US3703073A - Antistatic yarn production - Google Patents
Antistatic yarn production Download PDFInfo
- Publication number
- US3703073A US3703073A US63755A US3703073DA US3703073A US 3703073 A US3703073 A US 3703073A US 63755 A US63755 A US 63755A US 3703073D A US3703073D A US 3703073DA US 3703073 A US3703073 A US 3703073A
- Authority
- US
- United States
- Prior art keywords
- bundle
- metal
- textile
- draw rolls
- bundles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/12—Threads containing metallic filaments or strips
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S57/00—Textiles: spinning, twisting, and twining
- Y10S57/901—Antistatic
Definitions
- FIG. 5 34 L all. mm 35'- j 330 I 'i 32 ll 1.,
- Each metal tow may contain for example, 300 filaments of 8 microns diameter each and during drawing of the metal tow, slubs have resulted frequently when the initial set of draw rolls cut through the whole of the metal tow instead of causing a gradual attenuation. Such slubs never draw out thereafter notwithstanding several subsequent drawing operations. The final result is nonuniform and poor distribution of the metal filaments throughout the yarn and highly visible grey streaks which will appear in the finished product.
- the present invention is concerned with an improved technique for distributing staple lengths of metal filaments throughout yarns more uniformly to a) improve the anti-static effect and b) enhance the uniformity and appearance of the product. It is believed that the short staple lengths of metal interspersed uniformly as they are, when charged cause local ionization of the adjacent air and a consequent bleeding off or neutralization of static charges without depending upon conduction of the charge to ground.
- the method comprises the simultaneous drawing of a textile fiber sliver and a metal filament tow while controlling the tension forces upon the metal filaments in the tow such that gradual breaking of filaments in the tow occurs and the filaments are distributed evenly in staple lengths throughout the textile fiber.
- the metal filaments are drawn, they are subjected to the action of thereto which is guided into continuous contact with the textile fiber tow.
- FIGS. 1 and 2 illustrate in plan view a typical draw frame for carrying out the method of the present invention
- FIG. 3 is a vertical cross-section taken in the direction of arrows 3--3 of FIG. 1; 7
- FIG. 4 is a cross-section taken in the direction of arrows 4-4 of FIG. 3;
- FIG. 5 is a cross-secton taken in the direction of arrows 5-5 of FIG. 1;
- FIG. 6 is a plan view illustrating the even distribution of metal filament due to the drawing action from respective draw rolls.
- FIG. 7 is a schematic illustration of a woven fabric showing a typical distribution of metal filaments in the warp and filing directions produced by the vention.
- the draw frame 10 includes sets of four, paired draw rolls 11 comprising individual rolls 12-15. These are joumaled in bearings for rotation in frame members 16 and 17. Rolls 12-15 are driven in the conventional manner by means (not shown). Rolls 13 are driven'slightly faster than rolls 12, rolls 14 faster than 13 and so on to attenuate the sliver as it passes through the sets of rolls. Furthermore, as is conventional, rolls 13 will have a greater number of teeth than rolls 12, 14 a greater number than 13 and rolls 15 the greatest number of teeth.
- the separation on centers for example between rolls 12 and 13 in a particular embodiment will be 1 It", 1 will separate rolls 13 and 14and 1 '58" will separate rolls 14 and 15.
- the several slivers (and as will be further described, metal multifilaments dispersed throughout certain slivers) are gathered and enter bin 18 through tube 19. At this point the respective slivers including those having metal multifilaments have been mixed or blended into a single sliver.
- Another successive drawing or drawings will then follow until fiber attenuation, orientation and further mixing or blending is completed. It will be understood that the apparatus thus far described is conventional.
- two sets of rolls 11 will be mounted side by side, each set being adapted to receive 8 slivers comprising for example three slivers of cotton and five of polyester fiber.
- the slivers may be individually designated by reference numerals 20-24. with the cotton slivers designated by reference numerals 21 and 22 and the remainder polyester present inp slivers.
- Each sliver is guided as it is being fed into the draw rolls by a rearward set of spoons 20a24a and a forward set 20b-24b corresponding to slivers 20-24.
- Spools 26 and 27 contain a quantity of stainless steel in the form of tows 28, 29.
- an austenitic stainless steel essentially high grade 18/8 chrome, nickel alloy
- Brunsmet-304 which is an 8 micron 300 filament tow marketed by Brunswick Corporation Technical Products Diva, Chicago, Ill.
- the invention contemplates the use of such filaments in the 4-12 micron range.
- the tows 28 and 29 first pass from the spools past cut off switches 30, 31 whose arms 30a, 31a sense the presence of each tow 28 and 29. It is the function of the switches 30, 31 to cause the operation of draw rolls 12-15 to cease whenever a break in either of tows 28 and 29 occurs.
- the stainless steel tows 28 and 29 are fed through guides 32 (FIG. which are mounted to,
- laterally adjustable bracket members 33 secured to frame member 34, by angles 35.
- the purpose of guides 32 is to assure the precise positioning of each tow 28, 29 such that these will be fed directly upon underlying tows 21 and 22. Lateral adjustment permitted by the elongated slot 33a in bracket 33 will allow the precise adjustment of this relationship.
- stainless steel filaments will break and gradually be drawn together with cotton slivers 21 and 22. Since the slivers 21 and 22 lie underneath stainless steel tows 28, 29, the cotton fibers will act to cushion the engaging effect of the rolls upon the steel filaments such that the rolls will not cut through the steel tow. Rather, as best seen in FIG. 6, the tows 28 and 29 will be subjected to a gradual attenuation due to the controlled tension placed thereupon by the engagement of adjacent rolls 12 through 15. Thus, very few breaks will occur at the engaging points of the rolls themselves but rather gradual breakage due to the cushioning action occurs primarily between the respective draw rolls.
- FIG. 7 illustrates a typical distribution of steel filaments (greatly enlarged) in both weft and filling directions.
- the method of drawing and blending textile fiber and metal filaments while maintaining contact with each other comprising, feeding at least one bundle of fibers of textile material through draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, guiding said metal bundle relative to said textile bundle to cause the latter continuously to cushion said metal bundle with respect to said draw rolls when passing therethrough while controlling the tension force on said metal filaments, to break limited numbers of said filaments generally continuously during the period of drawing.
- Apparatus for simultaneous drawing of bundles of textile fiber and metal filaments comprising, at least one pair of draw rolls, means for feeding at least one bundle of a textile fiber into said draw rolls, means for feeding at least one bundle of metal filaments into draw rolls and means for guiding one of said textile and fiber bundles directly onto the other of said textile and fiber bundles while said textile and fiber bundles are passing through said first pair of draw rolls so that said metal bundle is not brought directly into contact with both draw rolls of said first pair due to the interposition and cushioning of said fiber bundle between said metal bundle and said draw rolls, said guide means further causing the metal and textile bundles to be brought initially into contact with each other without twisting of said textile bundle or envelopment of said metal bundle by said textile bundle immediately prior to passing through said first pair of draw rolls.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
There is disclosed a method and apparatus for producing yarn having discontinuous staple lengths of metal filaments uniformly interspersed therein by preventing slubbing of the metal multifilament tow during drawing thereof.
Description
United States Patent [151 3,703,073 Goodbar et al. 1 Nov. 21, 1972 [54] ANTISTATIC YARN PRODUCTION 3,288,175 11/1966 Valko ..57/157 AS UX [72] Inventors: Reid C. Gwdbar; Arm" Mitchell 3,422,460 I/ 1969 Burke et al ..139/425 R X P sle both of ware Shoals S C 3,371,247 2/ 1968 Mullenger ..57/ 140 BY 3,582,444 6/1971 Ngo et a1. ..57/140 BY x [73] Assignee: Riegel Textile Corporation, Ware 3,582,445 6/ 1971 Okuhashi ..57/157 AS X Shoals, S.C. 3,582,448 6/1971 I O kuhashi ..57/140 BY X Filed!v g- 14, 1970 OTHER PUBLICATIONS [21] Appl.No.: 63,755 Man-ade Textiles, January 1966, Vol. 43, No. 499,
' .37, .39, .41, .43, .46, .56; 134/425 57 ABSTRACT [56] References Cited There is disclosed a method and apparatus for produc- UNITED STATES PATENTS ing yarn having discontinuous staple lengths of metal filaments uniformly interspersed therein by preventing slubbing of the metal multifilament tow during draw- 2,132,524 10/1938 Booth ..l9/.43 X ing thereof. 2,160,178 5/1939 Sitzler et a] ..l9/.37 2,990,673 7/1961 Adkins ..57/36 9 Claims, 7 Drawing Figures 'l I!" I 'I 11 {1 I FIG. I
PATENTED IIIIY 2 1 I972 SHEET 1 IJF 4 INVENTORS REID C. GOODBAR RTHER MITCHELL PRESSLEY BY t l W 6 4; 1%
ATTORNEYS PATENTEDNHYZI I972 3.703. 073
sum 2 [1F 4 PATENTED W21 m2 3. 7 03.0 73
' snmuum FIG. 5 34 L all. mm 35'- j 330 I 'i 32 ll 1.,
FIG. 6
FIG?
REID C. GOODBAR ARTHER MITCHELL PRESSLEY ATTORNEYS ANTISTATIC YARN PRODUCTION BACKGROUND OF THE INVENTION In recent years yarns have been developed which when woven into clothing tend to prevent or dissipate electrostatic charges. Such charges are generally the result of friction between fabrics and can be a source of danger or discomfort upon discharge by sparking. It is importantfor example to prevent electrical discharges in the form of sparks in a hospital operating environment wherev oxygen in the presence of highly flammable materials is used or when explosive or flammable anesthetic gases are being administered. Computer installations are particularly susceptible to the introduction of error signals caused by static discharge. Certain chemical and other processes must be protected from static discharge through sparking. Other obvious examples of situations which should be kept free from static discharges through sparking are explosive handling and fuel handling.
Various textile yarns have been proposed which incorporate a small quantity of metal filament, usually a stainless steel, which runs as a continuous strand throughout a yarn or is interspersed in short staple lengths therein. In either case the conduction of incipient electrostatic charges is expected along such yarns to some point where the charge is dissipated or bled off to ground. One of the problems associated with the production of yarns containing staple lengths of metal filament has been the occurrence of slubbing. Slubs are a group or bundle of metal filaments caused by incomplete separation of the metal filaments of a breaker-drawn multifilament tow. Each metal tow may contain for example, 300 filaments of 8 microns diameter each and during drawing of the metal tow, slubs have resulted frequently when the initial set of draw rolls cut through the whole of the metal tow instead of causing a gradual attenuation. Such slubs never draw out thereafter notwithstanding several subsequent drawing operations. The final result is nonuniform and poor distribution of the metal filaments throughout the yarn and highly visible grey streaks which will appear in the finished product.
The present invention is concerned with an improved technique for distributing staple lengths of metal filaments throughout yarns more uniformly to a) improve the anti-static effect and b) enhance the uniformity and appearance of the product. It is believed that the short staple lengths of metal interspersed uniformly as they are, when charged cause local ionization of the adjacent air and a consequent bleeding off or neutralization of static charges without depending upon conduction of the charge to ground.
SUMMARY OF THE INVENTION In accordance with the present invention a method and apparatus have been devised for drawing a combination yarn consisting of textile fiber and metallic filament. Broadly, the method comprises the simultaneous drawing of a textile fiber sliver and a metal filament tow while controlling the tension forces upon the metal filaments in the tow such that gradual breaking of filaments in the tow occurs and the filaments are distributed evenly in staple lengths throughout the textile fiber. In accordance with the invention, as the metal filaments are drawn, they are subjected to the action of thereto which is guided into continuous contact with the textile fiber tow.
BRIEF DESCRIPTION OF THE DRAWING FIGS. 1 and 2 illustrate in plan view a typical draw frame for carrying out the method of the present invention;
- FIG. 3 is a vertical cross-section taken in the direction of arrows 3--3 of FIG. 1; 7
FIG. 4 is a cross-section taken in the direction of arrows 4-4 of FIG. 3;
FIG. 5 is a cross-secton taken in the direction of arrows 5-5 of FIG. 1;
FIG. 6 is a plan view illustrating the even distribution of metal filament due to the drawing action from respective draw rolls; and
FIG. 7 is a schematic illustration of a woven fabric showing a typical distribution of metal filaments in the warp and filing directions produced by the vention.
DESCRIPTION OF A PARTICULAR EMBODIMENT Referring to the drawing, a draw frame 10 modified in accordance with the principles of the present invention has been illustrated. As shown in FIG. 1, the draw frame 10 includes sets of four, paired draw rolls 11 comprising individual rolls 12-15. These are joumaled in bearings for rotation in frame members 16 and 17. Rolls 12-15 are driven in the conventional manner by means (not shown). Rolls 13 are driven'slightly faster than rolls 12, rolls 14 faster than 13 and so on to attenuate the sliver as it passes through the sets of rolls. Furthermore, as is conventional, rolls 13 will have a greater number of teeth than rolls 12, 14 a greater number than 13 and rolls 15 the greatest number of teeth. The separation on centers for example between rolls 12 and 13 in a particular embodiment will be 1 It", 1 will separate rolls 13 and 14and 1 '58" will separate rolls 14 and 15. After passing through the sets of rolls 11, the several slivers (and as will be further described, metal multifilaments dispersed throughout certain slivers) are gathered and enter bin 18 through tube 19. At this point the respective slivers including those having metal multifilaments have been mixed or blended into a single sliver. Another successive drawing or drawings will then follow until fiber attenuation, orientation and further mixing or blending is completed. It will be understood that the apparatus thus far described is conventional.
In the draw frame 10, two sets of rolls 11 will be mounted side by side, each set being adapted to receive 8 slivers comprising for example three slivers of cotton and five of polyester fiber. For purposes of clarity, only one set of rolls 11 has been illustrated and only 5 slivers are shown being fed into the draw rolls. The slivers may be individually designated by reference numerals 20-24. with the cotton slivers designated by reference numerals 21 and 22 and the remainder polyester present inp slivers. Each sliver is guided as it is being fed into the draw rolls by a rearward set of spoons 20a24a and a forward set 20b-24b corresponding to slivers 20-24. Spools 26 and 27 contain a quantity of stainless steel in the form of tows 28, 29. These may be, for example, an austenitic stainless steel (essentially high grade 18/8 chrome, nickel alloy) such as Brunsmet-304 which is an 8 micron 300 filament tow marketed by Brunswick Corporation Technical Products Diva, Chicago, Ill. By way of example but without limitation, the invention contemplates the use of such filaments in the 4-12 micron range. v
The tows 28 and 29 first pass from the spools past cut off switches 30, 31 whose arms 30a, 31a sense the presence of each tow 28 and 29. It is the function of the switches 30, 31 to cause the operation of draw rolls 12-15 to cease whenever a break in either of tows 28 and 29 occurs. The stainless steel tows 28 and 29 are fed through guides 32 (FIG. which are mounted to,
laterally adjustable bracket members 33 secured to frame member 34, by angles 35. The purpose of guides 32 is to assure the precise positioning of each tow 28, 29 such that these will be fed directly upon underlying tows 21 and 22. Lateral adjustment permitted by the elongated slot 33a in bracket 33 will allow the precise adjustment of this relationship.
As the tows 28, 29 proceed through rolls 12-15, the
, stainless steel filaments will break and gradually be drawn together with cotton slivers 21 and 22. Since the slivers 21 and 22 lie underneath stainless steel tows 28, 29, the cotton fibers will act to cushion the engaging effect of the rolls upon the steel filaments such that the rolls will not cut through the steel tow. Rather, as best seen in FIG. 6, the tows 28 and 29 will be subjected to a gradual attenuation due to the controlled tension placed thereupon by the engagement of adjacent rolls 12 through 15. Thus, very few breaks will occur at the engaging points of the rolls themselves but rather gradual breakage due to the cushioning action occurs primarily between the respective draw rolls. Because the engaging rolls encounter constantly varying amounts of the steel filaments in combination with varying amounts of textile fiber, which variation helps to prevent a build-up of tension forces at any particular point, the breaking process occurs only a few filaments at a time. As a result, slubs (relatively large bundles of filaments in short staple lengths) only rarely occur and the steel filaments are generally finely dispersed through the lengths of cotton.
Practice has shown that cotton fiber provides a better cushioning effect than polyester fiber perhaps for the reason that the surface friction characteristics of both cotton and the stainless steel filament used are similar. In any event, the juxtaposition of stainless steel and of cotton as shown, very effectively prevents slubbing and causes an even distribution of staple lengths of stainless steel filament throughout the yarn. It has been found that in general, the formation of slubs using the principles of the invention is minimal and that on the average only 200 small slubs may be found in any given sample of l00 linear yards of grey goods. This is in comparison with goods made according to a prior process having about 1300 much larger slubs in 100 linear yards of material. X-ray examination of grey goods produced by the presently disclosed process (FIG. 7) reveals that combinations of filaments where they occur average no more than four filaments per bundle (4-12 microns) and are invisible to the naked eye. FIG. 7 illustrates a typical distribution of steel filaments (greatly enlarged) in both weft and filling directions.
It will be understood that the foregoing description relates to a particular embodiment of the invention and is therefore representative. In order to appreciate the scope and spirit of the present invention, reference should be made to the appended claims.
What is claimed is:
1. The method of drawing and blending textile fiber and metal filaments while maintaining contact with each other comprising, feeding at least one bundle of fibers of textile material through draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, guiding said metal bundle relative to said textile bundle to cause the latter continuously to cushion said metal bundle with respect to said draw rolls when passing therethrough while controlling the tension force on said metal filaments, to break limited numbers of said filaments generally continuously during the period of drawing.
2. The method according to claim 1 wherein said bundle of textile material and bundle of multifilament metal are fed into a plurality of successive sets of draw rolls and said metal bundle is guided into the first set of rolls.
3. The method according to claim 2 wherein said draw rolls are arranged horizontally, and a plurality of textile bundles and metal bundles are fed to said rolls, said textile bundles being in side by side relationship and each of said metal bundles overlying one of said textile bundles.
4. The method according to claim 1 wherein said textile bundles and metal bundles have similar surface friction characteristics with respect to said draw rolls.
5. The method according to claim 4 wherein said textile bundle is cotton and said metal bundle is stainless steel.
a 6. The method according to claim 5 wherein said stainless steel is made of metal filaments in the 4 to 12 micron range.
7. The method according to claim 1 wherein the textile bundles after drawing are passed through a roving and spinning steps to create yarn.
8. Apparatus for simultaneous drawing of bundles of textile fiber and metal filaments comprising, at least one pair of draw rolls, means for feeding at least one bundle of a textile fiber into said draw rolls, means for feeding at least one bundle of metal filaments into draw rolls and means for guiding one of said textile and fiber bundles directly onto the other of said textile and fiber bundles while said textile and fiber bundles are passing through said first pair of draw rolls so that said metal bundle is not brought directly into contact with both draw rolls of said first pair due to the interposition and cushioning of said fiber bundle between said metal bundle and said draw rolls, said guide means further causing the metal and textile bundles to be brought initially into contact with each other without twisting of said textile bundle or envelopment of said metal bundle by said textile bundle immediately prior to passing through said first pair of draw rolls.
9. The apparatus of claim 8 wherein several pairs of draw rolls are arranged sequentially.
* I! II
Claims (9)
1. The method of drawing and blending textile fiber and metal filaments while maintaining contact with each other comprising, feeding at least onE bundle of fibers of textile material through draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, guiding said metal bundle relative to said textile bundle to cause the latter continuously to cushion said metal bundle with respect to said draw rolls when passing therethrough while controlling the tension force on said metal filaments, to break limited numbers of said filaments generally continuously during the period of drawing.
1. The method of drawing and blending textile fiber and metal filaments while maintaining contact with each other comprising, feeding at least onE bundle of fibers of textile material through draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, simultaneously feeding a multifilament metal bundle through said draw rolls, guiding said metal bundle relative to said textile bundle to cause the latter continuously to cushion said metal bundle with respect to said draw rolls when passing therethrough while controlling the tension force on said metal filaments, to break limited numbers of said filaments generally continuously during the period of drawing.
2. The method according to claim 1 wherein said bundle of textile material and bundle of multifilament metal are fed into a plurality of successive sets of draw rolls and said metal bundle is guided into the first set of rolls.
3. The method according to claim 2 wherein said draw rolls are arranged horizontally, and a plurality of textile bundles and metal bundles are fed to said rolls, said textile bundles being in side by side relationship and each of said metal bundles overlying one of said textile bundles.
4. The method according to claim 1 wherein said textile bundles and metal bundles have similar surface friction characteristics with respect to said draw rolls.
5. The method according to claim 4 wherein said textile bundle is cotton and said metal bundle is stainless steel.
6. The method according to claim 5 wherein said stainless steel is made of metal filaments in the 4 to 12 micron range.
7. The method according to claim 1 wherein the textile bundles after drawing are passed through a roving and spinning steps to create yarn.
8. Apparatus for simultaneous drawing of bundles of textile fiber and metal filaments comprising, at least one pair of draw rolls, means for feeding at least one bundle of a textile fiber into said draw rolls, means for feeding at least one bundle of metal filaments into draw rolls and means for guiding one of said textile and fiber bundles directly onto the other of said textile and fiber bundles while said textile and fiber bundles are passing through said first pair of draw rolls so that said metal bundle is not brought directly into contact with both draw rolls of said first pair due to the interposition and cushioning of said fiber bundle between said metal bundle and said draw rolls, said guide means further causing the metal and textile bundles to be brought initially into contact with each other without twisting of said textile bundle or envelopment of said metal bundle by said textile bundle immediately prior to passing through said first pair of draw rolls.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6375570A | 1970-08-14 | 1970-08-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3703073A true US3703073A (en) | 1972-11-21 |
Family
ID=22051284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US63755A Expired - Lifetime US3703073A (en) | 1970-08-14 | 1970-08-14 | Antistatic yarn production |
Country Status (1)
Country | Link |
---|---|
US (1) | US3703073A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4369622A (en) * | 1980-03-24 | 1983-01-25 | Riegel Textile Corporation | Method and apparatus for drawing and blending textile materials |
EP0280340A1 (en) * | 1987-01-30 | 1988-08-31 | N.V. Bekaert S.A. | Method for the manufacture of gear-wheel crimped metal fibers and products comprising these fibers |
US4771596A (en) * | 1970-04-20 | 1988-09-20 | Brunswick Corporation | Method of making fiber composite |
US20130309508A1 (en) * | 2012-05-18 | 2013-11-21 | Kirk J. Abbey | Acrylic adhesion promoters |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2132524A (en) * | 1937-06-21 | 1938-10-11 | Sanford Mills | Process of making yarn from continuous rayon and staple fiber |
US2160178A (en) * | 1937-11-16 | 1939-05-30 | Celanese Corp | Yarn and fabric and method of making same |
US2990673A (en) * | 1954-01-06 | 1961-07-04 | Celanese Corp | Process and apparatus for producing core yarns |
US3288175A (en) * | 1964-10-22 | 1966-11-29 | Stevens & Co Inc J P | Textile material |
US3371247A (en) * | 1966-05-12 | 1968-02-27 | Keith E. Mullenger | Antistatic carpet and method of fabrication |
US3422460A (en) * | 1966-10-17 | 1969-01-21 | Sears Roebuck & Co | Static-inhibiting garment |
US3582445A (en) * | 1967-11-18 | 1971-06-01 | Teijin Ltd | Carpet having durable antistatic properties |
US3582448A (en) * | 1968-04-23 | 1971-06-01 | Teijin Ltd | Garments having durable antistatic properties |
US3582444A (en) * | 1967-05-01 | 1971-06-01 | Dow Chemical Co | Self-extinguishing and static charge resistant pile fabric |
-
1970
- 1970-08-14 US US63755A patent/US3703073A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2132524A (en) * | 1937-06-21 | 1938-10-11 | Sanford Mills | Process of making yarn from continuous rayon and staple fiber |
US2160178A (en) * | 1937-11-16 | 1939-05-30 | Celanese Corp | Yarn and fabric and method of making same |
US2990673A (en) * | 1954-01-06 | 1961-07-04 | Celanese Corp | Process and apparatus for producing core yarns |
US3288175A (en) * | 1964-10-22 | 1966-11-29 | Stevens & Co Inc J P | Textile material |
US3371247A (en) * | 1966-05-12 | 1968-02-27 | Keith E. Mullenger | Antistatic carpet and method of fabrication |
US3422460A (en) * | 1966-10-17 | 1969-01-21 | Sears Roebuck & Co | Static-inhibiting garment |
US3582444A (en) * | 1967-05-01 | 1971-06-01 | Dow Chemical Co | Self-extinguishing and static charge resistant pile fabric |
US3582445A (en) * | 1967-11-18 | 1971-06-01 | Teijin Ltd | Carpet having durable antistatic properties |
US3582448A (en) * | 1968-04-23 | 1971-06-01 | Teijin Ltd | Garments having durable antistatic properties |
Non-Patent Citations (1)
Title |
---|
Man Made Textiles, January 1966, Vol. 43, No. 499, page 33. * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4771596A (en) * | 1970-04-20 | 1988-09-20 | Brunswick Corporation | Method of making fiber composite |
US4369622A (en) * | 1980-03-24 | 1983-01-25 | Riegel Textile Corporation | Method and apparatus for drawing and blending textile materials |
EP0280340A1 (en) * | 1987-01-30 | 1988-08-31 | N.V. Bekaert S.A. | Method for the manufacture of gear-wheel crimped metal fibers and products comprising these fibers |
BE1000278A3 (en) * | 1987-01-30 | 1988-10-04 | Bekaert Sa Nv | A method for manufacturing tooth roll-crimped METAL FIBERS AND PRODUCTS COMPRISING these fibers. |
US20130309508A1 (en) * | 2012-05-18 | 2013-11-21 | Kirk J. Abbey | Acrylic adhesion promoters |
US8859098B2 (en) * | 2012-05-18 | 2014-10-14 | Lord Corporation | Acrylic adhesion promoters |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3987613A (en) | Process for preparing textiles without static charge accumulation and resulting product | |
US4080778A (en) | Direct spinning process for stretch-breaking continuous filaments to form entangled yarn | |
US20030051458A1 (en) | Method of manufacturing electro-magnetic wave shielding yarn | |
EP0370111A1 (en) | Polyester-cotton blended yarns and staple fibers of polyester used therefor | |
US3342028A (en) | Method of producing an elastic core yarn | |
US4369622A (en) | Method and apparatus for drawing and blending textile materials | |
US3828543A (en) | Antistatic yarn | |
US4118921A (en) | Yarn of entangled fibers | |
US3596458A (en) | Spun yarn of elastic fiber and preparation thereof | |
US3657871A (en) | Method and apparatus for spreading or dividing yarn, tow or the like | |
US4196574A (en) | Composite yarn and method of manufacture | |
US3703073A (en) | Antistatic yarn production | |
US3251097A (en) | Methods for producing blended yarn | |
US3460338A (en) | Stretch yarn | |
US3303640A (en) | Method of producing composite elastic yarn | |
EP0520023A1 (en) | Spinning of high molecular weight polyethylene fiber and the resulting spun fiber. | |
US3670485A (en) | Method of and apparatus for forming metal fiber textile blend and metal fiber textile product | |
KR900018435A (en) | Blended short filament yarn of high quality cotton yarn and its manufacturing method | |
US3334483A (en) | Method of making direct spinner novelty yarn | |
US3895417A (en) | Sliver guide | |
US3789461A (en) | Apparatus for preparing spun yarn | |
US4519201A (en) | Process for blending fibers and textiles obtained from the fiber blends | |
US3651201A (en) | High-elongation-and-tenacity nylon tire yarn | |
US3393505A (en) | Composite elastic yarn | |
US3153316A (en) | Bulky yarn and method of producing the yarn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PS | Patent suit(s) filed | ||
DI | Adverse decision in interference |
Effective date: 19860328 |