US3715792A - Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy - Google Patents
Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy Download PDFInfo
- Publication number
- US3715792A US3715792A US00082787A US3715792DA US3715792A US 3715792 A US3715792 A US 3715792A US 00082787 A US00082787 A US 00082787A US 3715792D A US3715792D A US 3715792DA US 3715792 A US3715792 A US 3715792A
- Authority
- US
- United States
- Prior art keywords
- percent
- alloy
- chromium
- refractory carbide
- high chromium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011651 chromium Substances 0.000 title claims abstract description 38
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910052804 chromium Inorganic materials 0.000 title claims abstract description 37
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 30
- 239000000956 alloy Substances 0.000 title claims abstract description 30
- 238000005260 corrosion Methods 0.000 title claims abstract description 20
- 230000007797 corrosion Effects 0.000 title claims abstract description 20
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims abstract description 45
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 22
- 229910052742 iron Inorganic materials 0.000 claims abstract description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 239000011733 molybdenum Substances 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910000599 Cr alloy Inorganic materials 0.000 claims abstract description 6
- 239000000788 chromium alloy Substances 0.000 claims abstract description 6
- 229910000734 martensite Inorganic materials 0.000 claims description 4
- 238000009924 canning Methods 0.000 abstract description 5
- 235000013305 food Nutrition 0.000 abstract description 4
- 238000004826 seaming Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 description 32
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 238000005245 sintering Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910001315 Tool steel Inorganic materials 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000003801 milling Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- AYOOGWWGECJQPI-NSHDSACASA-N n-[(1s)-1-(5-fluoropyrimidin-2-yl)ethyl]-3-(3-propan-2-yloxy-1h-pyrazol-5-yl)imidazo[4,5-b]pyridin-5-amine Chemical compound N1C(OC(C)C)=CC(N2C3=NC(N[C@@H](C)C=4N=CC(F)=CN=4)=CC=C3N=C2)=N1 AYOOGWWGECJQPI-NSHDSACASA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910001561 spheroidite Inorganic materials 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical class [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0292—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
Definitions
- the composition is formed by employing titanium and carbon together in the combined form as primary grains of titanium carbide as an alloying ingredient together with a steel matrix which reacts with the carbide to a certain extent in producing the desired composition.
- the steel employed in forming the matrix contains at least about 60 percent iron by weight of the steel matrix composition.
- Powder metallurgy is employed as the preferred method in producing the desired composition which comprises broadly mixing powdered steel-forming ingredients and forming a compact by pressing the mixture in a mold, followed by subjecting the compact to liquid phase sintering under non-oxidizing conditions, such as in vacuum.
- a steel matrix found particularly useful in combination with titanium carbide is one containing about 0.5 percent carbon, about 3 percent chromium, about 3 percent molybdenum and the balance iron.
- TiC titanium carbide tool steel composition
- a titanium carbide tool steel composition containing for example 33 percent by weight of TiC (approximately 45 volume percent) and substantially the balance the aforementioned steel matrix
- about 500 grams of powdered TiC (of about 5 to 7 microns in average size) are mixed with about 1,000 grams of steel-forming ingredients in a mill half filled with stainless steel balls.
- To the powder ingredients is added one gram of paraffin wax for 100 grams of mix. The milling is conducted for about 40 hours using hexane as a vehicle.
- the mix is removed and dried and compacts of a desired shape pressed at about 15 t.s.i. and the compacts then subjected to liquid phase sintering in vacuum at a temperature of about 2,640F (1,450C) for about one-half hour at a vacuum corresponding to 20 microns of mercury or better.
- the compacts are cooled and then annealed by heating to 900C for 2 hours followed by cooling at a rate of about 60F (33C or 35C) per hour to about 1,000F (538C) and thereafter furnace cooled to room temperature to produce an annealed structure containing spheroidite.
- the annealed hardness is in the neighborhood of about 45 R and the high carbon tool steel is capable of being machined and/or ground into a desired tool shape or machine part prior to hardening.
- the hardening treatment employed comprises heating the machined piece to an austenitizing temperature of about l,750F (about 955C) for about one-quarter hour followed by quenching in oil to produce a hardness in the neighborhood of about R THE PROBLEM CONFRONTING THE ART
- the aforementioned titanium carbide tool steel containing by volume about 45 percent titanium carbide and the balance a low chromium-molybdenum steel containing by weight of about 0.3 to 0.8 percent C, 1 to 6 percent Cr, 0.3 to 6 percent Mo and the balance essentially iron has been found very useful in the manufacture of tools, dies and many wear parts; particularly for use under generally normal environmental conditions.
- the foregoing composition presents certain problems, insofar as tool life and overall tool efficiency are concerned.
- the tool is a pair of seaming rolls or hammers employed in the manufacture of cans involving the use of chloride soldering fluxes (for example, a mixture of ammonium and zinc chlorides)
- the tool does not exhibit adequate corrosion resistance to the fluxes, whereby the steel matrix relative to the titanium carbide grains is selectively corroded.
- titanium carbide grains are dislodged due to the lack of support in the matrix. This leads to an accelerated wearing of the seaming rolls, which results in a loss in tool life and tool efficiency.
- the acid media which normally prevail in the canning of foods such as, by way of example, citric acid, carbonic acid and the like, will generally have a corrosive effect on the tool or wear part and, as described hereinabove, adversely affect the life of the tool or wear resistant part.
- Another object is to provide a hardened sintered corrosion and wear resistant tool element formed of a high chromium refractory carbide alloy.
- the invention is directed to a powder metallurgy sintered corrosion and wear resistant high chromium containing refractory carbide alloy comprising primary grains of at least one refractory carbide selected from the group consisting of TiC, CbC, VC and TaC dispersed or distributed through a high chromium alloy matrix consisting essentially by weight of about 14 to 24 percent chromium, about 0.4 to 1.2
- the high chromium ferrous matrix may contain other elements, such as small amounts of one or more of the elements silicon, manganese, vanadium, molybdenum, and the like.
- a composition range which is particularly advantageous is one in which the refractory carbide ranges by volume from about 30 to 75 percent, with the balance substantially the aforementioned high chromium matrix alloy.
- a more advantageous composition is one in which the refractory carbide (e.g. TiC) ranges by volume from about 35 to 55 percent, and wherein the matrix alloy making up substantially the balance consists essentially by weight of about 16 to 20 percent chromium, about 0.5 to 0.9 percent carbon, and thebalance essentially iron.
- the refractory carbide e.g. TiC
- the matrix alloy making up substantially the balance consists essentially by weight of about 16 to 20 percent chromium, about 0.5 to 0.9 percent carbon, and thebalance essentially iron.
- the foregoing composite refractory carbide alloy is capable of being annealed to a hardness as low as 50 R and hardened to as high as 69 R, to provide markedly improved resistance to wear and corrosion.
- a substantially martensitic matrix is assured by heat treatment, including a dispersion in the matrix of a secondary carbide containing chromium, probably an iron-chromium carbide.
- the secondary carbide together with the primary carbide provides improved wear resistance while the chromium dissolved in the matrix assures resistance to corrosion.
- the matrix metal had the following nominal composition by weight:
- the balance iron may include the presence of amounts of other ingfiedients which do not adversely affect the basic characteristics of the a y.
- the mix After completion of the milling, the mix is removed and vacuum dried. A proportion of the mixed product is compressed in a die at tons/sq. inch to the desired shape.
- the shape is liquid phase sintered at a temperature of about 1,3 50C for one-half hour (after reaching the temperature) at a vacuum corresponding to microns or better.
- the shape After completion of sintering, the shape is cooled and then annealed by heating to 900C for 2 hours followed by cooling at a rate of about C/hour to about 550C and thereafter furnace cooled to room temperature to produce an annealed microstructure containing mainly sphereoidite, the hardness being about 50 R
- the sintered shape is then machined into a tool element, e.g., seaming rolls or hammers for the canning industry, and thereafter hardened by heating to an austenitizing temperature of about 1,875F (about 1,025C) for about one-quarter hour at temperature and then air or oil quenched to form a hard microstructure consisting essentially of martensite.
- a tool element e.g., seaming rolls or hammers for the canning industry
- the tool element is tempered at a temperature within the range of about 400F (205C) to 800F (427C) for about 1 to 2 hours and thereafter cooled in air.
- the final hardness is in the neighborhood of about 68 R Following hardening, the
- the nominal composition of the matrix by weight is as follows:
- the nominal composition of the matrix by weight is as follows:
- the nominal composition by weight of the matrix is as follows:
- the nominal composition of the matrix by weight is a as follows;
- the nominal composition of the matrix by weight is as follows:
- the appropriate amount of steelforming ingredients is mixed with an appropriate amount of primary carbide in a ball mill.
- the mixture may be shaped a variety of ways. It is preferred to press the mixture to a density of at least about 50 percent of true density by pressing over the range of about 10 t.s.i. to 75 t.s.i., preferably t.s.i. to 50 t.s.i., followed by sintering under substantially inert conditions, e.g., in a vacuum or an inert atmosphere.
- the temperature employed is above the melting point of the chromium steel matrix, for example, at a temperature up to about 100C above the melting point for a time sufficient for the primary carbide and the matrix to reach equilibrium and to obtain substantially complete densification, for example, for about one minute to six hours.
- the product is allowed to furnace cool to room temperature. If necessary, the as-sintered product is subjected to mechanical cleaning. If the as-sintered product requires annealing, it is heated to a temperature of about 1,550F (845C) to 1,700F (926C) for about 2 to 5 hours and then slowly cooled at a rate not exceeding 25C/hour.
- the austenitizing temperature may range from about 1,700F (926C) to 2,000F (1,093C) for about 30 minutes to 2 hours followed by air cooling. Thereafter, the hardened composition may be tempered at a temperature ranging from about 400F (205C) to 800F (427C) for about 1 to 2 hours.
- the hardness after tempering may range from about 65 R,
- alloy compositions of the invention exhibit good resistance to corrosion in such acid media as concentrated nitric acid and dilute (about 10 vol. percent) sulfuric acid.
- a powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy comprising about 30 to 75 percent by volume of primary grains of at least one refractory carbide selected from the group consisting of TiC, CbC, VC and TaC dispersed through a high chromium alloy matrix making up the balance, said alloy matrix consisting essentially by weight of about 14 to 24 percent chromium, about 0.4 to 1.2 percent carbon, up to about 3 percent nickel, up to about 5 percent molybdenum, and the balance essentially iron.
- a hardened sintered corrosion and wear resistant tool element formed of a high chromium refractory carbide alloy comprising about 30 to 75 percent by volume of primary grains of at least one refractory carbide selected from the group consisting of TiC, CbC, VC and TaC dispersed through a high chromium alloy matrix consisting essentially by weight of about 14 to 24 percent chromium, up to about 3 percent nickel, up to about 5 percent molybdenum, about 0.4 to 1.2 percent carbon and the balance essentially iron, the metallographic structure of the alloy matrix consisting essentially of martensite.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8278770A | 1970-10-21 | 1970-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3715792A true US3715792A (en) | 1973-02-13 |
Family
ID=22173451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00082787A Expired - Lifetime US3715792A (en) | 1970-10-21 | 1970-10-21 | Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy |
Country Status (6)
Country | Link |
---|---|
US (1) | US3715792A (enrdf_load_stackoverflow) |
JP (1) | JPS5537587B1 (enrdf_load_stackoverflow) |
CA (1) | CA944976A (enrdf_load_stackoverflow) |
DE (1) | DE2061986B2 (enrdf_load_stackoverflow) |
FR (1) | FR2111571A5 (enrdf_load_stackoverflow) |
GB (1) | GB1324050A (enrdf_load_stackoverflow) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4484644A (en) * | 1980-09-02 | 1984-11-27 | Ingersoll-Rand Company | Sintered and forged article, and method of forming same |
US4704336A (en) * | 1984-03-12 | 1987-11-03 | General Electric Company | Solid particle erosion resistant coating utilizing titanium carbide |
US5574954A (en) * | 1992-06-04 | 1996-11-12 | Alloy Technology International, Inc. | Erosion-resistant titanium carbide composites and processes for making them |
US20040231459A1 (en) * | 2003-05-20 | 2004-11-25 | Chun Changmin | Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance |
EP3109333A3 (en) * | 2015-06-24 | 2017-01-04 | The Japan Steel Works, Ltd. | Iron-based sintered alloy and method for producing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3520093B2 (ja) * | 1991-02-27 | 2004-04-19 | 本田技研工業株式会社 | 二次硬化型高温耐摩耗性焼結合金 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2369211A (en) * | 1942-05-30 | 1945-02-13 | Frances H Clark | Tool steel |
US2450888A (en) * | 1946-07-27 | 1948-10-12 | Carpenter Steel Co | Wear resistant steel |
US2714245A (en) * | 1951-12-07 | 1955-08-02 | Sintercast Corp America | Sintered titanium carbide alloy turbine blade |
US2828202A (en) * | 1954-10-08 | 1958-03-25 | Sintercast Corp America | Titanium tool steel |
US2944893A (en) * | 1956-12-26 | 1960-07-12 | Sintercast Corp America | Method for producing tool steels containing titanium carbide |
US3053706A (en) * | 1959-04-27 | 1962-09-11 | 134 Woodworth Corp | Heat treatable tool steel of high carbide content |
US3369891A (en) * | 1965-08-20 | 1968-02-20 | Chromalloy American Corp | Heat-treatable nickel-containing refractory carbide tool steel |
US3380861A (en) * | 1964-05-06 | 1968-04-30 | Deutsche Edelstahlwerke Ag | Sintered steel-bonded carbide hard alloys |
US3416976A (en) * | 1965-11-16 | 1968-12-17 | Chromalloy American Corp | Method for heat treating titanium carbide tool steel |
US3442101A (en) * | 1965-04-01 | 1969-05-06 | Forsch Inst Fur Textiltechnolo | Pile fabric |
US3450511A (en) * | 1967-11-10 | 1969-06-17 | Deutsche Edelstahlwerke Ag | Sintered carbide hard alloy |
US3561934A (en) * | 1967-09-11 | 1971-02-09 | Crucible Inc | Sintered steel particles containing dispersed carbides |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB908412A (en) * | 1959-08-26 | 1962-10-17 | John Leo Ellis | Improvements in methods of producing heat treatable ferrous alloys and to such alloys |
-
1970
- 1970-10-21 US US00082787A patent/US3715792A/en not_active Expired - Lifetime
-
1971
- 1971-09-09 CA CA122,477A patent/CA944976A/en not_active Expired
- 1971-10-06 GB GB4649271A patent/GB1324050A/en not_active Expired
- 1971-10-20 FR FR7137607A patent/FR2111571A5/fr not_active Expired
- 1971-10-21 JP JP8291471A patent/JPS5537587B1/ja active Pending
-
1972
- 1972-04-13 DE DE19722061986 patent/DE2061986B2/de not_active Ceased
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2369211A (en) * | 1942-05-30 | 1945-02-13 | Frances H Clark | Tool steel |
US2450888A (en) * | 1946-07-27 | 1948-10-12 | Carpenter Steel Co | Wear resistant steel |
US2714245A (en) * | 1951-12-07 | 1955-08-02 | Sintercast Corp America | Sintered titanium carbide alloy turbine blade |
US2828202A (en) * | 1954-10-08 | 1958-03-25 | Sintercast Corp America | Titanium tool steel |
US2944893A (en) * | 1956-12-26 | 1960-07-12 | Sintercast Corp America | Method for producing tool steels containing titanium carbide |
US3053706A (en) * | 1959-04-27 | 1962-09-11 | 134 Woodworth Corp | Heat treatable tool steel of high carbide content |
US3380861A (en) * | 1964-05-06 | 1968-04-30 | Deutsche Edelstahlwerke Ag | Sintered steel-bonded carbide hard alloys |
US3442101A (en) * | 1965-04-01 | 1969-05-06 | Forsch Inst Fur Textiltechnolo | Pile fabric |
US3369891A (en) * | 1965-08-20 | 1968-02-20 | Chromalloy American Corp | Heat-treatable nickel-containing refractory carbide tool steel |
US3369892A (en) * | 1965-08-20 | 1968-02-20 | Chromalloy American Corp | Heat-treatable nickel-containing refractory carbide tool steel |
US3416976A (en) * | 1965-11-16 | 1968-12-17 | Chromalloy American Corp | Method for heat treating titanium carbide tool steel |
US3561934A (en) * | 1967-09-11 | 1971-02-09 | Crucible Inc | Sintered steel particles containing dispersed carbides |
US3450511A (en) * | 1967-11-10 | 1969-06-17 | Deutsche Edelstahlwerke Ag | Sintered carbide hard alloy |
Non-Patent Citations (1)
Title |
---|
Clark et al., Physical Metallurgy; Van Nostrand Co., pg. 327, 331 (1962). * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4484644A (en) * | 1980-09-02 | 1984-11-27 | Ingersoll-Rand Company | Sintered and forged article, and method of forming same |
US4704336A (en) * | 1984-03-12 | 1987-11-03 | General Electric Company | Solid particle erosion resistant coating utilizing titanium carbide |
US5574954A (en) * | 1992-06-04 | 1996-11-12 | Alloy Technology International, Inc. | Erosion-resistant titanium carbide composites and processes for making them |
US20040231459A1 (en) * | 2003-05-20 | 2004-11-25 | Chun Changmin | Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance |
US7074253B2 (en) * | 2003-05-20 | 2006-07-11 | Exxonmobil Research And Engineering Company | Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance |
EP3109333A3 (en) * | 2015-06-24 | 2017-01-04 | The Japan Steel Works, Ltd. | Iron-based sintered alloy and method for producing the same |
US10745786B2 (en) | 2015-06-24 | 2020-08-18 | The Japan Steel Works, Ltd. | Iron-based sintered alloy and method for producing the same |
US11891682B2 (en) | 2015-06-24 | 2024-02-06 | The Japan Steel Works, Ltd. | Iron-based sintered alloy and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
DE2061986B2 (de) | 1976-09-02 |
FR2111571A5 (enrdf_load_stackoverflow) | 1972-06-02 |
GB1324050A (en) | 1973-07-18 |
DE2061986A1 (enrdf_load_stackoverflow) | 1972-04-27 |
JPS5537587B1 (enrdf_load_stackoverflow) | 1980-09-29 |
CA944976A (en) | 1974-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3369891A (en) | Heat-treatable nickel-containing refractory carbide tool steel | |
EP0331679B1 (en) | High density sintered ferrous alloys | |
US4121927A (en) | Method of producing high carbon hard alloys | |
US4913739A (en) | Method for powder metallurgical production of structural parts of great strength and hardness from Si-Mn or Si-Mn-C alloyed steels | |
US2828202A (en) | Titanium tool steel | |
US3053706A (en) | Heat treatable tool steel of high carbide content | |
US4174967A (en) | Titanium carbide tool steel composition for hot-work application | |
CN111560564B (zh) | 一种资源节约型高氮双相不锈钢及其近净成形方法 | |
JP3504786B2 (ja) | 焼入れ組織を呈する鉄系焼結合金の製造方法 | |
US3713788A (en) | Powder metallurgy sintered corrosion and heat-resistant, age hardenable nickel-chromium refractory carbide alloy | |
US3183127A (en) | Heat treatable tool steel of high carbide content | |
US3471343A (en) | Process for the production of sinter iron materials | |
US4011108A (en) | Cutting tools and a process for the manufacture of such tools | |
US3897618A (en) | Powder metallurgy forging | |
KR100505933B1 (ko) | 소결경화법에의한저합금강제조용분말 | |
US3715792A (en) | Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy | |
US4255193A (en) | Method of manufacture of sintered pressed pieces of iron reinforced by iron oxides | |
US3809540A (en) | Sintered steel bonded titanium carbide tool steel characterized by an improved combination of transverse rupture strength and resistance to thermal shock | |
CA1077748A (en) | Method of producing high carbon hard alloys | |
US4173471A (en) | Age-hardenable titanium carbide tool steel | |
US4018632A (en) | Machinable powder metal parts | |
US2284638A (en) | Metallurgy of ferrous metals | |
Cundill et al. | Mechanical properties of sinter/forged low-alloy steels | |
US3837845A (en) | Oxide coated ferrous metal powder | |
JP2625773B2 (ja) | 粉末高速度鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALLOY TECHNOLOGY INTERNATIONAL, INC., 169 WESTERN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004059/0159 Effective date: 19820928 |
|
AS | Assignment |
Owner name: CHROMALLOY GAS TURBINE CORPORATION, A DE. CORP., N Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004862/0635 Effective date: 19880311 Owner name: CHROMALLOY GAS TURBINE CORPORATION, BLAISDELL ROAD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHROMALLOY AMERICAN CORPORATION;REEL/FRAME:004862/0635 Effective date: 19880311 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES) |