US3720537A - Process of coating an alloy substrate with an alloy - Google Patents
Process of coating an alloy substrate with an alloy Download PDFInfo
- Publication number
- US3720537A US3720537A US00092932A US3720537DA US3720537A US 3720537 A US3720537 A US 3720537A US 00092932 A US00092932 A US 00092932A US 3720537D A US3720537D A US 3720537DA US 3720537 A US3720537 A US 3720537A
- Authority
- US
- United States
- Prior art keywords
- coating
- substrate
- alloy
- percent
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 80
- 239000011248 coating agent Substances 0.000 title claims abstract description 65
- 239000000758 substrate Substances 0.000 title claims abstract description 60
- 239000000956 alloy Substances 0.000 title claims abstract description 56
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000008569 process Effects 0.000 title claims abstract description 18
- 239000006185 dispersion Substances 0.000 claims abstract description 17
- 230000003647 oxidation Effects 0.000 claims abstract description 15
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 15
- 238000005486 sulfidation Methods 0.000 claims abstract description 13
- 230000035939 shock Effects 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims description 26
- 239000002270 dispersing agent Substances 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000002002 slurry Substances 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 229910000601 superalloy Inorganic materials 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000011572 manganese Substances 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- -1 cobalt-chromium-aluminum-yttrium Chemical compound 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 229910021007 Co2Al5 Inorganic materials 0.000 claims 1
- 229910000946 Y alloy Inorganic materials 0.000 claims 1
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 6
- QRRWWGNBSQSBAM-UHFFFAOYSA-N alumane;chromium Chemical compound [AlH3].[Cr] QRRWWGNBSQSBAM-UHFFFAOYSA-N 0.000 abstract description 3
- 239000000843 powder Substances 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000011651 chromium Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 238000005245 sintering Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 5
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 2
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 238000001652 electrophoretic deposition Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 229940071676 hydroxypropylcellulose Drugs 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229910000951 Aluminide Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Natural products CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- SRYYCRXKYKWXDQ-PTGKCMAJSA-N success Chemical compound O([C@H]1CCC[C@@H](OC(=O)C[C@H]2[C@@H]3C=C[C@@H]4C[C@H](C[C@H]4[C@@H]3C=C2C(=O)[C@@H]1C)O[C@H]1[C@@H]([C@H](OC)[C@@H](OC)[C@H](C)C1)OC)CC)[C@H]1CC[C@H](N(C)C)[C@@H](C)O1 SRYYCRXKYKWXDQ-PTGKCMAJSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
- B22F7/04—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- C23C 17/00 dispersion of an aluminum alloy and a chromium-alu- 1 Field 01' Search 17/130 R, 160 1 FA, 50, minum alloy and then bonding the dispersion to the 1 17/31 substrate.
- This invention relates to the treatment of metals and alloys to render them resistant to oxidation, sulfidation, and thermal shock. More specifically, the present invention concerns a process of forming a coating on metals and alloys and articles made therefrom. According to the present invention, a hard, high wear and oxidation resistant layer is formed on metals and alloys by applying a dispersion of powdered metals and metal alloys on the surface thereof. The coated surface is then heated to volatilize the suspending media, form a new alloy, and firmly dispose this alloy upon the article being coated.
- Alloys have been developed which have special characteristics and are capable of retaining their mechanical strength at high operating temperatures. These alloys are useful in making structural parts for jet engines and gas turbines which have exacting demands made upon their strength because of elevated operating temperatures.
- Typical of the alloys which may be coated according to the present invention are the so called nickel-base and cobalt-base superalloys, viz. those which generally contain -25 w/o Cr, 5-l5 w/o Mo, Ta or W and 2-8 We Al and Ti.
- Also useful, but not possessing optimum characteristics as substrates are chromium-base and columbium-base alloys together with the iron base alloys such as tool steel.
- the present invention involves a slurry technique in which a coating suspension is formed of a blend of metals and alloys.
- the suspension is coated upon an alloy substrate, then heated to volatilize the suspending media and form an alloy thereupon.
- the coated article is then cooled.
- the product of the present process is an alloy which has a melting point far in excess of the article which serves as the substrate.
- the ingredients which form the powder blend are all heated, they diffuse and react with each other and interact minimally with the substrate to form the desired coating.
- finely divided alloys of cobaltaluminum, nickel-aluminum and/or iron-aluminum are mixed with chromium-aluminum alloy.
- Yttrium may be added as an alloy of any of the four, but preferably as an alloy of the chromium aluminum. Because of the strong tendency of yttrium metal to oxidize, it is preferred to alloy it with other metals and alloys of the coating blend and then mix this alloy with the balance of the composition.
- the final blend can contain 20 to 45 weight percent iron, nickel and/or cobalt together with 5 to 40 weight percent chromium and 20 to 50 weight percent aluminum.
- Yttrium when present, should be used in quantities between about 0.02 and 2.5 weight percent.
- Silicon can be introduced, if desired, in quantities less than 5 w/o to improve the coating chemistries.
- Copper and manganese are generally added in quantities less than about percent and preferably between about 5 and 8 percent to inhibit sulfidation as mentioned above. Generally, these metals are introduced into the blend in their elemental form, however, they may be prealloyed with the other constituents, if desired.
- the metallic powders whether as alloys or elements, usually have a size of the less than 325 mesh (43 microns) although coarser particles ranging in size from about mesh (147 microns) to 325 mesh may also be used. Especially good results are achieved when the size range of the metallic particles is less than 400 mesh (38 microns) or between about 0 and 38 microns. In other words, the finer the particles the better the coatings which are produced.
- the method of applying coatings to articles which utilize metal powders or mixtures of metal powders result in coatings deriving their utility solely from interdiffusion of the major components of the substrate and the applied powder.
- Joseph U.S. Pat. No. 3,102,044
- pack cementation processes involve vapor transport of elements in the form of halides from the pack matrix to the surface of the article to be coated. Reaction of the vapors with the article produce a surface coating utilizing only the substrate components to produce the protective layer.
- An additional method of applying alloyed coatings of cobalt-nickel-aluminum or iron-chromium-aluminum or nickel-chromium-aluminum is to physically deposit the alloy using vapor deposition techniques.
- Vapor deposition of a coating is accomplished by forming a molten pool of the coating alloy in a vacuum chamber.
- the parts to be coated are pre-heated to a fairly high temperature and the deposition is then accomplished by volatilizing the molten alloy onto the part.
- vacuum deposition is a technique which does not readily lend itself to high speed production. Each time a part is to be coated, it must be placed in a bell jar or chamber and a vacuum must then be drawn.
- a distinguishing characteristic of vapor deposited coatings is that the finished coating composition is transferred onto the substrate with very little substrate interaction. Therefore, to characterize the three methods: normal coatings produced by slurry and pack cementation methods produce coatings with major interactions with the substrate, the coatings produced by this invention involve minimal interaction with the substrate, and the vacuum deposited coatings involve only minor substrate reaction. The last two methods are particularly useful when coating articles of thin cross-section, in that the load-bearing capacity of the coated article is only slightly changed as a result of the coating process.
- a suspension of the blend is made in a lacquer-like dispersant and this suspension is placed upon a cleaned substrate by spraying, brushing, dip-coating or electrophoretic deposition.
- Techniques are already known for placing the metals and/or alloys in suspension and do not form a part of the present invention.
- certain ratios of metallic powder to liquid dispersant are used. In general, a satisfactory ratio is about 25 to 70 percent by weight (w/o) metallic powder dispersant. Many dispersants may be used in the present invention.
- ком ⁇ онентs such as methyl, ethyl, propyl and butyl alcohol, esters such as methyl, ethyl, propyl, butyl and amyl acetate, and ketones, such as acetone.
- solvents such as ethylene glycol and monoethyl ether. These organic solvents are merely illustrative of those that can be used and it is to be understood that many volatile liquids will act as suitable dispersants for metallic powders. Primarily, the volatile liquid should be safe to use at room temperature, inexpensive and fluid enough to allow for spray or dip-coating on a substrate.
- a binder may be added to the liquid dispersant to hold the blend of metal powders upon the substrate.
- the powder adheres to the substrate for prolonged periods of time and thereby eliminates the necessity of baking immediately after the coating step.
- the binder should be substantially decomposable during sintering. Suitable binders include nitrocellulose, naphtalene, hydroxy propyl cellulose and certain stearates. Many other binders can also be used and the selection of one does not constitute a part of the present invention.
- a dispersion of the metallic powders (having particle sizes as described previously) is mixed in the lacquer-like dispersant. Then the dispersion or slurry is then disposed upon the surface of a conventionally cleaned article to be coated by spraying, brushing, dipcoating or electrophoretic deposition. After applying the dispersion, the solvent is evaporated, thereby leaving a layer of powder on the substrate. If a binder is added to the dispersant, upon evaporation of the solvent, the binder will remain dispersed throughout the powder and will hold it to the substrate. Evaporation of the volatile solvent may be conveniently done by storing the coated substrate in the atmosphere at room temperature. When the solvent evaporates a fine layer of metallic powder is left on the surface and in any interstices, slots, holes, or other configurations of the substrate.
- the thickness of the coating may vary somewhat from article to article. Usually a wet thickness (before firing) of 0.003 to 0.015 inch in thickness is contemplated. Such coatings lead to a thickness, after firing, of between about 0.001 and 0.005 inch. Preferably the thickness of the coating after firing is between about 0.001 and 0.006 inch. Frequently, two and even more coats are advantageous and the invention contemplates such practices.
- the first coating reacts somewhat with the skin of the substrate to form a diffusion barrier layer and the second forms the oxidation resistant coating. In this manner, very oxidation resistant coatings which ruggedly adhere to the substrate are formed. When the solvent has been evaporated, the coated substrates are heated in a furnace to permanently fix the powder thereto.
- the furnace is maintained at the sintering temperature of the powder, that is the temperature which will permanently bond the powder to the substrate by fusion.
- the sintering temperature is just above the melting point of the powder and is, of course, less than the melting point of the substrate.
- the sintering temperature of course, de-
- sintering temperatures between about 1,800 and 2,300F. are specially suitable.
- the sintering period can vary from about one-fourth to 10 hours and especially good results are achieved when the sintering is carried out for about one-fourth to 2 hours.
- Especially good results are obtained with a second coating upon the coated substrate and reheating this combination a second time under a firing schedule which is similar to the first.
- An inert or reducing atmosphere is generally preferred to sinter the coatings, however on some occasions vacuum sintering may be performed with equal suc cess.
- Nickel and iron may be substituted in whole or in part for the cobalt in the Co Al alloy so as to form an iron-aluminum or nickel-aluminum alloy or mixtures thereof.
- the blend is admixed with such dispersants, binders and wetting agents as are necessary to form a slurry having about 25 to w/o metallic powder, as is necessary for the particular coating operation which is utilized.
- the dispersion is preformed, it is disposed on a part or substrate by the selected coating operation.
- the solvents are volatilized and the coating is heated, at a temperature sufficient to sinter the coating metals but insufficient to the substrate, preferably between about 1,600" and 2,300F.
- coating compositions are particularly useful with the nickel, cobalt, iron, columbium and chromium-based alloys generally, they have been formulated to the composition having particularly good results with the nickel-base and cobalt base superalloys.
- the superalloys will be understood to be those strong, high-temperature materials which find particular utility in the very demanding environments such as gas turbine engines. Representative of these superalloys are those identified in the industry in the following Table 1.
- Nb 0.05 Zr, 0.015 B, balance Ni W152 21. Cr, 1.75 Fe, ll. W, 2(Nb +Ta), 0.45 C,
- the characteristic of the typical superalloy is its basis as a nickel-chromium or cobalt-chromium solid solution with the additions usually aluminum, titanium and/or of refractory metals for solution strengthening, and carbon, boron and zirconium to promote creeprupture ductility.
- the super-alloys exhibit relatively good oxidation resistance at the temperatures associated with the hot section of a jet engine.
- the coated article is heated to, 2',140F. for one-fourth to one-half hour, during which time sintering and diffusion takes place.
- Excess coating material is cleaned off the substrate and the article is recoated as described previously and reheated.
- a ductilization heat treatment can be made whereby the article is heated at 1,975F. for 4 to 8 hours. This treatment further diffuses the coating into the substrate and provides for homogenization of all materials in the coating. A significant improvement in thermal shock characteristics also results.
- the metals and alloys had an average particle size less than 38 a and were dispersed in ethylene glycol monoethyl ether with hydroxy propyl cellulose as a binder with a concentration of 1,220 'g/liter of metal powder. The dispersion was sprayed upon a prepared surface of nickel alloy, Bl900.'The solvent was allowed to evaporate at room temperature.
- the specimen was placed within a sealed chamber. The chamber was then purged of air by following purified argon through it until the effluent showed less than 10ppm H and Sppm O prescnt. The specimen was then heated to about 2,-l40F. for-onc-fourth hour, and allowed to cool. Excess non-reacted powder was removed by liquid honing and then a second coating of the same composition was sprayed on the specimen surface. The same thermal cycle was repeated. The total coating thickness was 0.008 inch. A control specimen of the same alloy coated with a conventional aluminide (0.0025 inch thick) according to established practice was also prepared.
- the two specimens were exposed to an isothermal oxidation-erosion environment at 2,100F. Each specimen was examined at intervals for coating failure.
- the prior art coating failed after 65 hours in test.
- the sample coating of this invention failed after 97 hours in test.
- the specific life, or life/unit thickness, for the prior art coating is 65 hours/2.5 mils or 26 hours/mil; the sample coating of this invention showed a 53.9 hours/mil (97/1 .8) specific life.
- EXAMPLE ll A blend of the following was prepared and coated with the two cycle procedure described above onto B-1900 alloy except that the sinter cycles were run for one-half hour at 2,140F., and both were followed by an 8 hour heat treatment at 1,975F:
- B1900 alloy airfoils were also coated in the same manner as described above and subjected to comparative testing in thermal shock against the prior art coating.
- Specimens'with trailing edge dimensions of 0.040 inch showed failure of the prior art coated specimen at about 3,400 cycles; with the coating of this example, failure occurred at about 2,700 cycles.
- Specimens of the prior art coating with trailing edge dimensions of 0.046 inch show failures near 1,300 cycles; those specimens having the same dimensions coated according to the example were discontinued after 5,000 cycles.
- the coating having a melting point higher than that of the substrate, which comprises:
- a blend f the f ll i was prepared and coated as volatilizing the dispersant and heating the substrate described in Example 1; to a temperature, below the melting temperature 50ppw Co Al (+1 w/o Y) of the substrate, to form the protective alloy coat- 50 CtmAiGo ing and bond it to the substrate; and
- the alloy coating comprising an 70 2 M 3 29 Se uemi overlay on the substrate and having a melting point in Standard stan ard at 37,6 5 5 6 excess of that of the substrate, the coating being 7 [H900 g ggk 133 I08 formed in situ on the substrate surface and being sub- 4 SOCYMY' 2,170? stantially independent of the substrate constituents for 8 Co, 2 Mn its protective function, which comprises the steps of:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9293270A | 1970-11-25 | 1970-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3720537A true US3720537A (en) | 1973-03-13 |
Family
ID=22235843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00092932A Expired - Lifetime US3720537A (en) | 1970-11-25 | 1970-11-25 | Process of coating an alloy substrate with an alloy |
Country Status (4)
Country | Link |
---|---|
US (1) | US3720537A (enrdf_load_stackoverflow) |
CA (1) | CA951191A (enrdf_load_stackoverflow) |
FR (1) | FR2115147B1 (enrdf_load_stackoverflow) |
GB (1) | GB1362654A (enrdf_load_stackoverflow) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3953193A (en) * | 1973-04-23 | 1976-04-27 | General Electric Company | Coating powder mixture |
US3961098A (en) * | 1973-04-23 | 1976-06-01 | General Electric Company | Coated article and method and material of coating |
US4045596A (en) * | 1975-06-12 | 1977-08-30 | Agence Nationale De Valorisation De La Recherche (Anvar) | Superficial treatment of steel |
DE2830851A1 (de) * | 1977-07-14 | 1979-01-18 | Fiat Spa | Verfahren zur bildung von metalldiffusionsschutzueberzuegen |
US4228203A (en) * | 1978-01-27 | 1980-10-14 | Toyo Kogyo Co., Ltd. | Method of forming aluminum coating layer on ferrous base alloy workpiece |
EP0024911A1 (en) * | 1979-08-29 | 1981-03-11 | Special Metals Corporation | Method of treating nickel base alloys |
EP0024912A1 (en) * | 1979-08-29 | 1981-03-11 | Special Metals Corporation | Method of heat treating nickel base alloys |
US6413582B1 (en) * | 1999-06-30 | 2002-07-02 | General Electric Company | Method for forming metallic-based coating |
US6709711B1 (en) * | 1998-06-03 | 2004-03-23 | MTU MOTOREN-UND TURBINEN-UNION MüNCHEN GMBH | Method for producing an adhesive layer for a heat insulating layer |
US20060134455A1 (en) * | 2004-12-15 | 2006-06-22 | Deloro Stellite Holdings Corporation | Imparting high-temperature degradation resistance to components for internal combustion engine systems |
US20100154938A1 (en) * | 2005-08-02 | 2010-06-24 | Honda Motor Co., Ltd | Layered fe-based alloy and process for production thereof |
EP2239346A1 (en) * | 2009-04-09 | 2010-10-13 | Siemens Aktiengesellschaft | Slurry composition for aluminising a superalloy component |
US20110244138A1 (en) * | 2010-03-30 | 2011-10-06 | Schlichting Kevin W | Metallic coating for non-line of sight areas |
CN102936713A (zh) * | 2012-11-28 | 2013-02-20 | 中国南方航空工业(集团)有限公司 | 一种铝硅料浆渗铝硅的方法 |
US8962154B2 (en) | 2011-06-17 | 2015-02-24 | Kennametal Inc. | Wear resistant inner coating for pipes and pipe fittings |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4198442A (en) * | 1977-10-31 | 1980-04-15 | Howmet Turbine Components Corporation | Method for producing elevated temperature corrosion resistant articles |
DE19807636C1 (de) * | 1998-02-23 | 1999-11-18 | Mtu Muenchen Gmbh | Verfahren zum Herstellen einer korrosions- und oxidationsbeständigen Schlickerschicht |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2621122A (en) * | 1946-10-09 | 1952-12-09 | Rolls Royce | Alloy for heat and corrosion resisting coating |
US2971865A (en) * | 1957-03-15 | 1961-02-14 | Arthur G Metchlfe | Fusible impregnation of porous metallic bodies |
US3102044A (en) * | 1960-09-12 | 1963-08-27 | United Aircraft Corp | Applying protective coating from powdered material utilizing high temperature and low pressure |
-
1970
- 1970-11-25 US US00092932A patent/US3720537A/en not_active Expired - Lifetime
-
1971
- 1971-09-21 FR FR7134729A patent/FR2115147B1/fr not_active Expired
- 1971-10-01 CA CA124,252,A patent/CA951191A/en not_active Expired
- 1971-10-04 GB GB4616671A patent/GB1362654A/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2621122A (en) * | 1946-10-09 | 1952-12-09 | Rolls Royce | Alloy for heat and corrosion resisting coating |
US2971865A (en) * | 1957-03-15 | 1961-02-14 | Arthur G Metchlfe | Fusible impregnation of porous metallic bodies |
US3102044A (en) * | 1960-09-12 | 1963-08-27 | United Aircraft Corp | Applying protective coating from powdered material utilizing high temperature and low pressure |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3953193A (en) * | 1973-04-23 | 1976-04-27 | General Electric Company | Coating powder mixture |
US3961098A (en) * | 1973-04-23 | 1976-06-01 | General Electric Company | Coated article and method and material of coating |
US4045596A (en) * | 1975-06-12 | 1977-08-30 | Agence Nationale De Valorisation De La Recherche (Anvar) | Superficial treatment of steel |
DE2830851A1 (de) * | 1977-07-14 | 1979-01-18 | Fiat Spa | Verfahren zur bildung von metalldiffusionsschutzueberzuegen |
US4241113A (en) * | 1977-07-14 | 1980-12-23 | Fiat Societa Per Azioni | Process for producing protective coatings on metals and metal alloys for use at high temperatures |
US4228203A (en) * | 1978-01-27 | 1980-10-14 | Toyo Kogyo Co., Ltd. | Method of forming aluminum coating layer on ferrous base alloy workpiece |
EP0024911A1 (en) * | 1979-08-29 | 1981-03-11 | Special Metals Corporation | Method of treating nickel base alloys |
EP0024912A1 (en) * | 1979-08-29 | 1981-03-11 | Special Metals Corporation | Method of heat treating nickel base alloys |
US6709711B1 (en) * | 1998-06-03 | 2004-03-23 | MTU MOTOREN-UND TURBINEN-UNION MüNCHEN GMBH | Method for producing an adhesive layer for a heat insulating layer |
US6413582B1 (en) * | 1999-06-30 | 2002-07-02 | General Electric Company | Method for forming metallic-based coating |
US20060134455A1 (en) * | 2004-12-15 | 2006-06-22 | Deloro Stellite Holdings Corporation | Imparting high-temperature degradation resistance to components for internal combustion engine systems |
US8383203B2 (en) * | 2004-12-15 | 2013-02-26 | Kennametal Inc. | Imparting high-temperature degradation resistance to components for internal combustion engine systems |
US8668959B2 (en) | 2004-12-15 | 2014-03-11 | Kennametal Inc. | Imparting high-temperature degradation resistance to metallic components |
US20100154938A1 (en) * | 2005-08-02 | 2010-06-24 | Honda Motor Co., Ltd | Layered fe-based alloy and process for production thereof |
EP2239346A1 (en) * | 2009-04-09 | 2010-10-13 | Siemens Aktiengesellschaft | Slurry composition for aluminising a superalloy component |
WO2010115649A2 (en) | 2009-04-09 | 2010-10-14 | Siemens Aktiengesellschaft | Superalloy component and slurry composition |
WO2010115649A3 (en) * | 2009-04-09 | 2012-02-23 | Siemens Aktiengesellschaft | Slurry composition for aluminising a superalloy component |
RU2553762C2 (ru) * | 2009-04-09 | 2015-06-20 | Сименс Акциенгезелльшафт | Компонент из жаропрочного сплава и суспензионная композиция для компонента из жаропрочного сплава |
US9873936B2 (en) | 2009-04-09 | 2018-01-23 | Siemens Aktiengesellschaft | Superalloy component and slurry composition |
US20110244138A1 (en) * | 2010-03-30 | 2011-10-06 | Schlichting Kevin W | Metallic coating for non-line of sight areas |
US8962154B2 (en) | 2011-06-17 | 2015-02-24 | Kennametal Inc. | Wear resistant inner coating for pipes and pipe fittings |
CN102936713A (zh) * | 2012-11-28 | 2013-02-20 | 中国南方航空工业(集团)有限公司 | 一种铝硅料浆渗铝硅的方法 |
CN102936713B (zh) * | 2012-11-28 | 2015-01-14 | 中国南方航空工业(集团)有限公司 | 一种铝硅料浆渗铝硅的方法 |
Also Published As
Publication number | Publication date |
---|---|
FR2115147A1 (enrdf_load_stackoverflow) | 1972-07-07 |
FR2115147B1 (enrdf_load_stackoverflow) | 1976-03-26 |
GB1362654A (en) | 1974-08-07 |
CA951191A (en) | 1974-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3720537A (en) | Process of coating an alloy substrate with an alloy | |
US4101713A (en) | Flame spray oxidation and corrosion resistant superalloys | |
US3676085A (en) | Cobalt base coating for the superalloys | |
US4447503A (en) | Superalloy coating composition with high temperature oxidation resistance | |
US7157151B2 (en) | Corrosion-resistant layered coatings | |
US4313760A (en) | Superalloy coating composition | |
US3748110A (en) | Ductile corrosion resistant coating for nickel base alloy articles | |
US3955935A (en) | Ductile corrosion resistant chromium-aluminum coating on superalloy substrate and method of forming | |
EP0108797B1 (en) | Corrosion, erosion and wear resistant alloy structures and method thereof | |
US3873347A (en) | Coating system for superalloys | |
Lindblad | A review of the behavior of aluminide-coated superalloys | |
USRE31339E (en) | Process for producing elevated temperature corrosion resistant metal articles | |
US6183888B1 (en) | Process for producing a coating for providing superalloys with highly efficient protection against high-temperature corrosion, a protective coating formed by the process, and articles protected by the coating | |
US3951642A (en) | Metallic coating powder containing Al and Hf | |
US3741791A (en) | Slurry coating superalloys with fecraiy coatings | |
US4842953A (en) | Abradable article, and powder and method for making | |
EP0984074A1 (en) | Slurry compositions for diffusion coatings | |
US4615864A (en) | Superalloy coating composition with oxidation and/or sulfidation resistance | |
US3540863A (en) | Art of protectively metal coating columbium and columbium - alloy structures | |
US4835011A (en) | Yttrium enriched aluminide coatings | |
US3345197A (en) | Aluminizing process and composition | |
CA1038114A (en) | Corrosion-resistant coating for superalloys | |
US3620693A (en) | Ductile, high-temperature oxidation-resistant composites and processes for producing same | |
US3290126A (en) | Protectively coated nickel or cobalt articles and process of making | |
US6673709B2 (en) | Formation of an aluminide coating, incorporating a reactive element, on a metal substrate |