US3715047A - Silicone stopper for a sterile container - Google Patents

Silicone stopper for a sterile container Download PDF

Info

Publication number
US3715047A
US3715047A US00058814A US3715047DA US3715047A US 3715047 A US3715047 A US 3715047A US 00058814 A US00058814 A US 00058814A US 3715047D A US3715047D A US 3715047DA US 3715047 A US3715047 A US 3715047A
Authority
US
United States
Prior art keywords
plug
plugs
mouth
container
silicone rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00058814A
Inventor
R Sado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Application granted granted Critical
Publication of US3715047A publication Critical patent/US3715047A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • B01L3/50825Closing or opening means, corks, bungs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means

Definitions

  • Plugs of cotton wool wereused to plug the mouths of vessels used for culturing microbes or viruses or for rearing animals in a germ free environment.
  • Plugs of cotton wool have several advantages. They have good air-permeability and superior resistance to the high temperatures at which sterilization is generally conducted. However plugs of cotton wool cannot stand up to repeated used. Further, much labor is required in shaping the cotton wool into plug form. Still further, it has recently become difficult to obtain good quality cotton. wool and its price has gone up considerably. Stoppers of plastic or rubber, having an air-permeable structure, and plugs of urethane having an open cell structure in which all the cells are practically interconnecting have been developed as replacements for the cotton wool plugs.
  • the plugs of the present invention are comprised of a silicone rubber having an open cell cellular structure and are free of the above referred to disadvantages. This silicone material is extremely stable to heat. Thus the plugs of the present invention can be sterilized at a high temperature. Such high temperature sterilization is not possible with prior art urethane plugs. Furthermore the plugs of the present invention can withstand repeated use, possess the necessary degree of permeability required in culturing microbes and viruses, and afford a much lower moisture evaporation rate than the prior art plugs. The plugs of the present invention help to prevent the culture medium from drying up or the liquid culture medium from undergoing changes in concentration.
  • FIG. 1 is a plan view in longitudinal section of a column-shaped plug
  • FIG. 2 is a plan view in longitudinal section of a truncated cone-shaped plug
  • FIG. 3 is a plan view in longitudinal section of a barrel-shaped plug
  • FIG. 4 is a plan view in longitudinal section of a discshaped plug.
  • 1 denotes the outer skin of the plug.
  • Outerskin 1 has a smooth surface. This facilitates an easy fit of the plug into the mouth of a vessel, (not shown).
  • 2 denotes a layer of open cell cellular material and 3 denotes the cut surface of the cellular material 2.
  • the plug of the present invention can be shaped as shown in the figures. Alternatively it may be coneshaped, spherical, pillar-shaped, and the like. The shape should be selected in accordance with the use to which the plug is to be put.
  • the open cell cellular material 2 is prepared for example by the following procedure:
  • a blowing agent such as azobisisobut
  • the kneaded mixture is then put through an extruder to prepare for molding.
  • the extruded kneaded mixture is then placed in a metal mold where it is heated at a temperature of from 200 to 400C for blowing and curing After completion of the blowing and curing step the mixture is then subjected to a post-curing at about 200C in an air-circulating oven.
  • the open cell cellular material of the present invention may also be obtained by mechanical process from a known silicone sponge which has a closed cell structure in which its cells are non-interconnecting with one another.
  • the surface skin 1 and the layer of open cell cellular material 2 may both be molded simultaneously. However, if it is preferred, the surface skin 1 and the layer of cellular material 2 may be prepared separately and then they may be joined together. Alternatively, after the surface skin 1 is shaped to the desired shape, the kneaded mixture may be made to foam in it. Usually the surface skin 1 is prepared with a smooth surface. However, if necessary, it can be finished unevenly. This makes it more difficult to remove the plug from the mouth of the vessel.
  • the thickness of the surface skin 1 of the plug there is no special requirement with respect to the thickness of the surface skin 1 of the plug. It may be selected in accordance with the shape and size of the vessel mouth into which the plugis to be inserted. The degree of expansion, the hardness, and the air-permeability of the layer of cellular material 2 are also suitably selected depending upon the kind of microbe employed and the culture conditions.
  • Example I 750 parts by weight of dimethylpolysiloxane gum were kneaded on a roll mill together with 270 parts by weight of diatomaceous earth. 1.5 parts by weight of azobisisobutyronitrile and 1.9 parts by weight of benzoyl peroxide were added to 100 parts of the kneaded mixture, and the mixture was once again kneaded uniformly on a roll mill. After this second kneading the mixture was placed in a column-shaped metal mold having a diameter of 20 mm and a height of 30 mm and was heated at 250C for 10 minutes under a pressure of 300 g/cm so that the mixture might be blown. This was followed by post-curing at 200C for 5 hours in an air-circulating oven. A plug of silicone rubber as shown in FIG. 1 was obtained. The plug had an open cell structure and was blown 380 percent of the original size.
  • the column-shaped plug of silicone rubber thus prepared was then dipped in hot water having a temperature of from 75 to 80C, dehydrated, and sterilized for 3 hours at a temperature of 170 to 180C.
  • g of sterilized water was placed in a sterilized test tube which measured 19 mm in inside diameter and 180 mm in height.
  • the above prepared plug was fixed into the mouth of the test tube.
  • the test tub was then permitted to stand for 6 months in an unsterilized atmosphere and at temperature of from 30 to 40C. At the end of the 6 month period the amount of water evaporated out of the test tube proved to be 1.2 g. No invasion of germs was observed.
  • the size, the shape and the elasticity of the plug was found to have undergone hardly any change.
  • Example 2 As a comparison, the procedure of Example 1 was repeated, only a plug of cotton wool was utilized instead of the plug of the present invention. The result proved that although no invasion of germs was observed, the amount of water evaporated was 2.8 g.
  • Example 2 A truncated cone-shaped plug of silicone rubber (Cf. FIG. 2), 21 mm in upper diameter and 17 mm in lower diameter, and 30 mm in height, and having an open cell structure blown 400 percent the original size, was
  • Example 3 Growth rate Reduction in amount of liquid culture medium Culture Stationary Shake method culture culture Shaken for 7 days at 28C and then permitted to stand kind of Pseudo- Escheripseudo escherimicrobes monas chia monas chia ovalis coli ovalis coli for 6 days at 37C. Plugs of cotton wool 0.238 0.163 1.15 0.98 0.86 cc Plugs of open cell cellular silicone 0.245 0.162 1.10 0.98 0.39 cc rubber Note) Culture medium:
  • a plug for maintaining sterility and reducing moisture evaporation from an otherwise closed sterile container having a mouth said plug being adapted for removable insertion into said mouth to close same, said plug being comprised of silicone rubber having an open cell cellular structure.

Abstract

An otherwise closed sterile container is closed by inserting into the mouth thereof a removable plug. The plug is of silicone rubber having an open cell cellular structure. Sterility of the container is maintained. Moisture evaporation therefrom is reduced.

Description

United States Patent 1191 1111 3,715,047 Sado 1 Feb. 6, 1973 [5 SILICONE STOPPER FOR A STERILE [56] References Cited CONTAINER UNITED STATES PATENTS [75] Inventor: Ryoichi Sado, Oomiya, Japan 2,978,134 4/1961 Caine et al. ..215/47 [73] Ass1gnee: Shmetsu Chemical Company, 3,118,557 1/1964 Bogikes ..215 47 Tokyo, Japan [22] Filed: July 28, 1970 Primary ExammerGeorge T. Hall Appl. No.: 58,814
Foreign Application Priority Data Field of Search ..2l5/47, 56, 38; 220/44 A AttorneyHarry C. Bierman, Jordan B. Bierman and Bierman & Bierman [57] ABSTRACT An otherwise closed sterile container is closed by in- 7 Claims, 4 Drawing Figures llllll llll 111 ,1 I LI 1 I III 'ILI Ill PATENTED FEB I ATTORNEY SILICONE STOPPER FOR A STERILE CONTAINER This invention relates to plugs to be fixed into the mouths of vessels used for culturing microbes or for rearing animals in a germ free environment.
Hitherto, plugs of cotton wool wereused to plug the mouths of vessels used for culturing microbes or viruses or for rearing animals in a germ free environment. Plugs of cotton wool have several advantages. They have good air-permeability and superior resistance to the high temperatures at which sterilization is generally conducted. However plugs of cotton wool cannot stand up to repeated used. Further, much labor is required in shaping the cotton wool into plug form. Still further, it has recently become difficult to obtain good quality cotton. wool and its price has gone up considerably. Stoppers of plastic or rubber, having an air-permeable structure, and plugs of urethane having an open cell structure in which all the cells are practically interconnecting have been developed as replacements for the cotton wool plugs. However the stoppers of plastic or rubber are disadvantageous in that they possess poor elasticity. This makes it difficult to obtain a closefit between the stoppers and the mouths of the vessels. Urethane plugs have poor heat resistance. Thus the sterilization of urethane plugs has to be conducted in a low-temperature gas or in steam under low pressure.
The plugs of the present invention are comprised of a silicone rubber having an open cell cellular structure and are free of the above referred to disadvantages. This silicone material is extremely stable to heat. Thus the plugs of the present invention can be sterilized at a high temperature. Such high temperature sterilization is not possible with prior art urethane plugs. Furthermore the plugs of the present invention can withstand repeated use, possess the necessary degree of permeability required in culturing microbes and viruses, and afford a much lower moisture evaporation rate than the prior art plugs. The plugs of the present invention help to prevent the culture medium from drying up or the liquid culture medium from undergoing changes in concentration.
To give a more detailed description of the plugs of the invention, reference is made to the attached drawings, of which FIG. 1 is a plan view in longitudinal section of a column-shaped plug,
FIG. 2 is a plan view in longitudinal section of a truncated cone-shaped plug,
FIG. 3 is a plan view in longitudinal section of a barrel-shaped plug, and
FIG. 4 is a plan view in longitudinal section of a discshaped plug.
In FIGS. 1-4, 1 denotes the outer skin of the plug. Outerskin 1 has a smooth surface. This facilitates an easy fit of the plug into the mouth of a vessel, (not shown). 2 denotes a layer of open cell cellular material and 3 denotes the cut surface of the cellular material 2.
The plug of the present invention can be shaped as shown in the figures. Alternatively it may be coneshaped, spherical, pillar-shaped, and the like. The shape should be selected in accordance with the use to which the plug is to be put.
The open cell cellular material 2 is prepared for example by the following procedure:
a. A mixture of parts by weight of a diorganopolysiloxane gum with from 10 to I00 parts by weight of a silica filler SUJCI'I as diatomaceous earth and aerosil, from 0.05 to 15 parts by weight of a blowing agent, such as azobisisobutyronitrile, dinitroso pentamethylenetetramine, N,N- dimethyl N,N-dinitroso terephthalamide, and p,p' oxy bis (benzene sulfonyl hydrazide), and from 0.1 to 10 parts by weight of a curing agent, such as organic peroxide, e.g., benzonyli peroxide, diteritiary butyl peroxide, 2,4-dichlorobenzoyl peroxide, dicumyl peroxide, and tertiary butyl perbenzoate, is kneaded on a roller mill.
. The kneaded mixture is then put through an extruder to prepare for molding.
. The extruded kneaded mixture is then placed in a metal mold where it is heated at a temperature of from 200 to 400C for blowing and curing After completion of the blowing and curing step the mixture is then subjected to a post-curing at about 200C in an air-circulating oven.
It should be noted that the open cell cellular material of the present invention may also be obtained by mechanical process from a known silicone sponge which has a closed cell structure in which its cells are non-interconnecting with one another.
In preparing the plug of the present invention, the surface skin 1 and the layer of open cell cellular material 2 may both be molded simultaneously. However, if it is preferred, the surface skin 1 and the layer of cellular material 2 may be prepared separately and then they may be joined together. Alternatively, after the surface skin 1 is shaped to the desired shape, the kneaded mixture may be made to foam in it. Usually the surface skin 1 is prepared with a smooth surface. However, if necessary, it can be finished unevenly. This makes it more difficult to remove the plug from the mouth of the vessel.
There is no special requirement with respect to the thickness of the surface skin 1 of the plug. It may be selected in accordance with the shape and size of the vessel mouth into which the plugis to be inserted. The degree of expansion, the hardness, and the air-permeability of the layer of cellular material 2 are also suitably selected depending upon the kind of microbe employed and the culture conditions.
The details of the invention will be further described in several examples in which the plugs of the present invention were used.
Example I 750 parts by weight of dimethylpolysiloxane gum were kneaded on a roll mill together with 270 parts by weight of diatomaceous earth. 1.5 parts by weight of azobisisobutyronitrile and 1.9 parts by weight of benzoyl peroxide were added to 100 parts of the kneaded mixture, and the mixture was once again kneaded uniformly on a roll mill. After this second kneading the mixture was placed in a column-shaped metal mold having a diameter of 20 mm and a height of 30 mm and was heated at 250C for 10 minutes under a pressure of 300 g/cm so that the mixture might be blown. This was followed by post-curing at 200C for 5 hours in an air-circulating oven. A plug of silicone rubber as shown in FIG. 1 was obtained. The plug had an open cell structure and was blown 380 percent of the original size.
The column-shaped plug of silicone rubber thus prepared was then dipped in hot water having a temperature of from 75 to 80C, dehydrated, and sterilized for 3 hours at a temperature of 170 to 180C. g of sterilized water was placed in a sterilized test tube which measured 19 mm in inside diameter and 180 mm in height. The above prepared plug was fixed into the mouth of the test tube. The test tub was then permitted to stand for 6 months in an unsterilized atmosphere and at temperature of from 30 to 40C. At the end of the 6 month period the amount of water evaporated out of the test tube proved to be 1.2 g. No invasion of germs was observed. The size, the shape and the elasticity of the plug was found to have undergone hardly any change.
As a comparison, the procedure of Example 1 was repeated, only a plug of cotton wool was utilized instead of the plug of the present invention. The result proved that although no invasion of germs was observed, the amount of water evaporated was 2.8 g.
On the other hand, when a column-shaped plug of commercially available urethane, having an open cell structure and measuring 20 mm in outer diameter and 30 mm in height, was fixed into the mouth of a sterilized test tube of the size given above, said test tube containing 10 g of sterilized water, and was permitted to stand for 2 weeks at temperature of from 50 to 60C, the amount of water evaporated proved to be 2.3 g. Further it was noted that the column-shaped plug had lost its elasticity and could not recover its original shape and size.
Example 2 A truncated cone-shaped plug of silicone rubber (Cf. FIG. 2), 21 mm in upper diameter and 17 mm in lower diameter, and 30 mm in height, and having an open cell structure blown 400 percent the original size, was
sterilized and fixed into the mouth of a sterilized test tube as described in Ex. 1 and containing 10 g of sterilized water. The plugged test tube was then permitted to stand for 2 weeks at a temperature of from 50 to 60C. At the end of the 2 week period the amount of water evaporated proved to be 0.9 g and the size, the shape and the elasticity of the plug were found to have undergone hardly any change.
Example 3 Growth rate Reduction in amount of liquid culture medium Culture Stationary Shake method culture culture Shaken for 7 days at 28C and then permitted to stand Kind of Pseudo- Escheripseudo escherimicrobes monas chia monas chia ovalis coli ovalis coli for 6 days at 37C. Plugs of cotton wool 0.238 0.163 1.15 0.98 0.86 cc Plugs of open cell cellular silicone 0.245 0.162 1.10 0.98 0.39 cc rubber Note) Culture medium:
Compositions Gravy 0.3%
Peptone 0.5% Glucose 1.0% Water...rest
Amount 10 cc Culture condition: 28C 22 hours Shaking condition: 300 shakes min. 25 mm stroke Test tubes: Inside diameter; 18-19 mm Inserted length of the plugs: ca. 25mm Size of plugs: Plugs of cotton wool ca. 40mm in length Plugs of open-cell cellular silicone rubber mm in length & ca. 20 mm in diameter What is claimed is:
l. A plug for maintaining sterility and reducing moisture evaporation from an otherwise closed sterile container having a mouth, said plug being adapted for removable insertion into said mouth to close same, said plug being comprised of silicone rubber having an open cell cellular structure.
2. The plug as claimed in claim 1 wherein said silicone rubber is obtained by mechanical process from a closed cell cellular material.
3. The plug as claimed in claim 1 wherein said plug has an exterior surface which is smooth.
4. The plug as claimed in claim 3 wherein said plug has an exterior surface which is uneven whereby removal of the inserted plug from said mouth is rendered more difficult.
5. The plug as claimed in claim 1 wherein said container contains a microbe culture.
6. The plug as claimed in claim 1 wherein said container is an animal rearing chamber.
7. The plug as claimed in claim 1 wherein said plug is permeable to air.

Claims (6)

1. A plug for maintaining sterility and reducing moisture evaporation from an otherwise closed sterile container having a mouth, saiD plug being adapted for removable insertion into said mouth to close same, said plug being comprised of silicone rubber having an open cell cellular structure.
2. The plug as claimed in claim 1 wherein said silicone rubber is obtained by mechanical process from a closed cell cellular material.
3. The plug as claimed in claim 1 wherein said plug has an exterior surface which is smooth.
4. The plug as claimed in claim 3 wherein said plug has an exterior surface which is uneven whereby removal of the inserted plug from said mouth is rendered more difficult.
5. The plug as claimed in claim 1 wherein said container contains a microbe culture.
6. The plug as claimed in claim 1 wherein said container is an animal rearing chamber.
US00058814A 1969-08-04 1970-07-28 Silicone stopper for a sterile container Expired - Lifetime US3715047A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45030557A JPS5144191B1 (en) 1969-08-04 1969-08-04

Publications (1)

Publication Number Publication Date
US3715047A true US3715047A (en) 1973-02-06

Family

ID=12307089

Family Applications (1)

Application Number Title Priority Date Filing Date
US00058814A Expired - Lifetime US3715047A (en) 1969-08-04 1970-07-28 Silicone stopper for a sterile container

Country Status (5)

Country Link
US (1) US3715047A (en)
JP (1) JPS5144191B1 (en)
CA (1) CA967512A (en)
DK (1) DK127819B (en)
GB (1) GB1311062A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027713A (en) * 1974-06-21 1977-06-07 Dunlop Limited Lubricant container assembly
DE2828709A1 (en) * 1977-07-08 1979-01-25 Travenol Laboratories VENICE CATHETER WITH SELF-VENTILATING PLUG
US6085923A (en) * 1996-08-13 2000-07-11 Neocork Technologies, Inc. Composite synthetic stopper
US6153275A (en) * 1996-08-13 2000-11-28 Neocork Technologies, Llc Multilayer synthetic stopper
DE10127779A1 (en) * 2001-06-01 2002-12-12 Vetter & Co Apotheker Twist closure for primary packaging of pharmaceuticals, comprising channels between closure parts to allow flow of sterilizing vapor to closure contact surfaces
US6601722B1 (en) * 1998-12-04 2003-08-05 Cortex Sas Composite stopper with controlled permeability
US20040020311A1 (en) * 2002-07-30 2004-02-05 Cullion Rebecca Noel Method and apparatus for differential test probe retention with compliant Z-axis positioning
US6695997B2 (en) 1997-09-19 2004-02-24 Neocork Technologies, Llc Multilayer synthetic stopper
US20050165138A1 (en) * 2004-01-23 2005-07-28 Jeannie Holmes Synthetic cork compound
US20050199132A1 (en) * 2003-06-06 2005-09-15 Steve Meeks Flexible bakeware having a multi-piece carrier system
US20070017449A1 (en) * 2005-07-19 2007-01-25 Jeannie Holmes Dairy inflation
US20070203266A1 (en) * 2004-01-23 2007-08-30 Jeannie Holmes Synthetic cork compound
US20080015281A1 (en) * 2003-06-06 2008-01-17 Jeannie Holmes Flexible bakeware
US20080263811A1 (en) * 2001-12-06 2008-10-30 Sharabura Scott D Windshield wiper having reduced friction characteristics
US7638004B1 (en) * 2006-05-31 2009-12-29 Lam Research Corporation Method for cleaning microwave applicator tube
US20100006100A1 (en) * 2008-06-05 2010-01-14 Martin Eifler Gel filling for a patient interface and method for producing a patient interface with a gel filling
US20110084045A1 (en) * 2009-10-09 2011-04-14 Brian Austin Self Closure and method of using same
US20150259112A1 (en) * 2010-09-22 2015-09-17 Philip J. Gordon Consultants, Inc. Method of controlling by-products of vitamin c degradation and improving package integrity shelf life
US9439990B2 (en) 2013-07-23 2016-09-13 Abbott Medical Optics Inc. Leak-proof contact lens container

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420986A (en) * 2006-04-18 2009-04-29 巴斯夫欧洲公司 Foamed materials based on aminoplasts as sterilizable raw materials
JP7140952B2 (en) * 2018-05-22 2022-09-22 睦月電機株式会社 gas permeable structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978134A (en) * 1959-07-31 1961-04-04 George E Caine Closure assembly
US3118557A (en) * 1958-12-16 1964-01-21 Courtland Lab Blood supply collection vial and stopper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3118557A (en) * 1958-12-16 1964-01-21 Courtland Lab Blood supply collection vial and stopper
US2978134A (en) * 1959-07-31 1961-04-04 George E Caine Closure assembly

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027713A (en) * 1974-06-21 1977-06-07 Dunlop Limited Lubricant container assembly
DE2828709A1 (en) * 1977-07-08 1979-01-25 Travenol Laboratories VENICE CATHETER WITH SELF-VENTILATING PLUG
US4193399A (en) * 1977-07-08 1980-03-18 Travenol Laboratories, Inc. Self venting plug for venous entry unit
US6085923A (en) * 1996-08-13 2000-07-11 Neocork Technologies, Inc. Composite synthetic stopper
US6153275A (en) * 1996-08-13 2000-11-28 Neocork Technologies, Llc Multilayer synthetic stopper
US6248272B1 (en) * 1996-08-13 2001-06-19 Neocork Technologies, Llc Multilayer synthetic stopper
US6695997B2 (en) 1997-09-19 2004-02-24 Neocork Technologies, Llc Multilayer synthetic stopper
US20040131819A1 (en) * 1997-09-19 2004-07-08 Stuart Yaniger Multilayer synthetic stopper
US6601722B1 (en) * 1998-12-04 2003-08-05 Cortex Sas Composite stopper with controlled permeability
US7828777B2 (en) 2001-06-01 2010-11-09 Arzneimittel Gmbh Apotheker Vetter & Co Sealing element
US20040140285A1 (en) * 2001-06-01 2004-07-22 Vetter Udo J. Sealing element
DE10127779A1 (en) * 2001-06-01 2002-12-12 Vetter & Co Apotheker Twist closure for primary packaging of pharmaceuticals, comprising channels between closure parts to allow flow of sterilizing vapor to closure contact surfaces
US20100146728A1 (en) * 2001-12-06 2010-06-17 Sharabura Scott D Windshield wiper having reduced friction characteristics
US7703167B2 (en) 2001-12-06 2010-04-27 Jamak Fabrication-Tex, Llc Squeegee having reduced friction characteristics
US20080263811A1 (en) * 2001-12-06 2008-10-30 Sharabura Scott D Windshield wiper having reduced friction characteristics
US20040020311A1 (en) * 2002-07-30 2004-02-05 Cullion Rebecca Noel Method and apparatus for differential test probe retention with compliant Z-axis positioning
US20080015281A1 (en) * 2003-06-06 2008-01-17 Jeannie Holmes Flexible bakeware
US20050199132A1 (en) * 2003-06-06 2005-09-15 Steve Meeks Flexible bakeware having a multi-piece carrier system
US7517933B2 (en) 2003-06-06 2009-04-14 Jamak Fabrication-Tex, Llc Flexible bakeware
US7997439B2 (en) 2003-06-06 2011-08-16 Jamak Fabrication-Tex, Llc Flexible bakeware having a multi-piece carrier system
US20070203266A1 (en) * 2004-01-23 2007-08-30 Jeannie Holmes Synthetic cork compound
US20050165138A1 (en) * 2004-01-23 2005-07-28 Jeannie Holmes Synthetic cork compound
US7966970B2 (en) 2005-07-19 2011-06-28 M Management-Tex, Llc Dairy inflation
US20070017449A1 (en) * 2005-07-19 2007-01-25 Jeannie Holmes Dairy inflation
US8402921B2 (en) 2005-07-19 2013-03-26 M Management-Tex, Llc Dairy inflation
US7638004B1 (en) * 2006-05-31 2009-12-29 Lam Research Corporation Method for cleaning microwave applicator tube
US20100006100A1 (en) * 2008-06-05 2010-01-14 Martin Eifler Gel filling for a patient interface and method for producing a patient interface with a gel filling
US20130340763A1 (en) * 2008-06-05 2013-12-26 Weinmann Geraete Fuer Medizin Gmbh & Co. Kg Gel filling for patient interface and method for producing patient interface with a gel filling
US9545491B2 (en) * 2008-06-05 2017-01-17 Weinmann Gerate Fur Medizin Gmbh & Co. Kg Gel filling for a patient interface and method for producing a patient interface with a gel filling
US9555207B2 (en) * 2008-06-05 2017-01-31 Loewenstein Medical Technology Gmbh + Co. Kg Gel filling for patient interface and method for producing patient interface with a gel filling
US20110084045A1 (en) * 2009-10-09 2011-04-14 Brian Austin Self Closure and method of using same
WO2011043783A3 (en) * 2009-10-09 2016-04-07 Qiagen Closure and method of using same
US20150259112A1 (en) * 2010-09-22 2015-09-17 Philip J. Gordon Consultants, Inc. Method of controlling by-products of vitamin c degradation and improving package integrity shelf life
US10155610B2 (en) * 2010-09-22 2018-12-18 Philip J. Gordon Consultants, Inc. Method of controlling by-products of vitamin C degradation and improving package integrity shelf life
US9439990B2 (en) 2013-07-23 2016-09-13 Abbott Medical Optics Inc. Leak-proof contact lens container

Also Published As

Publication number Publication date
DE2038543B2 (en) 1977-03-03
DK127819B (en) 1974-01-14
CA967512A (en) 1975-05-13
DE2038543A1 (en) 1971-02-25
JPS5144191B1 (en) 1976-11-26
GB1311062A (en) 1973-03-21

Similar Documents

Publication Publication Date Title
US3715047A (en) Silicone stopper for a sterile container
US4459247A (en) Method for producing earplugs of foamed plastic
Lee et al. Enumeration of the oxygen sensitive bacteria usually present in the intestine of healthy mice
US3368911A (en) Collagen-carbonic acid surgical sponge
AU2005243474A1 (en) Method for producing shaped bodies made from crosslinked gelatine
GB1562244A (en) Wound dressing materials
EP0019940B1 (en) Microorganism culturing device and method
CN106333575A (en) Sleep pillow containing modified MDI (diphenylmethane diisocyanate) foam
CN114920984A (en) Preparation method of organosilicon rubber pillow mattress
CN109806389A (en) A kind of trivalent inactivated vaccine against Haemophilus parasuis infection and its application
KR880008874A (en) Foamed PVC Air Ball
Schwan et al. Heifer mastitis and dry-cow mastitis: A bacteriological survey in Sweden
JP3439856B2 (en) Method for producing plugs for culture and breeding containers
CN113583291A (en) Sponge with good mildew-proof and antibacterial effects and preparation method thereof
US3871330A (en) Process and apparatus for the immobilizing and study of growth organisms, including drosophila melanogaster
CN111057336B (en) Composite film for food and preparation method thereof
JPS5923545B2 (en) Method for producing open-celled ethylene polymer or copolymer cells
US3555132A (en) Process for forming gelatin-form-aldehyde forms
MX2023002249A (en) Storage container, growth and/or propagation station, cultivation system and method for cultivating a development good.
GB791017A (en) Wet-proof and self-acting air deodorizing mattress
CN209322854U (en) A kind of culture bottle ventilation part of several ventilations
CN206799612U (en) A kind of inversion can water filling culture dish
SU1798350A1 (en) Polyolefin composition
JPS6228850Y2 (en)
CN115558312A (en) Heat insulation sponge and preparation method thereof