US3713165A - Antenna for strip transmission lines - Google Patents
Antenna for strip transmission lines Download PDFInfo
- Publication number
- US3713165A US3713165A US00077947A US3713165DA US3713165A US 3713165 A US3713165 A US 3713165A US 00077947 A US00077947 A US 00077947A US 3713165D A US3713165D A US 3713165DA US 3713165 A US3713165 A US 3713165A
- Authority
- US
- United States
- Prior art keywords
- inner conductor
- planar
- slots
- antenna
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/106—Microstrip slot antennas
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/002—Specific input/output arrangements not covered by G06F3/01 - G06F3/16
- G06F3/005—Input arrangements through a video camera
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/97—Determining parameters from multiple pictures
Definitions
- the slots are situated so that they intersect the planar inner conductor and each slot is matched for transmission or reception of signals with a certain frequency by the length of the slot and the distance from the slot to the end of the planar inner conductor.
- the end of the planar inner conductor is formed to match the distances to the individual slots.
- the slots merge to form only one cut-out in the planar outer conductor.
- SHEET 1 [IF 2 INVENITORS Rou 0v: Esai'onu Lacuna Limunnrs-rlc 5.16am. nouns lnnt'sutnw 3v: u :sau
- the present invention relates to an antenna for matching signals from a transmission line to waves in the free space and vice versa and comprising one end of a strip transmission line with a planar inner conductor and one or two planar outer conductors, whereby the planar inner conductor and the planar outer conductors are insulated from each other by means of a dielectric.
- the transmission line consists of a planar inner conductor and two planar outer conductors, one on each side and situated in parallel with the planar inner conductor.
- An antenna according to the invention is, however, in fact also implemented when the transmission line only has one planar outer conductor.
- the characteristic impedance of a strip transmission line is determined by the breadth of the planar inner conductor and the distance between the planar outer conductors and the dielectric constant of the dielectric insulation material.
- a theoretically ideal strip transmission line has infinitely large planar conductors and an infinitely thin planar inner conductor.
- the planar inner conductor consists of for example a thin copper foil.
- the width of the planar outer conductors are chosen so that the planar inner conductor can have the same width as the planar inner conductor in an ideal transmission line.
- the width of the planar outer conductors are also chosen so that an extension of undesired waveguide modes is made impossible. Waveguide modes exist as soon as the symmetry is interrupted, which is caused for example by a slot in the planar outer conductor.
- a metal shell for example of aluminum.
- Such an antenna is poorly matched to the transmission line. It has moreover low efficiency and is moreover narrowbanded. It is furthermore known to combine a number of slots of different length according to the logarithmic periodic principle in order to obtain a wide banded antenna. Such antennae become, however, proportionately large as a great number of slots are required in order to obtain a sufficient good impedance matching. This means in its turn that the use of this antenna as an elementary antenna in an antenna array with this application is either difticult if not impossible when these applications require that the distance between adjacent elementary antennae be about half a wavelength. It is an object of the invention to provide a slotted antenna which does not have the above-mentioned drawbacks. The characteristics of such an antenna are defined in the appended claims.
- FIG. 1 shows an exploded view of an execution of an antenna according to the invention.
- FIGS. 2 and 3 show several embodiments of a detail of an antenna according to the invention, and in particular the shape of existing slot outline.
- FIG. 4 shows an embodiment of another detail of an antenna according to the invention, viz. the end of the planar inner conductor.
- a planar inner conductor denoted by 1
- This planar, inner conductor 1 is fastened on a rectangular plate 2 of a dielectric material, for example plastic.
- This plate 2 is provided with two outgoing arms 3 which laterally extend in opposite directions.
- a further similar plate 4 with outgoing arms 5 is produced of the same material as the plate 2.
- These two plates are fastened to each other so that the planar inner conductor 1 is between the same.
- the surface on each plate remote from and parallel with the planar inner conductor 1 is covered with a layer of conductive material to form planar outer conductors 6 and 11 respectively.
- inner conductor 1 and outer conductors 6 and 11 form a strip transmission line.
- slots 7a-7f positioned to intersect the planar inner conductor 1.
- Each such slot, for example slot 7a is designed for transmission or reception of signals with a certain frequency by making the length of the slot 7a a multiple of half the wavelength and locating the slot at a distance from the end line 8 of the planar inner conductor which is an odd multiple of a quarter of the wavelength, the wavelength being calculated from the frequency of the signal with reference to the presenttransmission medium.
- the distance to the end of the planar inner conductor is measured from the point where the symmetry centerline of the slot crosses the symmetry line of the conductor and in parallel with the conductor.
- a slot made in the planar outer conductor of an antenna in the above described manner can be adjusted to a certain frequency, but it will send or receive signals also within a narrow band about this frequency.
- an antenna with such a slot is narrow-banded.
- FIG. 2a shows how several slots together form only one cut-out with two opposite step shaped arms.
- the cut-out has been formed by laying a number of slots in parallel so close to each other. that there is no outer conductor material between the slots i.e., the slots merge.
- The, different slots can clearly be interpreted as they have different lengths and their ends give a step form to two of the opposite sides of the cut-out.
- a cut-out is shown consisting of four slots 12a, 12b, 12c and 12d, where the ends of the longest slot have been denoted reference numeral 12a and the ends of the shortest slot have been denoted reference numeral 12d.
- FIG. 2b and 2c further show two conceivable designs of the cut-out. These executions are often suitable for mass-produced antennas when separate slots otherwise will lie very close together.
- FIG. 3a shows a variant of a cut-out according to FIG. 2.
- the cut-out in FIG. 3 has two sides situated just opposite each other which are symmetrically decreasing in step form from the central line and out towards the edges of the sides.
- the cut-out can be thought to be formed by a long slot, the ends of which in FIG. 3a are denoted by 13a, and of two equilength shorter slots 13b and 130, one on each side of the long slot 13a
- the shortest slots 13d and 13c also have the same length. Further slots can in the same manner be situated on each side of the other slots.
- FIG. 3b, 3c and 3d show further three conceivable embodiments of the cut-out.
- the cut-out can also be designed so that only one end agrees with any of the figures while the other end is cut, as is shown in FIG. 3d.
- a configuration can be built up of several separated slots, where the longest slot is situated in the middle and where shorter slots are situated on each side of this longest slot. whereby several slots will with it exterior outline together remind about the cut-out in FIG. 30.
- FIG. 4 shows an example of how the edge of the planar inner conductor 1 can be designed with a symmetrical decreasing step form.
- the distances of the slots to the end of the conductor are determined so that the first step 9 is counted as the end of the conductor when the position of the slot is to be determined which is adapted to the longest wave length. Consequently the exterior step 10 on the planar inner conductor is the starting-point for calculation of the distance to the slot which is adapted to the shortest wavelength.
- the figure shows a conductor with three steps, which is adapted to three slots.
- planar inner conductor can, as is shown in FIG. 1, be squarely cut or it can have a design analogous to the one end of the cut-out in FIG. 3b, 3c and 3d.
- planar inner conductor is increased in step form so that it gradually or continuously becomes broader towards its end.
- An antenna according to the invention is impedance matched to the transmission line by rotating the slots with respect to the conductor or by moving them at right angle to the conductor.
- the slots must not be displaced so much that they do not intersect the conductor and they must not be rotated to the point that they are in parallel with the conductor as the antenna then is quite choked.
- An advantage in the construction of an antenna according to the invention is that it is possible to mass produce the same by photo engraving techniques.
- an antenna As an example of the dimensioning of an antenna consider one built up according to FIG. 1, but provided with 11 slots.
- the distance from the central 6 slot to the end of the planar inner conductor is about 15 millimeters, the length of the longest slot about 12.5 millimeters and the length of the shortest slot about 10.5 millimeters.
- the width of the slots is about 0.1 millimeters and the distance between them is 0.2 millimeters.
- Such an antenna has, at a standing wave ratio of better than 2, a frequency range covering 9.5 l2 GI-Iz.
- a wideband antenna comprising a strip transmission line having a planar inner conductor and at least one planar outer conductor separated from but electromagnetically coupled to each other by a dielectric medium, said planar inner conductor having a terminating end and said planar outer conductor being provided with a plurality of slots whose projections intersect said planar inner conductor, each of said slots having a length which is a multiple of one half the wavelength of a different particular signal frequency and the distance from each slot to the terminating end of said inner conductor being an odd multiple of a quarter of the wavelength of the associated particular signal frequency in such a way that the slots are displaced from the terminating end of said inner conductor in the order of increasing length with the shortest slot closest to said terminating end.
- a wideband antenna comprising a strip transmission line having a planar inner conductor and at least one planar outer conductor separated from but electromagnetically coupled to each other by a dielectric medium, said planar inner conductor having a terminating end andsaid planar outer conductor being provided with a cut out formed from a plurality of merged subslots whose projections intersect said planar inner conductor; each of said subslots having a length related to a difi'erent particular signal frequency and the distance from each subslot to the terminating end of said inner conductor being related to an odd multiple of a quarter of the wavelength of its associated particular signal frequency in such a way that the subslots are displaced from the terminating end of said inner conductor in the order of increasing length with the shortest slot closest to said terminating end.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Waveguide Aerials (AREA)
- Dental Prosthetics (AREA)
- User Interface Of Digital Computer (AREA)
- Studio Devices (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE1450769A SE538451C2 (sv) | 2013-01-22 | 2013-01-22 | Förbättrad spårning av ett objekt för styrning av ett beröringsfritt användargränssnitt |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3713165A true US3713165A (en) | 1973-01-23 |
Family
ID=20299216
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00077947A Expired - Lifetime US3713165A (en) | 2013-01-22 | 1970-10-05 | Antenna for strip transmission lines |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US3713165A (enExample) |
| FR (1) | FR2073314A1 (enExample) |
| GB (1) | GB1285289A (enExample) |
| NO (1) | NO127999B (enExample) |
| SE (1) | SE538451C2 (enExample) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2350706A1 (fr) * | 1976-05-03 | 1977-12-02 | Raytheon Co | Ensemble d'antenne de radar identificateur |
| US4070676A (en) * | 1975-10-06 | 1978-01-24 | Ball Corporation | Multiple resonance radio frequency microstrip antenna structure |
| US4518967A (en) * | 1982-03-05 | 1985-05-21 | Ford Aerospace & Communications Corporation | Tapered-width leaky-waveguide antenna |
| US5075647A (en) * | 1990-05-16 | 1991-12-24 | Universities Research Association, Inc. | Planar slot coupled microwave hybrid |
| FR2680283A1 (fr) * | 1991-08-07 | 1993-02-12 | Alcatel Espace | Antenne radioelectrique elementaire miniaturisee. |
| FR2705167A1 (fr) * | 1993-05-11 | 1994-11-18 | France Telecom | Antenne plaquée large bande à encombrement réduit, et dispositif d'émission/réception correspondant. |
| JP2010050700A (ja) * | 2008-08-21 | 2010-03-04 | Advanced Telecommunication Research Institute International | アンテナ装置およびそれを備えたアレーアンテナ装置 |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2481526A1 (fr) * | 1980-04-23 | 1981-10-30 | Trt Telecom Radio Electr | Antenne a structure mince |
| GB2212665B (en) * | 1987-11-23 | 1991-09-04 | Gen Electric Co Plc | A slot antenna |
| DE3808401A1 (de) * | 1988-03-12 | 1989-09-21 | Blaupunkt Werke Gmbh | Sichtscheibe fuer fahrzeuge |
| US6043786A (en) * | 1997-05-09 | 2000-03-28 | Motorola, Inc. | Multi-band slot antenna structure and method |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2654842A (en) * | 1951-07-21 | 1953-10-06 | Fed Telecomm Lab Inc | Radio frequency antenna |
| US2993205A (en) * | 1955-08-19 | 1961-07-18 | Litton Ind Of Maryland Inc | Surface wave antenna array with radiators for coupling surface wave to free space wave |
| US2994083A (en) * | 1960-05-24 | 1961-07-25 | Sanders Associates Inc | High frequency transmission line coupling device |
| US3031666A (en) * | 1955-06-06 | 1962-04-24 | Sanders Associates Inc | Three conductor planar antenna |
| US3218644A (en) * | 1963-06-19 | 1965-11-16 | Collins Radio Co | Frequency independent slot antenna |
| US3518688A (en) * | 1965-11-22 | 1970-06-30 | Itt | Microwave strip transmission line adapted for integral slot antenna |
| US3524189A (en) * | 1966-11-09 | 1970-08-11 | Us Army | Slotted waveguide antenna array providing dual frequency operation |
| US3524190A (en) * | 1967-11-20 | 1970-08-11 | Ryan Aeronautical Co | Extendable radio frequency transmission line and antenna structure |
| US3530478A (en) * | 1968-03-27 | 1970-09-22 | Us Navy | Frequency independent log periodic slot multi-mode antenna array |
-
1970
- 1970-10-05 US US00077947A patent/US3713165A/en not_active Expired - Lifetime
- 1970-10-21 GB GB50046/70A patent/GB1285289A/en not_active Expired
- 1970-10-22 FR FR7038150A patent/FR2073314A1/fr not_active Withdrawn
- 1970-10-22 NO NO04007/70A patent/NO127999B/no unknown
-
2013
- 2013-01-22 SE SE1450769A patent/SE538451C2/sv unknown
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2654842A (en) * | 1951-07-21 | 1953-10-06 | Fed Telecomm Lab Inc | Radio frequency antenna |
| US3031666A (en) * | 1955-06-06 | 1962-04-24 | Sanders Associates Inc | Three conductor planar antenna |
| US2993205A (en) * | 1955-08-19 | 1961-07-18 | Litton Ind Of Maryland Inc | Surface wave antenna array with radiators for coupling surface wave to free space wave |
| US2994083A (en) * | 1960-05-24 | 1961-07-25 | Sanders Associates Inc | High frequency transmission line coupling device |
| US3218644A (en) * | 1963-06-19 | 1965-11-16 | Collins Radio Co | Frequency independent slot antenna |
| US3518688A (en) * | 1965-11-22 | 1970-06-30 | Itt | Microwave strip transmission line adapted for integral slot antenna |
| US3524189A (en) * | 1966-11-09 | 1970-08-11 | Us Army | Slotted waveguide antenna array providing dual frequency operation |
| US3524190A (en) * | 1967-11-20 | 1970-08-11 | Ryan Aeronautical Co | Extendable radio frequency transmission line and antenna structure |
| US3530478A (en) * | 1968-03-27 | 1970-09-22 | Us Navy | Frequency independent log periodic slot multi-mode antenna array |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4070676A (en) * | 1975-10-06 | 1978-01-24 | Ball Corporation | Multiple resonance radio frequency microstrip antenna structure |
| FR2350706A1 (fr) * | 1976-05-03 | 1977-12-02 | Raytheon Co | Ensemble d'antenne de radar identificateur |
| US4518967A (en) * | 1982-03-05 | 1985-05-21 | Ford Aerospace & Communications Corporation | Tapered-width leaky-waveguide antenna |
| US5075647A (en) * | 1990-05-16 | 1991-12-24 | Universities Research Association, Inc. | Planar slot coupled microwave hybrid |
| FR2680283A1 (fr) * | 1991-08-07 | 1993-02-12 | Alcatel Espace | Antenne radioelectrique elementaire miniaturisee. |
| EP0527417A1 (fr) * | 1991-08-07 | 1993-02-17 | Alcatel Espace | Antenne radioélectrique élémentaire miniaturisée |
| US5489913A (en) * | 1991-08-07 | 1996-02-06 | Alcatel Espace | Miniaturized radio antenna element |
| FR2705167A1 (fr) * | 1993-05-11 | 1994-11-18 | France Telecom | Antenne plaquée large bande à encombrement réduit, et dispositif d'émission/réception correspondant. |
| JP2010050700A (ja) * | 2008-08-21 | 2010-03-04 | Advanced Telecommunication Research Institute International | アンテナ装置およびそれを備えたアレーアンテナ装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1285289A (en) | 1972-08-16 |
| SE1450769A1 (sv) | 2014-07-23 |
| SE538451C2 (sv) | 2016-07-05 |
| NO127999B (enExample) | 1973-09-10 |
| FR2073314A1 (enExample) | 1971-10-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6043785A (en) | Broadband fixed-radius slot antenna arrangement | |
| CN109088160B (zh) | 天线系统及移动终端 | |
| US4843403A (en) | Broadband notch antenna | |
| US6037911A (en) | Wide bank printed phase array antenna for microwave and mm-wave applications | |
| US5278569A (en) | Plane antenna with high gain and antenna efficiency | |
| US2749545A (en) | Electromagnetic horn | |
| US4125837A (en) | Dual notch fed electric microstrip dipole antennas | |
| US4395685A (en) | Waveguide junction for producing circularly polarized signal | |
| US6940470B2 (en) | Dipole feed arrangement for corner reflector antenna | |
| US3713165A (en) | Antenna for strip transmission lines | |
| JP2001094340A (ja) | キャビティ付きスロットアレーアンテナ | |
| CN109616766B (zh) | 天线系统及通讯终端 | |
| US3577196A (en) | Rollable slot antenna | |
| GB709351A (en) | Radio frequency antennae | |
| WO2018028323A1 (zh) | 天线系统 | |
| EP0468413A2 (en) | Plane antenna with high gain and antenna efficiency | |
| US3164790A (en) | Sinuously folded quarter wave stripline directional coupler | |
| US4443805A (en) | Plate-type antenna with double circular loops | |
| CN109786938B (zh) | 移动终端 | |
| US2794185A (en) | Antenna systems | |
| US11264704B2 (en) | Base station antenna | |
| US3332039A (en) | Three conductor coplanar serpentineline directional coupler | |
| RU2083035C1 (ru) | Высокочастотная плоская антенная решетка | |
| US2895134A (en) | Directional antenna systems | |
| US3949405A (en) | Vertically polarised omnidirectional antenna |