 ff., Reinhold Publishing Corp., N.Y., 1964 was used at a temperature of the plating bath of 55C. An initial anodization (with the workpiece 1 connected to the positive terminal 12a) for a period of seconds with increasing current density (12 to 40 A/dm=)is carried out to prepare the workpiece for plating. The electroplating is carried out at 40 to 60 A/dm (FIG. 3) to form a coating C of the desired thickness. This coating has a stretch C of uniform thickness terminating in a tapering portion C, of diminishing thickness terminating in a plane P which is the plane of the flange 8c of the shield 5b. The axial length of the tapering portion C, is also represented by the distance d. The junction of the tapered portion and the uniform-thickness portion is represented at C,.
For thenext stage or increment, the workpiece 1 is advanced through the tank by a distance equal approximately to the axial length of the anode 4 and the distance d with the portion of the workpiece emerging from the tank being suggested to washing, e.g. via a spray nozzle 15 and drying as represented by the heating coil 16.
As shown in FIG. 4, shield 5b is mounted so that its flange 8a lies in the plane P of the junction between the tapered portion C and then conducts uniform thickness portion C, while a section shield or screen 5a is placed downstream at the other end of the plating zone at a distance d of 40 to 60 mm from the anode 4 and in the case of the present Example, at about 50 mm from the end of this anode. Again plating is carried out under the indicated conditions, whereupon the shields are shifted to the next increment, etc.
As shown in broken line in FIG. 4, a tapered plating is formed over the previous tapered portion so that the junction between the two increments has the same thickness as the plating between these junctions. In each increment, a brief anodization is preferably can ried out under the conditions indicated above to insure adhesion of the plating.
The improvement described and illustrated is believed to admit of many modifications within the ability of persons skilled in the art, all such modifications being considered within the spirit and scope of the invention except as limited by the appended claims.
We claim:
1. An apparatus for the hard-chromium plating of large elongated metallic bodies, comprising:
a tank having a pair of longitudinally spaced end walls provided with axially aligned openings adapted to receive an elongated generally cylindrical body forming a metallic surface to be plated and of a length in excess of that of said tank;
sealing means at each of said openings hugging said body while enabling same to be advanced in increments through said tank;
a generally cylindrical anode received in said tank and surrounding said body, said anode having a configuration geometrically similar to the cross section of said body and a pair of conductive shields mounted on said body and spaced from said anode on either side thereof, said shields each comprising a nonconductive ring hugging said body and an annular metal band mounted on said ring; and
circuit means for cathodically energizing said body and anodically energizing said anode to effect electroplating of the portion of the body surrounded by said anode between said shields.
2. The apparatus defined in claim 1 wherein said anode is a perforated sleeve surrounding said body over a distance ranging from to I50 mm and is provided with staggered longitudinal arrays of apertures having diameters ranging from 5 to 10 mm such that the surface area of the anode confronting said body has a ratio to the surface area of the body juxtaposed therewith ranging from 2:1 to 1:], said shields being positioned at distances of 40 to 60 mm from said anode, said circuit means including polarity-reversing means for anodizing the surface of said body against said anode.
3. The apparatus defined in claim 2 wherein said band has a cylindrical peripheral portion attached to said ring and overhanging the latter axially, and an inwardly extending flange on said sleeve lying in a plane perpendicular to the major dimension of said body.

Claims (3)

1. An apparatus for the hard-chromium plating of large elongated metallic bodies, comprising: a tank having a pair of longitudinally spaced end walls provided with axially aligned openings adapted to receive an elongated generally cylindrical body forming a metallic surface to be plated and of a length in excess of that of said tank; sealing means at each of said openings hugging said body while enabling same to be advanced in increments through said tank; a generally cylindrical anode received in said tank and surrounding said body, said anode having a configuration geometrically similar to the cross-section of said body and a pair of conductive shields mounted on said body and spaced from said anode on either Side thereof, said shields each comprising a nonconductive ring hugging said body and an annular metal band mounted on said ring; and circuit means for cathodically energizing said body and anodically energizing said anode to effect electroplating of the portion of the body surrounded by said anode between said shields.
1. An apparatus for the hard-chromium plating of large elongated metallic bodies, comprising: a tank having a pair of longitudinally spaced end walls provided with axially aligned openings adapted to receive an elongated generally cylindrical body forming a metallic surface to be plated and of a length in excess of that of said tank; sealing means at each of said openings hugging said body while enabling same to be advanced in increments through said tank; a generally cylindrical anode received in said tank and surrounding said body, said anode having a configuration geometrically similar to the cross-section of said body and a pair of conductive shields mounted on said body and spaced from said anode on either Side thereof, said shields each comprising a nonconductive ring hugging said body and an annular metal band mounted on said ring; and circuit means for cathodically energizing said body and anodically energizing said anode to effect electroplating of the portion of the body surrounded by said anode between said shields.
2. The apparatus defined in claim 1 wherein said anode is a perforated sleeve surrounding said body over a distance ranging from 100 to 150 mm and is provided with staggered longitudinal arrays of apertures having diameters ranging from 5 to 10 mm such that the surface area of the anode confronting said body has a ratio to the surface area of the body juxtaposed therewith ranging from 2:1 to 1:1, said shields being positioned at distances of 40 to 60 mm from said anode, said circuit means including polarity-reversing means for anodizing the surface of said body against said anode.
US00062783A 1968-04-07 1970-06-15 Apparatus for the hard-chrome plating of large metallic surfaces Expired - Lifetime US3720596A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US81382868A 1968-04-07 1968-04-07
CH251569A CH498941A (en) 1968-04-07 1969-02-19 Process for hard chrome plating of metal surfaces
DE19691908566 DE1908566B2 (en) 1968-04-07 1969-02-20 PROCESS FOR DEPOSITING ADHESIVE CHROME LAYERS OF UNIFORM THICKNESS ON LARGE METALLIC SURFACES
FR6905054A FR2033533A5 (en) 1968-04-07 1969-02-27
US81382869A 1969-04-07 1969-04-07
US6278370A 1970-06-15 1970-06-15

Publications (1)

Publication Number Publication Date
US3720596A true US3720596A (en) 1973-03-13

Family

ID=27543677

Family Applications (2)

Application Number Title Priority Date Filing Date
US813828A Expired - Lifetime US3616287A (en) 1968-04-07 1969-04-07 Method for hard-chrome plating large metallic surfaces
US00062783A Expired - Lifetime US3720596A (en) 1968-04-07 1970-06-15 Apparatus for the hard-chrome plating of large metallic surfaces

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US813828A Expired - Lifetime US3616287A (en) 1968-04-07 1969-04-07 Method for hard-chrome plating large metallic surfaces

Country Status (4)

Country Link
US (2) US3616287A (en)
CH (1) CH498941A (en)
DE (1) DE1908566B2 (en)
FR (1) FR2033533A5 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002786A1 (en) * 1982-02-09 1983-08-18 Jouko Kalevi Korpi Method of electroplating
US4422918A (en) * 1980-01-25 1983-12-27 Inoue-Japax Research Incorporated Current-conducting assembly for a traveling wire-electrode
US6808751B2 (en) 2001-10-03 2004-10-26 Industrial Hard Chrome Method for improving corrosion resistance of chrome plated material
US20050123683A1 (en) * 2001-10-03 2005-06-09 C.G. Thirkeldsen Method and apparatus for improving corrosion resistance of chrome plated material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852170A (en) * 1970-11-13 1974-12-03 Bes Brevetti Elettrogalvanici Method and apparatus for carrying out continuous thick chrome plating of bar, wire and tube, both externally and internally
US4643816A (en) * 1985-05-09 1987-02-17 Burlington Industries, Inc. Plating using a non-conductive shroud and a false bottom
US5228976A (en) * 1990-07-09 1993-07-20 At&T Bell Laboratories Hydrodynamically modulated hull cell
DE4402596C2 (en) * 1994-01-28 1997-03-27 Atotech Deutschland Gmbh Electrolytic process in horizontal continuous systems and device for carrying it out
US20040168925A1 (en) * 2002-10-09 2004-09-02 Uziel Landau Electrochemical system for analyzing performance and properties of electrolytic solutions
CN110029381B (en) * 2019-04-25 2020-12-15 首钢集团有限公司 Production method of tin plate with high tin plating amount

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1910150A (en) * 1929-05-15 1933-05-23 F C Metal Processes Ltd Apparatus for electrodeposition of metals
US2326624A (en) * 1940-01-16 1943-08-10 Harry F Wanvig Electroplating apparatus
US3239439A (en) * 1962-07-09 1966-03-08 Bell Telephone Labor Inc Electrodeposition of metals
US3346466A (en) * 1964-01-21 1967-10-10 Ultra Plating Corp Process and apparatus for making chromium coated papermaking wires
US3582479A (en) * 1967-12-08 1971-06-01 Siemens Ag Method for providing on niobium or niobium-zirconium alloys metal coatings by galvanic etch-plating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1910150A (en) * 1929-05-15 1933-05-23 F C Metal Processes Ltd Apparatus for electrodeposition of metals
US2326624A (en) * 1940-01-16 1943-08-10 Harry F Wanvig Electroplating apparatus
US3239439A (en) * 1962-07-09 1966-03-08 Bell Telephone Labor Inc Electrodeposition of metals
US3346466A (en) * 1964-01-21 1967-10-10 Ultra Plating Corp Process and apparatus for making chromium coated papermaking wires
US3582479A (en) * 1967-12-08 1971-06-01 Siemens Ag Method for providing on niobium or niobium-zirconium alloys metal coatings by galvanic etch-plating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. A. Lowenheim, Ed. Modern Electroplating J. Wiley & Sons, Inc. New York (1963). 2nd Ed. pp. 551 552 and 554 555. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422918A (en) * 1980-01-25 1983-12-27 Inoue-Japax Research Incorporated Current-conducting assembly for a traveling wire-electrode
WO1983002786A1 (en) * 1982-02-09 1983-08-18 Jouko Kalevi Korpi Method of electroplating
US4501647A (en) * 1982-02-09 1985-02-26 Korpi Jouko Kalevi Method of electroplating
US6808751B2 (en) 2001-10-03 2004-10-26 Industrial Hard Chrome Method for improving corrosion resistance of chrome plated material
US20050022728A1 (en) * 2001-10-03 2005-02-03 C. G. Therkildsen Apparatus for improving corrosion resistance of chrome plated material
US20050123683A1 (en) * 2001-10-03 2005-06-09 C.G. Thirkeldsen Method and apparatus for improving corrosion resistance of chrome plated material
US7037373B2 (en) 2001-10-03 2006-05-02 Industrial Hard Chrome, Ltd. Apparatus for improving corrosion resistance of chrome plated material
US7641782B2 (en) 2001-10-03 2010-01-05 Industrial Hard Chrome, Ltd. Method and apparatus for improving corrosion resistance of chrome plated material
US20100101488A1 (en) * 2001-10-03 2010-04-29 Therkildsen Charles G Method and Apparatus for Improving Corrosion Resistance of Chrome Plated Material
US8303783B2 (en) 2001-10-03 2012-11-06 Industrial Hard Chrome, Ltd. Method and apparatus for improving corrosion resistance of chrome plated material

Also Published As

Publication number Publication date
FR2033533A5 (en) 1970-12-04
US3616287A (en) 1971-10-26
CH498941A (en) 1970-11-15
DE1908566B2 (en) 1971-06-09
DE1908566A1 (en) 1971-06-09

Similar Documents

Publication Publication Date Title
US3573175A (en) Method of stopping-off plating in electroplating baths
US3720596A (en) Apparatus for the hard-chrome plating of large metallic surfaces
US3065153A (en) Electroplating method and apparatus
DE3172036D1 (en) A process of electrolytically manufacturing perforated material and perforated material so obtained
US3470082A (en) Electroplating method and system
US3676322A (en) Apparatus and method for continuous production of electrolytically treated wires
CH597374A5 (en) Aircraft engine cylinder assembly plating method
GB1406081A (en) Method for electrolytic deposition
US4294670A (en) Precision electroplating of metal objects
CA2156644C (en) Method and apparatus for continuous galvanic or chemical application of metallic layers on a body
US2424173A (en) Electrolytic production of alloy coatings
US7306710B2 (en) Apparatus and method for electroplating a metallic film on a rocket engine combustion chamber component
US3622471A (en) Production of inorganically colored coatings on aluminum
FI73250B (en) SAETT VID ELEKTROPLAETERING.
US3671405A (en) Method of electroforming on surfaces having projections
JPS56150199A (en) Preparation of tin plated steel plate with excellent corrosion resistance of processed part
US3751354A (en) Electroplating cell including magnetic means to couple concave workpieces to a plating rack
GB1537243A (en) Production of iron foil by electrodeposition
JPS56119792A (en) Electroplating method
US3658677A (en) Electroflow method of electrocoating
US2758962A (en) Method of electroplating and apparatus therefor
RU2042742C1 (en) Ultrasonic apparatus for treating tube inner surfaces
SU1758092A1 (en) Electrochemical coating device
JPS5943896A (en) Method and device for plating on inside surface of metallic object
SU711184A1 (en) Apparatus for applying metallic coating onto autotransformer contact tracks