US3703073A - Antistatic yarn production - Google Patents

Antistatic yarn production Download PDF

Info

Publication number
US3703073A
US3703073A US63755A US3703073DA US3703073A US 3703073 A US3703073 A US 3703073A US 63755 A US63755 A US 63755A US 3703073D A US3703073D A US 3703073DA US 3703073 A US3703073 A US 3703073A
Authority
US
United States
Prior art keywords
bundle
metal
textile
draw rolls
bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US63755A
Inventor
Reid C Goodbar
Arther Mitchell Pressley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riegel Textile Corp
Original Assignee
Riegel Textile Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riegel Textile Corp filed Critical Riegel Textile Corp
Application granted granted Critical
Publication of US3703073A publication Critical patent/US3703073A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/12Threads containing metallic filaments or strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/901Antistatic

Definitions

  • FIG. 5 34 L all. mm 35'- j 330 I 'i 32 ll 1.,
  • Each metal tow may contain for example, 300 filaments of 8 microns diameter each and during drawing of the metal tow, slubs have resulted frequently when the initial set of draw rolls cut through the whole of the metal tow instead of causing a gradual attenuation. Such slubs never draw out thereafter notwithstanding several subsequent drawing operations. The final result is nonuniform and poor distribution of the metal filaments throughout the yarn and highly visible grey streaks which will appear in the finished product.
  • the present invention is concerned with an improved technique for distributing staple lengths of metal filaments throughout yarns more uniformly to a) improve the anti-static effect and b) enhance the uniformity and appearance of the product. It is believed that the short staple lengths of metal interspersed uniformly as they are, when charged cause local ionization of the adjacent air and a consequent bleeding off or neutralization of static charges without depending upon conduction of the charge to ground.
  • the method comprises the simultaneous drawing of a textile fiber sliver and a metal filament tow while controlling the tension forces upon the metal filaments in the tow such that gradual breaking of filaments in the tow occurs and the filaments are distributed evenly in staple lengths throughout the textile fiber.
  • the metal filaments are drawn, they are subjected to the action of thereto which is guided into continuous contact with the textile fiber tow.
  • FIGS. 1 and 2 illustrate in plan view a typical draw frame for carrying out the method of the present invention
  • FIG. 3 is a vertical cross-section taken in the direction of arrows 3--3 of FIG. 1; 7
  • FIG. 4 is a cross-section taken in the direction of arrows 4-4 of FIG. 3;
  • FIG. 5 is a cross-secton taken in the direction of arrows 5-5 of FIG. 1;
  • FIG. 6 is a plan view illustrating the even distribution of metal filament due to the drawing action from respective draw rolls.
  • FIG. 7 is a schematic illustration of a woven fabric showing a typical distribution of metal filaments in the warp and filing directions produced by the vention.
  • the draw frame 10 includes sets of four, paired draw rolls 11 comprising individual rolls 12-15. These are joumaled in bearings for rotation in frame members 16 and 17. Rolls 12-15 are driven in the conventional manner by means (not shown). Rolls 13 are driven'slightly faster than rolls 12, rolls 14 faster than 13 and so on to attenuate the sliver as it passes through the sets of rolls. Furthermore, as is conventional, rolls 13 will have a greater number of teeth than rolls 12, 14 a greater number than 13 and rolls 15 the greatest number of teeth.
  • the separation on centers for example between rolls 12 and 13 in a particular embodiment will be 1 It", 1 will separate rolls 13 and 14and 1 '58" will separate rolls 14 and 15.
  • the several slivers (and as will be further described, metal multifilaments dispersed throughout certain slivers) are gathered and enter bin 18 through tube 19. At this point the respective slivers including those having metal multifilaments have been mixed or blended into a single sliver.
  • Another successive drawing or drawings will then follow until fiber attenuation, orientation and further mixing or blending is completed. It will be understood that the apparatus thus far described is conventional.
  • two sets of rolls 11 will be mounted side by side, each set being adapted to receive 8 slivers comprising for example three slivers of cotton and five of polyester fiber.
  • the slivers may be individually designated by reference numerals 20-24. with the cotton slivers designated by reference numerals 21 and 22 and the remainder polyester present inp slivers.
  • Each sliver is guided as it is being fed into the draw rolls by a rearward set of spoons 20a24a and a forward set 20b-24b corresponding to slivers 20-24.
  • Spools 26 and 27 contain a quantity of stainless steel in the form of tows 28, 29.
  • an austenitic stainless steel essentially high grade 18/8 chrome, nickel alloy
  • Brunsmet-304 which is an 8 micron 300 filament tow marketed by Brunswick Corporation Technical Products Diva, Chicago, Ill.
  • the invention contemplates the use of such filaments in the 4-12 micron range.
  • the tows 28 and 29 first pass from the spools past cut off switches 30, 31 whose arms 30a, 31a sense the presence of each tow 28 and 29. It is the function of the switches 30, 31 to cause the operation of draw rolls 12-15 to cease whenever a break in either of tows 28 and 29 occurs.
  • the stainless steel tows 28 and 29 are fed through guides 32 (FIG. which are mounted to,
  • laterally adjustable bracket members 33 secured to frame member 34, by angles 35.
  • the purpose of guides 32 is to assure the precise positioning of each tow 28, 29 such that these will be fed directly upon underlying tows 21 and 22. Lateral adjustment permitted by the elongated slot 33a in bracket 33 will allow the precise adjustment of this relationship.
  • stainless steel filaments will break and gradually be drawn together with cotton slivers 21 and 22. Since the slivers 21 and 22 lie underneath stainless steel tows 28, 29, the cotton fibers will act to cushion the engaging effect of the rolls upon the steel filaments such that the rolls will not cut through the steel tow. Rather, as best seen in FIG. 6, the tows 28 and 29 will be subjected to a gradual attenuation due to the controlled tension placed thereupon by the engagement of adjacent rolls 12 through 15. Thus, very few breaks will occur at the engaging points of the rolls themselves but rather gradual breakage due to the cushioning action occurs primarily between the respective draw rolls.
  • FIG. 7 illustrates a typical distribution of steel filaments (greatly enlarged) in both weft and filling directions.
  • the method of drawing and blending textile fiber and metal filaments while maintaining contact with each other comprising, feeding at least one bundle of fibers of textile material through draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, guiding said metal bundle relative to said textile bundle to cause the latter continuously to cushion said metal bundle with respect to said draw rolls when passing therethrough while controlling the tension force on said metal filaments, to break limited numbers of said filaments generally continuously during the period of drawing.
  • Apparatus for simultaneous drawing of bundles of textile fiber and metal filaments comprising, at least one pair of draw rolls, means for feeding at least one bundle of a textile fiber into said draw rolls, means for feeding at least one bundle of metal filaments into draw rolls and means for guiding one of said textile and fiber bundles directly onto the other of said textile and fiber bundles while said textile and fiber bundles are passing through said first pair of draw rolls so that said metal bundle is not brought directly into contact with both draw rolls of said first pair due to the interposition and cushioning of said fiber bundle between said metal bundle and said draw rolls, said guide means further causing the metal and textile bundles to be brought initially into contact with each other without twisting of said textile bundle or envelopment of said metal bundle by said textile bundle immediately prior to passing through said first pair of draw rolls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

There is disclosed a method and apparatus for producing yarn having discontinuous staple lengths of metal filaments uniformly interspersed therein by preventing slubbing of the metal multifilament tow during drawing thereof.

Description

United States Patent [151 3,703,073 Goodbar et al. 1 Nov. 21, 1972 [54] ANTISTATIC YARN PRODUCTION 3,288,175 11/1966 Valko ..57/157 AS UX [72] Inventors: Reid C. Gwdbar; Arm" Mitchell 3,422,460 I/ 1969 Burke et al ..139/425 R X P sle both of ware Shoals S C 3,371,247 2/ 1968 Mullenger ..57/ 140 BY 3,582,444 6/1971 Ngo et a1. ..57/140 BY x [73] Assignee: Riegel Textile Corporation, Ware 3,582,445 6/ 1971 Okuhashi ..57/157 AS X Shoals, S.C. 3,582,448 6/1971 I O kuhashi ..57/140 BY X Filed!v g- 14, 1970 OTHER PUBLICATIONS [21] Appl.No.: 63,755 Man-ade Textiles, January 1966, Vol. 43, No. 499,
page 33. [52] US. Cl ..57/36, l9/.37, 57/157 AS Primary Examiner DonaldE'watkim [5 Int. CL ..DOlg Attorney-Fannie, Edmonds, Morton, Taylor & [58] Field of Search ..57/2, 6, 36, 55.5, 97, 140, Adams 57/140 BY, 156, 157 AS, 34 R; l9/.3, .35,
' .37, .39, .41, .43, .46, .56; 134/425 57 ABSTRACT [56] References Cited There is disclosed a method and apparatus for produc- UNITED STATES PATENTS ing yarn having discontinuous staple lengths of metal filaments uniformly interspersed therein by preventing slubbing of the metal multifilament tow during draw- 2,132,524 10/1938 Booth ..l9/.43 X ing thereof. 2,160,178 5/1939 Sitzler et a] ..l9/.37 2,990,673 7/1961 Adkins ..57/36 9 Claims, 7 Drawing Figures 'l I!" I 'I 11 {1 I FIG. I
PATENTED IIIIY 2 1 I972 SHEET 1 IJF 4 INVENTORS REID C. GOODBAR RTHER MITCHELL PRESSLEY BY t l W 6 4; 1%
ATTORNEYS PATENTEDNHYZI I972 3.703. 073
sum 2 [1F 4 PATENTED W21 m2 3. 7 03.0 73
' snmuum FIG. 5 34 L all. mm 35'- j 330 I 'i 32 ll 1.,
FIG. 6
FIG?
REID C. GOODBAR ARTHER MITCHELL PRESSLEY ATTORNEYS ANTISTATIC YARN PRODUCTION BACKGROUND OF THE INVENTION In recent years yarns have been developed which when woven into clothing tend to prevent or dissipate electrostatic charges. Such charges are generally the result of friction between fabrics and can be a source of danger or discomfort upon discharge by sparking. It is importantfor example to prevent electrical discharges in the form of sparks in a hospital operating environment wherev oxygen in the presence of highly flammable materials is used or when explosive or flammable anesthetic gases are being administered. Computer installations are particularly susceptible to the introduction of error signals caused by static discharge. Certain chemical and other processes must be protected from static discharge through sparking. Other obvious examples of situations which should be kept free from static discharges through sparking are explosive handling and fuel handling.
Various textile yarns have been proposed which incorporate a small quantity of metal filament, usually a stainless steel, which runs as a continuous strand throughout a yarn or is interspersed in short staple lengths therein. In either case the conduction of incipient electrostatic charges is expected along such yarns to some point where the charge is dissipated or bled off to ground. One of the problems associated with the production of yarns containing staple lengths of metal filament has been the occurrence of slubbing. Slubs are a group or bundle of metal filaments caused by incomplete separation of the metal filaments of a breaker-drawn multifilament tow. Each metal tow may contain for example, 300 filaments of 8 microns diameter each and during drawing of the metal tow, slubs have resulted frequently when the initial set of draw rolls cut through the whole of the metal tow instead of causing a gradual attenuation. Such slubs never draw out thereafter notwithstanding several subsequent drawing operations. The final result is nonuniform and poor distribution of the metal filaments throughout the yarn and highly visible grey streaks which will appear in the finished product.
The present invention is concerned with an improved technique for distributing staple lengths of metal filaments throughout yarns more uniformly to a) improve the anti-static effect and b) enhance the uniformity and appearance of the product. It is believed that the short staple lengths of metal interspersed uniformly as they are, when charged cause local ionization of the adjacent air and a consequent bleeding off or neutralization of static charges without depending upon conduction of the charge to ground.
SUMMARY OF THE INVENTION In accordance with the present invention a method and apparatus have been devised for drawing a combination yarn consisting of textile fiber and metallic filament. Broadly, the method comprises the simultaneous drawing of a textile fiber sliver and a metal filament tow while controlling the tension forces upon the metal filaments in the tow such that gradual breaking of filaments in the tow occurs and the filaments are distributed evenly in staple lengths throughout the textile fiber. In accordance with the invention, as the metal filaments are drawn, they are subjected to the action of thereto which is guided into continuous contact with the textile fiber tow.
BRIEF DESCRIPTION OF THE DRAWING FIGS. 1 and 2 illustrate in plan view a typical draw frame for carrying out the method of the present invention;
- FIG. 3 is a vertical cross-section taken in the direction of arrows 3--3 of FIG. 1; 7
FIG. 4 is a cross-section taken in the direction of arrows 4-4 of FIG. 3;
FIG. 5 is a cross-secton taken in the direction of arrows 5-5 of FIG. 1;
FIG. 6 is a plan view illustrating the even distribution of metal filament due to the drawing action from respective draw rolls; and
FIG. 7 is a schematic illustration of a woven fabric showing a typical distribution of metal filaments in the warp and filing directions produced by the vention.
DESCRIPTION OF A PARTICULAR EMBODIMENT Referring to the drawing, a draw frame 10 modified in accordance with the principles of the present invention has been illustrated. As shown in FIG. 1, the draw frame 10 includes sets of four, paired draw rolls 11 comprising individual rolls 12-15. These are joumaled in bearings for rotation in frame members 16 and 17. Rolls 12-15 are driven in the conventional manner by means (not shown). Rolls 13 are driven'slightly faster than rolls 12, rolls 14 faster than 13 and so on to attenuate the sliver as it passes through the sets of rolls. Furthermore, as is conventional, rolls 13 will have a greater number of teeth than rolls 12, 14 a greater number than 13 and rolls 15 the greatest number of teeth. The separation on centers for example between rolls 12 and 13 in a particular embodiment will be 1 It", 1 will separate rolls 13 and 14and 1 '58" will separate rolls 14 and 15. After passing through the sets of rolls 11, the several slivers (and as will be further described, metal multifilaments dispersed throughout certain slivers) are gathered and enter bin 18 through tube 19. At this point the respective slivers including those having metal multifilaments have been mixed or blended into a single sliver. Another successive drawing or drawings will then follow until fiber attenuation, orientation and further mixing or blending is completed. It will be understood that the apparatus thus far described is conventional.
In the draw frame 10, two sets of rolls 11 will be mounted side by side, each set being adapted to receive 8 slivers comprising for example three slivers of cotton and five of polyester fiber. For purposes of clarity, only one set of rolls 11 has been illustrated and only 5 slivers are shown being fed into the draw rolls. The slivers may be individually designated by reference numerals 20-24. with the cotton slivers designated by reference numerals 21 and 22 and the remainder polyester present inp slivers. Each sliver is guided as it is being fed into the draw rolls by a rearward set of spoons 20a24a and a forward set 20b-24b corresponding to slivers 20-24. Spools 26 and 27 contain a quantity of stainless steel in the form of tows 28, 29. These may be, for example, an austenitic stainless steel (essentially high grade 18/8 chrome, nickel alloy) such as Brunsmet-304 which is an 8 micron 300 filament tow marketed by Brunswick Corporation Technical Products Diva, Chicago, Ill. By way of example but without limitation, the invention contemplates the use of such filaments in the 4-12 micron range. v
The tows 28 and 29 first pass from the spools past cut off switches 30, 31 whose arms 30a, 31a sense the presence of each tow 28 and 29. It is the function of the switches 30, 31 to cause the operation of draw rolls 12-15 to cease whenever a break in either of tows 28 and 29 occurs. The stainless steel tows 28 and 29 are fed through guides 32 (FIG. which are mounted to,
laterally adjustable bracket members 33 secured to frame member 34, by angles 35. The purpose of guides 32 is to assure the precise positioning of each tow 28, 29 such that these will be fed directly upon underlying tows 21 and 22. Lateral adjustment permitted by the elongated slot 33a in bracket 33 will allow the precise adjustment of this relationship.
As the tows 28, 29 proceed through rolls 12-15, the
, stainless steel filaments will break and gradually be drawn together with cotton slivers 21 and 22. Since the slivers 21 and 22 lie underneath stainless steel tows 28, 29, the cotton fibers will act to cushion the engaging effect of the rolls upon the steel filaments such that the rolls will not cut through the steel tow. Rather, as best seen in FIG. 6, the tows 28 and 29 will be subjected to a gradual attenuation due to the controlled tension placed thereupon by the engagement of adjacent rolls 12 through 15. Thus, very few breaks will occur at the engaging points of the rolls themselves but rather gradual breakage due to the cushioning action occurs primarily between the respective draw rolls. Because the engaging rolls encounter constantly varying amounts of the steel filaments in combination with varying amounts of textile fiber, which variation helps to prevent a build-up of tension forces at any particular point, the breaking process occurs only a few filaments at a time. As a result, slubs (relatively large bundles of filaments in short staple lengths) only rarely occur and the steel filaments are generally finely dispersed through the lengths of cotton.
Practice has shown that cotton fiber provides a better cushioning effect than polyester fiber perhaps for the reason that the surface friction characteristics of both cotton and the stainless steel filament used are similar. In any event, the juxtaposition of stainless steel and of cotton as shown, very effectively prevents slubbing and causes an even distribution of staple lengths of stainless steel filament throughout the yarn. It has been found that in general, the formation of slubs using the principles of the invention is minimal and that on the average only 200 small slubs may be found in any given sample of l00 linear yards of grey goods. This is in comparison with goods made according to a prior process having about 1300 much larger slubs in 100 linear yards of material. X-ray examination of grey goods produced by the presently disclosed process (FIG. 7) reveals that combinations of filaments where they occur average no more than four filaments per bundle (4-12 microns) and are invisible to the naked eye. FIG. 7 illustrates a typical distribution of steel filaments (greatly enlarged) in both weft and filling directions.
It will be understood that the foregoing description relates to a particular embodiment of the invention and is therefore representative. In order to appreciate the scope and spirit of the present invention, reference should be made to the appended claims.
What is claimed is:
1. The method of drawing and blending textile fiber and metal filaments while maintaining contact with each other comprising, feeding at least one bundle of fibers of textile material through draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, guiding said metal bundle relative to said textile bundle to cause the latter continuously to cushion said metal bundle with respect to said draw rolls when passing therethrough while controlling the tension force on said metal filaments, to break limited numbers of said filaments generally continuously during the period of drawing.
2. The method according to claim 1 wherein said bundle of textile material and bundle of multifilament metal are fed into a plurality of successive sets of draw rolls and said metal bundle is guided into the first set of rolls.
3. The method according to claim 2 wherein said draw rolls are arranged horizontally, and a plurality of textile bundles and metal bundles are fed to said rolls, said textile bundles being in side by side relationship and each of said metal bundles overlying one of said textile bundles.
4. The method according to claim 1 wherein said textile bundles and metal bundles have similar surface friction characteristics with respect to said draw rolls.
5. The method according to claim 4 wherein said textile bundle is cotton and said metal bundle is stainless steel.
a 6. The method according to claim 5 wherein said stainless steel is made of metal filaments in the 4 to 12 micron range.
7. The method according to claim 1 wherein the textile bundles after drawing are passed through a roving and spinning steps to create yarn.
8. Apparatus for simultaneous drawing of bundles of textile fiber and metal filaments comprising, at least one pair of draw rolls, means for feeding at least one bundle of a textile fiber into said draw rolls, means for feeding at least one bundle of metal filaments into draw rolls and means for guiding one of said textile and fiber bundles directly onto the other of said textile and fiber bundles while said textile and fiber bundles are passing through said first pair of draw rolls so that said metal bundle is not brought directly into contact with both draw rolls of said first pair due to the interposition and cushioning of said fiber bundle between said metal bundle and said draw rolls, said guide means further causing the metal and textile bundles to be brought initially into contact with each other without twisting of said textile bundle or envelopment of said metal bundle by said textile bundle immediately prior to passing through said first pair of draw rolls.
9. The apparatus of claim 8 wherein several pairs of draw rolls are arranged sequentially.
* I! II

Claims (9)

1. The method of drawing and blending textile fiber and metal filaments while maintaining contact with each other comprising, feeding at least onE bundle of fibers of textile material through draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, guiding said metal bundle relative to said textile bundle to cause the latter continuously to cushion said metal bundle with respect to said draw rolls when passing therethrough while controlling the tension force on said metal filaments, to break limited numbers of said filaments generally continuously during the period of drawing.
1. The method of drawing and blending textile fiber and metal filaments while maintaining contact with each other comprising, feeding at least onE bundle of fibers of textile material through draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, guiding said metal bundle relative to said textile bundle to cause the latter continuously to cushion said metal bundle with respect to said draw rolls when passing therethrough while controlling the tension force on said metal filaments, to break limited numbers of said filaments generally continuously during the period of drawing.
2. The method according to claim 1 wherein said bundle of textile material and bundle of multifilament metal are fed into a plurality of successive sets of draw rolls and said metal bundle is guided into the first set of rolls.
3. The method according to claim 2 wherein said draw rolls are arranged horizontally, and a plurality of textile bundles and metal bundles are fed to said rolls, said textile bundles being in side by side relationship and each of said metal bundles overlying one of said textile bundles.
4. The method according to claim 1 wherein said textile bundles and metal bundles have similar surface friction characteristics with respect to said draw rolls.
5. The method according to claim 4 wherein said textile bundle is cotton and said metal bundle is stainless steel.
6. The method according to claim 5 wherein said stainless steel is made of metal filaments in the 4 to 12 micron range.
7. The method according to claim 1 wherein the textile bundles after drawing are passed through a roving and spinning steps to create yarn.
8. Apparatus for simultaneous drawing of bundles of textile fiber and metal filaments comprising, at least one pair of draw rolls, means for feeding at least one bundle of a textile fiber into said draw rolls, means for feeding at least one bundle of metal filaments into draw rolls and means for guiding one of said textile and fiber bundles directly onto the other of said textile and fiber bundles while said textile and fiber bundles are passing through said first pair of draw rolls so that said metal bundle is not brought directly into contact with both draw rolls of said first pair due to the interposition and cushioning of said fiber bundle between said metal bundle and said draw rolls, said guide means further causing the metal and textile bundles to be brought initially into contact with each other without twisting of said textile bundle or envelopment of said metal bundle by said textile bundle immediately prior to passing through said first pair of draw rolls.
US63755A 1970-08-14 1970-08-14 Antistatic yarn production Expired - Lifetime US3703073A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6375570A 1970-08-14 1970-08-14

Publications (1)

Publication Number Publication Date
US3703073A true US3703073A (en) 1972-11-21

Family

ID=22051284

Family Applications (1)

Application Number Title Priority Date Filing Date
US63755A Expired - Lifetime US3703073A (en) 1970-08-14 1970-08-14 Antistatic yarn production

Country Status (1)

Country Link
US (1) US3703073A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369622A (en) * 1980-03-24 1983-01-25 Riegel Textile Corporation Method and apparatus for drawing and blending textile materials
EP0280340A1 (en) * 1987-01-30 1988-08-31 N.V. Bekaert S.A. Method for the manufacture of gear-wheel crimped metal fibers and products comprising these fibers
US4771596A (en) * 1970-04-20 1988-09-20 Brunswick Corporation Method of making fiber composite
US20130309508A1 (en) * 2012-05-18 2013-11-21 Kirk J. Abbey Acrylic adhesion promoters

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2132524A (en) * 1937-06-21 1938-10-11 Sanford Mills Process of making yarn from continuous rayon and staple fiber
US2160178A (en) * 1937-11-16 1939-05-30 Celanese Corp Yarn and fabric and method of making same
US2990673A (en) * 1954-01-06 1961-07-04 Celanese Corp Process and apparatus for producing core yarns
US3288175A (en) * 1964-10-22 1966-11-29 Stevens & Co Inc J P Textile material
US3371247A (en) * 1966-05-12 1968-02-27 Keith E. Mullenger Antistatic carpet and method of fabrication
US3422460A (en) * 1966-10-17 1969-01-21 Sears Roebuck & Co Static-inhibiting garment
US3582445A (en) * 1967-11-18 1971-06-01 Teijin Ltd Carpet having durable antistatic properties
US3582448A (en) * 1968-04-23 1971-06-01 Teijin Ltd Garments having durable antistatic properties
US3582444A (en) * 1967-05-01 1971-06-01 Dow Chemical Co Self-extinguishing and static charge resistant pile fabric

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2132524A (en) * 1937-06-21 1938-10-11 Sanford Mills Process of making yarn from continuous rayon and staple fiber
US2160178A (en) * 1937-11-16 1939-05-30 Celanese Corp Yarn and fabric and method of making same
US2990673A (en) * 1954-01-06 1961-07-04 Celanese Corp Process and apparatus for producing core yarns
US3288175A (en) * 1964-10-22 1966-11-29 Stevens & Co Inc J P Textile material
US3371247A (en) * 1966-05-12 1968-02-27 Keith E. Mullenger Antistatic carpet and method of fabrication
US3422460A (en) * 1966-10-17 1969-01-21 Sears Roebuck & Co Static-inhibiting garment
US3582444A (en) * 1967-05-01 1971-06-01 Dow Chemical Co Self-extinguishing and static charge resistant pile fabric
US3582445A (en) * 1967-11-18 1971-06-01 Teijin Ltd Carpet having durable antistatic properties
US3582448A (en) * 1968-04-23 1971-06-01 Teijin Ltd Garments having durable antistatic properties

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Man Made Textiles, January 1966, Vol. 43, No. 499, page 33. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771596A (en) * 1970-04-20 1988-09-20 Brunswick Corporation Method of making fiber composite
US4369622A (en) * 1980-03-24 1983-01-25 Riegel Textile Corporation Method and apparatus for drawing and blending textile materials
EP0280340A1 (en) * 1987-01-30 1988-08-31 N.V. Bekaert S.A. Method for the manufacture of gear-wheel crimped metal fibers and products comprising these fibers
BE1000278A3 (en) * 1987-01-30 1988-10-04 Bekaert Sa Nv A method for manufacturing tooth roll-crimped METAL FIBERS AND PRODUCTS COMPRISING these fibers.
US20130309508A1 (en) * 2012-05-18 2013-11-21 Kirk J. Abbey Acrylic adhesion promoters
US8859098B2 (en) * 2012-05-18 2014-10-14 Lord Corporation Acrylic adhesion promoters

Similar Documents

Publication Publication Date Title
US3987613A (en) Process for preparing textiles without static charge accumulation and resulting product
US4080778A (en) Direct spinning process for stretch-breaking continuous filaments to form entangled yarn
US20030051458A1 (en) Method of manufacturing electro-magnetic wave shielding yarn
EP0370111A1 (en) Polyester-cotton blended yarns and staple fibers of polyester used therefor
US3342028A (en) Method of producing an elastic core yarn
US4369622A (en) Method and apparatus for drawing and blending textile materials
US3828543A (en) Antistatic yarn
US4118921A (en) Yarn of entangled fibers
US3596458A (en) Spun yarn of elastic fiber and preparation thereof
US3657871A (en) Method and apparatus for spreading or dividing yarn, tow or the like
US4196574A (en) Composite yarn and method of manufacture
US3703073A (en) Antistatic yarn production
US3251097A (en) Methods for producing blended yarn
US3460338A (en) Stretch yarn
US3303640A (en) Method of producing composite elastic yarn
EP0520023A1 (en) Spinning of high molecular weight polyethylene fiber and the resulting spun fiber.
US3670485A (en) Method of and apparatus for forming metal fiber textile blend and metal fiber textile product
KR900018435A (en) Blended short filament yarn of high quality cotton yarn and its manufacturing method
US3334483A (en) Method of making direct spinner novelty yarn
US3895417A (en) Sliver guide
US3789461A (en) Apparatus for preparing spun yarn
US4519201A (en) Process for blending fibers and textiles obtained from the fiber blends
US3651201A (en) High-elongation-and-tenacity nylon tire yarn
US3393505A (en) Composite elastic yarn
US3153316A (en) Bulky yarn and method of producing the yarn

Legal Events

Date Code Title Description
PS Patent suit(s) filed
DI Adverse decision in interference

Effective date: 19860328