US3671405A - Method of electroforming on surfaces having projections - Google Patents
Method of electroforming on surfaces having projections Download PDFInfo
- Publication number
- US3671405A US3671405A US95548A US3671405DA US3671405A US 3671405 A US3671405 A US 3671405A US 95548 A US95548 A US 95548A US 3671405D A US3671405D A US 3671405DA US 3671405 A US3671405 A US 3671405A
- Authority
- US
- United States
- Prior art keywords
- projection
- projections
- projecting portion
- shield
- cylindrical member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000005323 electroforming Methods 0.000 title abstract description 5
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000004070 electrodeposition Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 abstract description 8
- 239000012811 non-conductive material Substances 0.000 abstract description 5
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 238000000151 deposition Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 241000063973 Mattia Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- KERTUBUCQCSNJU-UHFFFAOYSA-L nickel(2+);disulfamate Chemical compound [Ni+2].NS([O-])(=O)=O.NS([O-])(=O)=O KERTUBUCQCSNJU-UHFFFAOYSA-L 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S204/00—Chemistry: electrical and wave energy
- Y10S204/07—Current distribution within the bath
Definitions
- a method of uniformly electrodepositing metal on a surface having relatively high projections which method comprises providing a shield to encircle the projection along a portion of its length with said shield being spaced along said surface, electrodepositing the surface and said projection with the shield in place, and thereafter moving said shield along the length of the projection away from said surface at a rate commensurate with the electrodeposition rate.
- FIG. 1 prior art, is a perspective elevational view showing a part with a projection having a layer deposited thereon;
- FIG. 2 is a sectional view taken along the lines 2-2 of FIG. 1 showing the projection in section;
- FIG. 3 is a perspective view of a part having a projection extending upwardly therefrom;
- FIG. 4 is a view partially schematic showing the part having a shield about the projection in the presence of a bath solution enabling deposition on the part;
- FIG. 5 is a sectional view taken along the lines 5-5 of FIG. 4 and showing the shield around the projection in cross section.
- FIGS. I and 2 of the drawing there is shown a prior art arrangement in which a part having an upstanding projection II has electrodeposited thereon a layer of metal 13 such as nickel.
- a layer of metal 13 such as nickel.
- the thickness of the deposited layer is non-uniform, being much thinner at location A than at location B.
- the top of the projection II develops a mushroom type head 15 which greatly interferes with the laying down of a layer of uniform thickness adjacent the base of the projection upon top surface 16 of the part 10.
- FIGS. 3 and 4 wherein a part 21 having a projection 23 extending upwardly from surface 24 is provided.
- a cylinder shield member 25 is supported over the projection 23.
- the inside surfaces 26 of the wall of the cylindrical member is spaced concentrically from the external surfaces of the projection 23, while the bottom edge 28 of the cylindrical member is spaced from the surface 24 of member 21.
- the cylindrical member 25 which is of electrically non-conductive material includes a top wall 29 which has a small aperture 30 in line with the axis of the projection 23.
- the small aperture allows air to escape as the cylindrical member is lowered into the electro-forming bath 31 and also allows gas to escape during electrodeposition of the metal.
- the top wall of the cylinder further includes an arm 33 mounted on a screw 34 so as to move axially with sald screw.
- a plurality of electrically nonconductive upstanding plates 36, 37, 38 and 39 engage the edge surfaces of plate member 21 to provide uniformity of deposition adjacent its edges, while plate member 40 of electrically non-conductive material is applied to the bottom face 39 of the plate member 21 to prevent deposition of metal on the under surface of the plate 21.
- the electrodeposition apparatus is shown as comprising a tank 41 of electrically non-conductive material which contains the aforementioned electrolytic bath solution 31, which in the present instance may be a nickel sulfamate bath.
- Anodes 43 shown immersed in the fluid ma be of depolarized nickel and connected to a current source such as a battery 45.
- the circuit may be a variable resistor 44 for varying the current through the bath.
- the part to be plated 21, shown in FIG. 5 may be of stainless steel and is in turn connected to the negative pole of the battery.
- a method of coating a surface of an object having a main portion and a projecting portion extending therefrom comprising the steps of inserting said object in an electrodeposit bath solution, providing an electrically non-conductive cylindrical member to surround said projecting portion along its length except for an area adjacent said main portion of said object, providing said cylindrical member with a closure plate aligned with said projecting portion to restrict the current path around said projecting portion to prevent excessive build-up of electrodeposited material along the length of the projecting portion surrounded by said member, and concentrating a plating operation at said area at which said projecting portion joins said main portion of said object.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
A method of electroforming on surfaces having relatively high projections by providing a shield of electrically non-conductive material to encircle a portion of the length of the projection and thereafter periodically raising the shield at a rate corresponding to the rate of deposition on the projections.
Description
United States Patent Mattia June 20, 1972 [54] METHOD OF ELECTROFORMING ON SURFACES HAVING PROJECTIONS [72] Inventor: Michael Mattia, Upper Darby, Pa.
[ 73] Assignee: The Budd Company, Philadelphia, Pa.
[22] Filed: Dec. 7, I970 [21] Appl. No.: 95,548
[52] U.S. Cl. ..204/4, 204/23, 204/DIG. 7 [51] Int. Cl. ..C23b 7/00, C23b 5/00 [58] Field of Search ..204/D1G. 7, 9, 23, 4
[56] References Cited UNITED STATES PATENTS 2,115,616 4/l938 Brown ..204/23 2.751.340 6/1956 Schaefer ..204/23 3,023,154 2/1962 Hough et al. ..204/242 FOREIGN PATENTS OR APPLICATIONS 904,572 1 H1945 France ..204/242 OTHER PUBLICATIONS Racking Plating Fixtures for Specialised Purposes by J. C. Vaughan & I. A. Usher Metal Industry Sept. 14, 1945 pgs. I70- 172.
Primary Examiner.lohn H. Mack Assistant Examiner-T. Tufariello Attorney-Thomas I. Davenport, Edward M. Farrell, John D. Sowell, Alford L. Trueax, Jr. and William R. Nolte ABSTRACT A method of electrofomu'ng on surfaces having relatively high projections by providing a shield of electrically non-conductive material to encircle a portion of the length of the projection and thereafter periodically raising the shield at a rate corresponding to the rate of deposition on the projections.
3 Clains, 5 Drawing Figures INVENTOR.
MICHAEL MATTIA 1AM (2.14M
AGENT P'A'TENTEflJunzo m2 saw 1 or 2 PRIOR ART METHOD OF ELECTROFORMING ON SURFACES HAVING PROJECTIONS Heretofore it has been found that when depositing metal such as nickel on surfaces having relatively high projections excessive build-up of deposited metal will occur on the free end of the projections. This build-up alters the current flow in the bath material and thereby prevents the desired thickness of metal deposit in areas adjacent the base of the projections. Various techniques have been tried to obtain the desired thickness of metal on these surfaces, such as periodic reverse plating and thieving, but these techniques have been found to be unsuccessful.
Accordingly it is the principal object of this invention to provide an improved method of electrodepositing on a surface having relatively high projections which avoids one or more of the disadvantages of prior art methods.
It is still another important object of this invention to provide an improved method of uniformly electrodepositing on a surface having relatively high projections without producing low spots of insufficient thickness of deposit around the base of the projections.
In accordance with the invention a method of uniformly electrodepositing metal on a surface having relatively high projections which method comprises providing a shield to encircle the projection along a portion of its length with said shield being spaced along said surface, electrodepositing the surface and said projection with the shield in place, and thereafter moving said shield along the length of the projection away from said surface at a rate commensurate with the electrodeposition rate.
For a better understanding of the invention together with other and further objects thereof, reference is had to the following description taken in connection with the accompanying drawing.
In the drawing,
FIG. 1, prior art, is a perspective elevational view showing a part with a projection having a layer deposited thereon;
FIG. 2 is a sectional view taken along the lines 2-2 of FIG. 1 showing the projection in section;
FIG. 3 is a perspective view of a part having a projection extending upwardly therefrom;
FIG. 4 is a view partially schematic showing the part having a shield about the projection in the presence of a bath solution enabling deposition on the part;
FIG. 5 is a sectional view taken along the lines 5-5 of FIG. 4 and showing the shield around the projection in cross section.
Referring now to FIGS. I and 2 of the drawing there is shown a prior art arrangement in which a part having an upstanding projection II has electrodeposited thereon a layer of metal 13 such as nickel. As seen in FIG. 2 the thickness of the deposited layer is non-uniform, being much thinner at location A than at location B. Moreover the top of the projection II develops a mushroom type head 15 which greatly interferes with the laying down of a layer of uniform thickness adjacent the base of the projection upon top surface 16 of the part 10.
In order to avoid the non-uniform build-up of layer thickness of electrodeposited material on a part, reference is now had to FIGS. 3 and 4 wherein a part 21 having a projection 23 extending upwardly from surface 24 is provided. In accordance with the method of the present invention, a cylinder shield member 25 is supported over the projection 23. The inside surfaces 26 of the wall of the cylindrical member is spaced concentrically from the external surfaces of the projection 23, while the bottom edge 28 of the cylindrical member is spaced from the surface 24 of member 21. The cylindrical member 25 which is of electrically non-conductive material includes a top wall 29 which has a small aperture 30 in line with the axis of the projection 23. The small aperture allows air to escape as the cylindrical member is lowered into the electro-forming bath 31 and also allows gas to escape during electrodeposition of the metal. The top wall of the cylinder further includes an arm 33 mounted on a screw 34 so as to move axially with sald screw. A plurality of electrically nonconductive upstanding plates 36, 37, 38 and 39 engage the edge surfaces of plate member 21 to provide uniformity of deposition adjacent its edges, while plate member 40 of electrically non-conductive material is applied to the bottom face 39 of the plate member 21 to prevent deposition of metal on the under surface of the plate 21.
In the present instance the electrodeposition apparatus is shown as comprising a tank 41 of electrically non-conductive material which contains the aforementioned electrolytic bath solution 31, which in the present instance may be a nickel sulfamate bath. Anodes 43 shown immersed in the fluid ma be of depolarized nickel and connected to a current source such as a battery 45. The circuit may be a variable resistor 44 for varying the current through the bath. The part to be plated 21, shown in FIG. 5 may be of stainless steel and is in turn connected to the negative pole of the battery.
In operation as the electrical circuit through the bath 31 is activated, deposition of metal occurs on the top surface 24 of part 21 as well as around the external surface 47 of projection 23. However since the cylindrical shield 26 restricts the electron flow through solution interiorly of the cylinder 25, deposition occurs on the external surface 47 of the projection 23 at a low rate and maintains the surface 47 active. The presence of the shield 25 however precludes the build-up of an enlarged mushroom type head 15 as seen in FIG. I. When the thickness of the deposited layer on surfaces 24 and 47 reaches a predetermined thickness, screw 34 may be turned a desired amount to raise sleeve 25 an extent to permit further deposition on the base portion of projection 23 and on surface 24 adjacent the base of the projection. In this manner a uniform build-up of material is applied to the projection as well as on surface 24. Since the part 21 is of stainless steel, the same has a passive film hence the separation of the electrodeposited layer may be readily accomplished.
While there has been described what at present is considered to be the preferred embodiment of this invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the invention.
What is claimed is:
I. A method of coating a surface of an object having a main portion and a projecting portion extending therefrom, comprising the steps of inserting said object in an electrodeposit bath solution, providing an electrically non-conductive cylindrical member to surround said projecting portion along its length except for an area adjacent said main portion of said object, providing said cylindrical member with a closure plate aligned with said projecting portion to restrict the current path around said projecting portion to prevent excessive build-up of electrodeposited material along the length of the projecting portion surrounded by said member, and concentrating a plating operation at said area at which said projecting portion joins said main portion of said object.
2. In the method of coating a surface of an object having a projecting portion as set forth in claim I including the step of providing said closure plate with an aperture aligned with the axis of said projecting portion to enable escape of gas during electrodeposition on said projecting portion.
3. In the method of coating a surface of an object having a projecting portion as set forth in claim 2 including the step of providing arm means for supporting said cylindrical member, and the step of providing means to move said arm means and said cylindrical member along the axis of said cylindrical member.
Claims (2)
- 2. In the method of coating a surface of an object having a projecting portion as set forth in claim 1 including the step of providing said closure plate with an aperture aligned with the axis of said projecting portion to enable escape of gas during electrodeposition on said projecting portion.
- 3. In the method of coating a surface of an object having a projecting portion as set forth in claim 2 including the step of providing arm means for supporting said cylindrical member, and the step of providing means to move said arm means and said cylindrical member along the axis of said cylindrical member.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9554870A | 1970-12-07 | 1970-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3671405A true US3671405A (en) | 1972-06-20 |
Family
ID=22252517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US95548A Expired - Lifetime US3671405A (en) | 1970-12-07 | 1970-12-07 | Method of electroforming on surfaces having projections |
Country Status (1)
Country | Link |
---|---|
US (1) | US3671405A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3904503A (en) * | 1974-05-31 | 1975-09-09 | Western Electric Co | Depositing material on a substrate using a shield |
US4478769A (en) * | 1982-09-30 | 1984-10-23 | Amerace Corporation | Method for forming an embossing tool with an optically precise pattern |
US5098542A (en) * | 1990-09-11 | 1992-03-24 | Baker Hughes Incorporated | Controlled plating apparatus and method for irregularly-shaped objects |
TWI494210B (en) * | 2009-12-24 | 2015-08-01 | Hon Hai Prec Ind Co Ltd | Stamping assembly, method for manufacturing the same and stamping method for forming light guiding plate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2115616A (en) * | 1933-08-07 | 1938-04-26 | Packard Motor Car Co | Method of and apparatus for plating |
FR904572A (en) * | 1943-02-18 | 1945-11-09 | Fides Gmbh | Device for chrome plating valve flaps of internal combustion engines |
US2751340A (en) * | 1952-10-17 | 1956-06-19 | Clevite Corp | Method of plating |
US3023154A (en) * | 1958-05-20 | 1962-02-27 | Gen Motors Corp | Apparatus for electroplating |
-
1970
- 1970-12-07 US US95548A patent/US3671405A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2115616A (en) * | 1933-08-07 | 1938-04-26 | Packard Motor Car Co | Method of and apparatus for plating |
FR904572A (en) * | 1943-02-18 | 1945-11-09 | Fides Gmbh | Device for chrome plating valve flaps of internal combustion engines |
US2751340A (en) * | 1952-10-17 | 1956-06-19 | Clevite Corp | Method of plating |
US3023154A (en) * | 1958-05-20 | 1962-02-27 | Gen Motors Corp | Apparatus for electroplating |
Non-Patent Citations (1)
Title |
---|
Racking Plating Fixtures for Specialised Purposes by J. C. Vaughan & I. A. Usher Metal Industry Sept. 14, 1945 pgs. 170 172. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3904503A (en) * | 1974-05-31 | 1975-09-09 | Western Electric Co | Depositing material on a substrate using a shield |
US4478769A (en) * | 1982-09-30 | 1984-10-23 | Amerace Corporation | Method for forming an embossing tool with an optically precise pattern |
US5098542A (en) * | 1990-09-11 | 1992-03-24 | Baker Hughes Incorporated | Controlled plating apparatus and method for irregularly-shaped objects |
TWI494210B (en) * | 2009-12-24 | 2015-08-01 | Hon Hai Prec Ind Co Ltd | Stamping assembly, method for manufacturing the same and stamping method for forming light guiding plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2500206A (en) | Apparatus for plating | |
US3573175A (en) | Method of stopping-off plating in electroplating baths | |
JPS63216998A (en) | Electroplating apparatus | |
CN100378252C (en) | Partial plating method and its apparatus | |
US3470082A (en) | Electroplating method and system | |
US1872290A (en) | Corrugated or threaded anode | |
US3671405A (en) | Method of electroforming on surfaces having projections | |
US3970537A (en) | Electrolytic treating apparatus | |
US1772074A (en) | Method of producing galvanic coatings | |
US4077864A (en) | Electroforming anode shields | |
US2575712A (en) | Electroplating | |
US3616287A (en) | Method for hard-chrome plating large metallic surfaces | |
US4294670A (en) | Precision electroplating of metal objects | |
US4569744A (en) | Anodic assembly for electroplating | |
US3634047A (en) | Electroplated member and method and apparatus for electroplating | |
US3929592A (en) | Plating apparatus and method for rotary engine housings | |
US2944945A (en) | Electroplating | |
US3954569A (en) | Method of electroforming nickel on printed circuit boards | |
US4302316A (en) | Non-contacting technique for electroplating X-ray lithography | |
US3891534A (en) | Electroplating system for improving plating distribution of elnisil coatings | |
US2319624A (en) | Current distributing means for electrolytic processes | |
US1545942A (en) | Electroplating | |
US3247083A (en) | Method of chromium electrodeposition | |
KR100516484B1 (en) | Plating apparatus having a plurality of power supply and plating method using the same | |
US4236978A (en) | Stable lead dioxide anode and method for production |