US3698645A - Spray head - Google Patents

Spray head Download PDF

Info

Publication number
US3698645A
US3698645A US120169A US3698645DA US3698645A US 3698645 A US3698645 A US 3698645A US 120169 A US120169 A US 120169A US 3698645D A US3698645D A US 3698645DA US 3698645 A US3698645 A US 3698645A
Authority
US
United States
Prior art keywords
sprayhead
expansion chamber
inch
diameter
axial passageway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US120169A
Inventor
Charles A Coffey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Paint Co
Original Assignee
Harris Paint Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Paint Co filed Critical Harris Paint Co
Application granted granted Critical
Publication of US3698645A publication Critical patent/US3698645A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/28Nozzles, nozzle fittings or accessories specially adapted therefor
    • B65D83/30Nozzles, nozzle fittings or accessories specially adapted therefor for guiding the flow of spray, e.g. funnels, hoods
    • B65D83/303Nozzles, nozzle fittings or accessories specially adapted therefor for guiding the flow of spray, e.g. funnels, hoods using extension tubes located in or at the outlet duct of the nozzle assembly

Definitions

  • ABSTRACT A sprayhead for a pressurized aerosol dis [52] US. [51] Int. Cl. 1/32 .239/573, 579, 337, 590;
  • OIAQLEJ 1400 15 Qwry @365 Arm/W 0 SPRAY HEAD This invention relates to sprayheads for use with pressurized aerosol dispensers for liquid products such as paint, and particularly for glitter paints having intermixed solid particles or flakes.
  • a conventional sprayhead of the pushbutton type generally has a central passageway in a stem leading from the outlet of a spring-loaded valve mounted in the top of an aerosol dispenser.
  • the passageway connects with a cylindrical recess in the side wall of the pushbutton into which a nozzle insert press fits, with the downstream face of the nozzle orifice substantially flush with the exterior surface of the sprayhead.
  • the diameter of the sprayhead passageway and the inside diameter of the nozzle insert upstream of the orifice section are generally of the same order of magnitude, about one-sixteenth inch.
  • the throat diameter at the orifice may range from 0.016 inch to larger than 0.040 inch, depending on the characteristics of the product dispensed. For relatively viscous liquids such as paint, a common orifice diameter is 0.032 inch, for example.
  • axial movement of the sprayhead toward the valve causes it to open and allows a mixture of product and propellant to flow through the passageway and out the nozzle orifice in the form of an atomized spray.
  • the pressure and velocity of the outflowing stream are substantially constant from the valve outlet to the nozzle orifice, where the reduced throat diameter causes the velocity to sharply increase and the pressure to correspondingly decrease. Because the flow area of the passageway from valve outlet to nozzle orifice is relatively small as well as substantially uniform, propellant vaporization and product atomization apparently occur primarily in the reduced pressure region of the nozzle orifice, although some initial vaporization and mixing action does occur during flow through the relatively restricted valve port.
  • these conventional sprayheads often produce unsatisfactory spray patterns, particularly when used with liquid products having dispersed solid particles or flakes, such as specialty paints containing flakes of metallic, plastic or glass glitter.
  • the small particles in this type of product apparently serve as nuclei for agglomerations of liquid in relatively large droplets that tend to spatter and collect inside the rim of the dispenser can and to produce an uneven coating on the object being sprayed.
  • Objects of the present invention are to eliminate the spattering problem when spraying liquids having intermixed solid particles, to increase the average particle size that can be sprayed with a nozzle orifice of given diameter, and to increase flow rates for given dispenser pressures and nozzle orifice diameters.
  • the chamber length should be preferably several times its diameter. It has been found that increasing the chamber length, for example, to at least five times its diameter not only improves uniformity of the spray pattern but also, surprisingly, increases the product flow rate for a given nozzle orifice diameter and propellant pressure.
  • FIG. 1 is a perspective view of an aerosol dispenser incorporating the sprayhead of the invention.
  • FIG. 2 is a section view of an embodiment of the invention.
  • FIG. 3 is a section perpendicular to the view of FIG. 1.
  • sprayhead 10 comprises an approximately cylindrical body 12 having an axial passageway 14 with an inlet 16 through a slot 18 at the end of a stem 20.
  • the outside surface 22 of stem 20 is sized to fit snugly in the outlet of a conventional springloaded valve 21 in the top of a pressurized aerosol dispenser 23.
  • passageway 14 opens through slot 24 intoexpansion chamber 26 in tube 28.
  • Tube 28 is made of 'a deformable plastic material, and its outside diameter is chosen to make an interference fit with the bore 30 of cylindrical recess 32 in the side wall of sprayhead body 12.
  • sprayhead body 12 and tube 28 are shown as a two-piece assembly in the drawing, the assembly could be molded as a single piece, if desired.
  • the important consideration is that the cross-sectional area of expansion chamber 26 be significantly greater than the cross-sectional areas of both passageway 14 and orifice 36.
  • the length of expansion chamber 26 should be several times its diameter; preferably the length-diameter ratio should be at least five.
  • the length of chamber 26 should also be preferably at least enough to insure that the spray is delivered beyond the valve mounting cup 25.
  • sprayhead 10 is displaced axially by finger pressure on surface 40, the spring-loaded valve 21 opens, and a mixture of liquid product and propellant flows through inlet 18, along passageway 14, and through slot 24 into expansion chamber 26.
  • the abrupt increase in flow area in expansion chamber 26 reduces the flow velocity, and the abrupt change in flow direction induces a swirling flow that promotes intimate mixing of the product and the vaporizing propellant prior to discharge as a fine spray through orifice 36.
  • Tests have been run to compare the performance of the above-described sprayhead embodiment with an expansion chamber with that of a conventional sprayhead without an expansion chamber and also to determine the efiect of chamber length.
  • Product used in the tests was glitter paint having intermixed solid particles with maximum dimensions of about 0.008 inch.
  • inlet slot 18 in each of the three test sprayheads was 0.060 inch wide by 0.125 inch long.
  • a sprayhead having no expansion chamber and an inlet slot size of 0.060 inch wide by 0.055 inch long expended 21.3 grams in 5 seconds. It is thus clear that the size of inlet slot 18, as would be expected, has a significant effect on flow rate. With respect to uniformity of spray pattern and absence from splatter, however, the incorporation of the expansion chamber of the present invention produced much greater improvement than did changes in size of inlet slot 18.
  • the spray pattern was more uniform and the glitter particles more randomly distributed on the sprayed surface than in the test without an expansion chamber.
  • the flow rates-as determined by container weighings before and after equal duration spray bursts were greater in the tests with an expansion chamber than those without, the difference being especially marked in the tests with the longer chamber. Greater flow rates, of course, permit the operator to obtain desired coverage in a shorter time.
  • the sprayhead of the present invention has been described specifically in regard to spraying liquids having intermixed solids, the invention is not limited to such application. Increased flow rates also result when spraying other fluids or fluid mixtures such as immiscible liquids as well as liquids or solids in a gas.
  • the sprayhead produces superior results with enamels and works well even when spraying cosmetic aerosol formulations such as talcum powder.
  • the sprayhead of this invention is applicable to all types of fluids or dry mixes which are Y capable of being expended from a pressurized aerosol dispenser.
  • an atomizing sprayhead of the type having a cylindrical body with an axial passageway open at one end for attachment to the valve of a pressurized aerosol spray container, at discharge channel with an axis transversely intersecting the axis of the axial passageway, an expansion chamber formed in the discharge channel, and a coaxial restricted spray forming orifice at the downstream end of the expansion chamber, the improvement wherein:
  • the expansion chamber has an inlet at its upstream end that is larger in cross-sectional area than the spray forming orifice and a cross-sectional flow area larger than that of the inlet, and the length of said expansion chamber is at least five times its diameter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Nozzles (AREA)

Abstract

A sprayhead for a pressurized aerosol dispenser includes an elongated expansion and mixing chamber upstream of the sprayforming nozzle orifice. Controlled expansion of the dispensed product and propellant mixture within the chamber enhances vaporization of the propellant, promotes uniform mixing of the vaporized propellant with the product prior to passage through the spray nozzle, and produces increased flow rates for a given nozzle orifice diameter.

Description

[ 15] 3,698,645 51 Oct. 17, 1972 United States Patent Coffey 3,006,340 10/1961 Meshberg.......
..222/402.1l X 3,085,720 4/1963 Boch et al..............239/337 X 3,414,171 12/1968 Grisham et al. ......222/402.14
1 SPRAY HEAD [72] Inventor: Charles A. Coffey, Pinellas Park,
Primary Examiner-M. Henson Wood, Jr. Assistant Examiner-John J. Love March 2, 1971 Attorney-Kenyon & Kenyon Reilly Carr Chapin 211 Appl. No.: 120,169
ABSTRACT A sprayhead ,for a pressurized aerosol dis [52] US. [51] Int. Cl. 1/32 .239/573, 579, 337, 590;
penser mcludes an elongated expansion and mixing chamber, upstream of the spray-forming nozzle orifice. Con- 222/4021 1 402'] 40214 trolled expansion of the dispensed product and propel- 56 R i C d lant mixture within the chamber enhances vaporiza- 1 I Q e tion of the. propellant, promotes uniform mixing of the UNITED STATES PATENTS 3,567,081 3/1971 'Meshberg...........'..
vaporized propellant with the product prior to passage through the spray nozzle, and produces increased flow rates fora given nozzle orifice diameter.
222/402 17 1,892,750 1/1933 Rotheim................239/573 X 2,562,111 7/1951 Michel.................222/402 ll 7 Claims, 3 Drawing Figures PATENTEDBCT 11 m2 INVENTOR.
OIAQLEJ 1400 15 Qwry @365 Arm/W 0 SPRAY HEAD This invention relates to sprayheads for use with pressurized aerosol dispensers for liquid products such as paint, and particularly for glitter paints having intermixed solid particles or flakes.
A conventional sprayhead of the pushbutton type generally has a central passageway in a stem leading from the outlet of a spring-loaded valve mounted in the top of an aerosol dispenser. The passageway connects with a cylindrical recess in the side wall of the pushbutton into which a nozzle insert press fits, with the downstream face of the nozzle orifice substantially flush with the exterior surface of the sprayhead. The diameter of the sprayhead passageway and the inside diameter of the nozzle insert upstream of the orifice section are generally of the same order of magnitude, about one-sixteenth inch. The throat diameter at the orifice may range from 0.016 inch to larger than 0.040 inch, depending on the characteristics of the product dispensed. For relatively viscous liquids such as paint, a common orifice diameter is 0.032 inch, for example.
In operation, axial movement of the sprayhead toward the valve causes it to open and allows a mixture of product and propellant to flow through the passageway and out the nozzle orifice in the form of an atomized spray. The pressure and velocity of the outflowing stream are substantially constant from the valve outlet to the nozzle orifice, where the reduced throat diameter causes the velocity to sharply increase and the pressure to correspondingly decrease. Because the flow area of the passageway from valve outlet to nozzle orifice is relatively small as well as substantially uniform, propellant vaporization and product atomization apparently occur primarily in the reduced pressure region of the nozzle orifice, although some initial vaporization and mixing action does occur during flow through the relatively restricted valve port.
As a consequence of confining mixing and atomization to such a localized region adjacent the nozzle outlet, these conventional sprayheads often produce unsatisfactory spray patterns, particularly when used with liquid products having dispersed solid particles or flakes, such as specialty paints containing flakes of metallic, plastic or glass glitter. The small particles in this type of product apparently serve as nuclei for agglomerations of liquid in relatively large droplets that tend to spatter and collect inside the rim of the dispenser can and to produce an uneven coating on the object being sprayed. These undesirable results intensify as the size of the suspended particles is increased.
Objects of the present invention are to eliminate the spattering problem when spraying liquids having intermixed solid particles, to increase the average particle size that can be sprayed with a nozzle orifice of given diameter, and to increase flow rates for given dispenser pressures and nozzle orifice diameters.
These and other objects are obtained by incorporating an elongated expansion chamber upstream of the nozzle orifice. Dimensions of the expansion chamber are not critical; however, its diameter should be significantly greater than that of the passageway leading from the valve.
The chamber length should be preferably several times its diameter. It has been found that increasing the chamber length, for example, to at least five times its diameter not only improves uniformity of the spray pattern but also, surprisingly, increases the product flow rate for a given nozzle orifice diameter and propellant pressure.
In the drawings,
FIG. 1 is a perspective view of an aerosol dispenser incorporating the sprayhead of the invention.
FIG. 2 is a section view of an embodiment of the invention.
FIG. 3 is a section perpendicular to the view of FIG. 1.
Referring to the figures, sprayhead 10 comprises an approximately cylindrical body 12 having an axial passageway 14 with an inlet 16 through a slot 18 at the end of a stem 20. The outside surface 22 of stem 20 is sized to fit snugly in the outlet of a conventional springloaded valve 21 in the top of a pressurized aerosol dispenser 23.
At its downstream end, passageway 14 opens through slot 24 intoexpansion chamber 26 in tube 28. Tube 28 is made of 'a deformable plastic material, and its outside diameter is chosen to make an interference fit with the bore 30 of cylindrical recess 32 in the side wall of sprayhead body 12. A conventional flanged nozzle insert 34 having an orifice 36 at its downstream face 38 force fits into the outer end of tube 28 to form the downstream end of expansion chamber 26.
Although sprayhead body 12 and tube 28 are shown as a two-piece assembly in the drawing, the assembly could be molded as a single piece, if desired. The important consideration is that the cross-sectional area of expansion chamber 26 be significantly greater than the cross-sectional areas of both passageway 14 and orifice 36. Furthermore, the length of expansion chamber 26 should be several times its diameter; preferably the length-diameter ratio should be at least five. When the sprayhead is used with a typical domed-top aerosol dispenser of the type shown in FIG. 1, the length of chamber 26 should also be preferably at least enough to insure that the spray is delivered beyond the valve mounting cup 25.
In operation, sprayhead 10 is displaced axially by finger pressure on surface 40, the spring-loaded valve 21 opens, and a mixture of liquid product and propellant flows through inlet 18, along passageway 14, and through slot 24 into expansion chamber 26. The abrupt increase in flow area in expansion chamber 26 reduces the flow velocity, and the abrupt change in flow direction induces a swirling flow that promotes intimate mixing of the product and the vaporizing propellant prior to discharge as a fine spray through orifice 36.
Tests have been run to compare the performance of the above-described sprayhead embodiment with an expansion chamber with that of a conventional sprayhead without an expansion chamber and also to determine the efiect of chamber length. Product used in the tests was glitter paint having intermixed solid particles with maximum dimensions of about 0.008 inch.
Pertinent dimensions of sprayhead 10 were:
Inlet slot 18 0.060 inch wide X 0.l25 inch long Chamber 26 0.112 inch diameter Orifice 36 0.032 inch diameter Product 3 Expended sprayhead without expansion chamber 27.7 gm Sprayhead with 5/16 in. expansion chamber 27.8 Sprayhead with 5% in. expansion chamber 30.4
Substantial variations from test to test preclude a quantitative correlation between chamber length and flow rate, but in every case the amount of product expended was greater with the long chamber than with the short chamber and was greater with the short chamber than with no chamber.
As mentioned above, the size of inlet slot 18 in each of the three test sprayheads was 0.060 inch wide by 0.125 inch long. For comparison, a sprayhead having no expansion chamber and an inlet slot size of 0.060 inch wide by 0.055 inch long expended 21.3 grams in 5 seconds. it is thus clear that the size of inlet slot 18, as would be expected, has a significant effect on flow rate. With respect to uniformity of spray pattern and absence from splatter, however, the incorporation of the expansion chamber of the present invention produced much greater improvement than did changes in size of inlet slot 18.
In both tests with expansion chambers, the spray pattern was more uniform and the glitter particles more randomly distributed on the sprayed surface than in the test without an expansion chamber. Moreover, the flow rates-as determined by container weighings before and after equal duration spray burstswere greater in the tests with an expansion chamber than those without, the difference being especially marked in the tests with the longer chamber. Greater flow rates, of course, permit the operator to obtain desired coverage in a shorter time.
Other embodiments and dimensions will occur to those skilled in the art. For example, the length of tube 28 could be extended to the edge of container 23 or even beyond, if desired. For liquids of different viscosities and having different sized particles intermixed therein, the dimensions of slots 18 and 24 and the size of orifice 36 can be varied accordingly for optimu results.
Although the utility of the sprayhead of the present invention has been described specifically in regard to spraying liquids having intermixed solids, the invention is not limited to such application. Increased flow rates also result when spraying other fluids or fluid mixtures such as immiscible liquids as well as liquids or solids in a gas. For example, the sprayhead produces superior results with enamels and works well even when spraying cosmetic aerosol formulations such as talcum powder. In short, the sprayhead of this invention is applicable to all types of fluids or dry mixes which are Y capable of being expended from a pressurized aerosol dispenser.
What is claimed is:
1. in an atomizing sprayhead of the type having a cylindrical body with an axial passageway open at one end for attachment to the valve of a pressurized aerosol spray container, at discharge channel with an axis transversely intersecting the axis of the axial passageway, an expansion chamber formed in the discharge channel, and a coaxial restricted spray forming orifice at the downstream end of the expansion chamber, the improvement wherein:
the expansion chamber has an inlet at its upstream end that is larger in cross-sectional area than the spray forming orifice and a cross-sectional flow area larger than that of the inlet, and the length of said expansion chamber is at least five times its diameter.
2. The sprayhead of claim 1 wherein the length of said expansion chamber is at least approximately fiveeighths inch.
3. The sprayhead of claim 2 wherein the inside diameter of said expansion chamber is at least 0.l inch.
4. The sprayhead of claim 3 wherein the wall of said axial passageway adjacent the open end has a rectangular inlet slot with a longitudinal dimension of approximately one-eighth inch and a lateral dimension of approximately one-sixteenth inch.
5. The sprayhead of claim 4 wherein the spray forming orifice has a diameter of about 0.032 inch.
6. The sprayhead of claim 1 wherein the inlet to the expansion chamber is at least as large as the cross-sectional area of the axial passageway.
7. The sprayhead of claim 6 wherein the upstream end of the expansion chamber intersects the wall of the axial passageway.

Claims (7)

1. In an atomizing sprayhead of the type having a cylindrical body with an axial passageway open at one end for attachment to the valve of a pressurized aerosol spray container, a discharge channel with an axis transversely intersecting the axis of the axial passageway, an expansion chamber formed in the discharge channel, and a coaxial restricted spray forming orifice at the downstream end of the expansion chamber, the improvement wherein: the expansion chamber has an inlet at its upstream end that is larger in cross-sectional area than the spray forming orifice and a cross-sectional flow area larger than that of the inlet, and the length of said expansion chamber is at least five times its diameter.
2. The sprayhead of claim 1 wherein the length of said expansion chamber is at least approximately five-eighths inch.
3. The sprayhead of claim 2 wherein the inside diameter of said expansion chamber is at least 0.1 inch.
4. The sprayhead of claim 3 wherein the wall of said axIal passageway adjacent the open end has a rectangular inlet slot with a longitudinal dimension of approximately one-eighth inch and a lateral dimension of approximately one-sixteenth inch.
5. The sprayhead of claim 4 wherein the spray forming orifice has a diameter of about 0.032 inch.
6. The sprayhead of claim 1 wherein the inlet to the expansion chamber is at least as large as the cross-sectional area of the axial passageway.
7. The sprayhead of claim 6 wherein the upstream end of the expansion chamber intersects the wall of the axial passageway.
US120169A 1971-03-02 1971-03-02 Spray head Expired - Lifetime US3698645A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12016971A 1971-03-02 1971-03-02

Publications (1)

Publication Number Publication Date
US3698645A true US3698645A (en) 1972-10-17

Family

ID=22388654

Family Applications (1)

Application Number Title Priority Date Filing Date
US120169A Expired - Lifetime US3698645A (en) 1971-03-02 1971-03-02 Spray head

Country Status (7)

Country Link
US (1) US3698645A (en)
CA (1) CA947723A (en)
DE (1) DE2209843A1 (en)
FR (1) FR2127904A5 (en)
GB (1) GB1342442A (en)
IT (1) IT949801B (en)
NL (1) NL7202736A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243734A (en) * 1978-07-10 1981-01-06 Dillon George A Micro-dot identification
US4354638A (en) * 1980-04-25 1982-10-19 Bristol-Myers Company Spiral actuator for aerosol powdered suspension product
US5314097A (en) * 1990-04-23 1994-05-24 Fox Valley Systems, Inc. Long distance marking devices and related method
US5645198A (en) * 1992-02-24 1997-07-08 Homax Products, Inc. Spray texturing apparatus and method
US20040089676A1 (en) * 2002-11-12 2004-05-13 Lester Greer Storage systems and methods for aerosol accessories
US8251255B1 (en) 2004-07-02 2012-08-28 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8313011B2 (en) 1992-02-24 2012-11-20 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8317065B2 (en) 1992-02-24 2012-11-27 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8336742B2 (en) 2004-10-08 2012-12-25 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US8342421B2 (en) 2004-01-28 2013-01-01 Homax Products Inc Texture material for covering a repaired portion of a textured surface
US8353465B2 (en) 2003-04-10 2013-01-15 Homax Products, Inc Dispensers for aerosol systems
US8551572B1 (en) 2007-04-04 2013-10-08 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8580349B1 (en) 2007-04-05 2013-11-12 Homax Products, Inc. Pigmented spray texture material compositions, systems, and methods
US8701944B2 (en) 1992-02-24 2014-04-22 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8844765B2 (en) 1993-03-12 2014-09-30 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US20150225168A1 (en) * 2014-02-12 2015-08-13 Jayson Thompson Portable pressurized toilet cleaning apparatus
US9156042B2 (en) 2011-07-29 2015-10-13 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9156602B1 (en) 2012-05-17 2015-10-13 Homax Products, Inc. Actuators for dispensers for texture material
US9248457B2 (en) 2011-07-29 2016-02-02 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9382060B1 (en) 2007-04-05 2016-07-05 Homax Products, Inc. Spray texture material compositions, systems, and methods with accelerated dry times
US9435120B2 (en) 2013-03-13 2016-09-06 Homax Products, Inc. Acoustic ceiling popcorn texture materials, systems, and methods
USD787326S1 (en) 2014-12-09 2017-05-23 Ppg Architectural Finishes, Inc. Cap with actuator
US9776785B2 (en) 2013-08-19 2017-10-03 Ppg Architectural Finishes, Inc. Ceiling texture materials, systems, and methods

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083634B1 (en) * 1981-07-10 1987-03-04 Minnesota Mining And Manufacturing Company Aerosol fan sprayhead
AU1961583A (en) * 1982-10-06 1984-04-12 Sterling Drug Inc. Aerosol nozzle
DE4119132A1 (en) * 1991-06-11 1992-12-17 Pfeiffer Erich Gmbh & Co Kg Catheter medium-discharge head - has nozzle discharge direction adjustable in relation to main body
AU125619S (en) 1994-08-09 1996-01-16 Boots Co Plc Liquid dispenser
US5983813A (en) * 1997-11-05 1999-11-16 Flexi-Coil Ltd Seeding material spreader and optional adjustment means

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243734A (en) * 1978-07-10 1981-01-06 Dillon George A Micro-dot identification
US4354638A (en) * 1980-04-25 1982-10-19 Bristol-Myers Company Spiral actuator for aerosol powdered suspension product
US5314097A (en) * 1990-04-23 1994-05-24 Fox Valley Systems, Inc. Long distance marking devices and related method
US8505786B2 (en) 1992-02-24 2013-08-13 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8887953B2 (en) 1992-02-24 2014-11-18 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8584898B2 (en) 1992-02-24 2013-11-19 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US5645198A (en) * 1992-02-24 1997-07-08 Homax Products, Inc. Spray texturing apparatus and method
US8573451B2 (en) 1992-02-24 2013-11-05 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8701944B2 (en) 1992-02-24 2014-04-22 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US9845185B2 (en) 1992-02-24 2017-12-19 Ppg Architectural Finishes, Inc. Systems and methods for applying texture material
US8313011B2 (en) 1992-02-24 2012-11-20 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8317065B2 (en) 1992-02-24 2012-11-27 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US9181020B2 (en) 1992-02-24 2015-11-10 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US9079703B2 (en) 1992-02-24 2015-07-14 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8985392B2 (en) 1992-02-24 2015-03-24 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8844765B2 (en) 1993-03-12 2014-09-30 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US20070290011A1 (en) * 2002-11-12 2007-12-20 Greer Lester R Jr Storage systems and methods for aerosol accessories for dispensing texture material
US20040089676A1 (en) * 2002-11-12 2004-05-13 Lester Greer Storage systems and methods for aerosol accessories
US7232047B2 (en) 2002-11-12 2007-06-19 Homax Products, Inc. Storage systems and methods for aerosol accessories
US20050258198A1 (en) * 2002-11-12 2005-11-24 Greer Lester R Jr Storage systems and methods for aerosol accessories
US6910608B2 (en) 2002-11-12 2005-06-28 Homax Products, Inc. Storage systems and methods for aerosol accessories
US8820656B2 (en) 2003-04-10 2014-09-02 Homax Products, Inc. Dispenser for aerosol systems
US9132953B2 (en) 2003-04-10 2015-09-15 Homax Products, Inc. Dispenser for aerosol systems
US8353465B2 (en) 2003-04-10 2013-01-15 Homax Products, Inc Dispensers for aerosol systems
US9187236B2 (en) 2004-01-28 2015-11-17 Homax Products, Inc. Aerosol system for repairing a patched portion of a surface
US9248951B2 (en) 2004-01-28 2016-02-02 Homax Products, Inc. Texture material for covering a repaired portion of a textured surface
US8342421B2 (en) 2004-01-28 2013-01-01 Homax Products Inc Texture material for covering a repaired portion of a textured surface
US8251255B1 (en) 2004-07-02 2012-08-28 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8561840B2 (en) 2004-07-02 2013-10-22 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US9004316B2 (en) 2004-07-02 2015-04-14 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8336742B2 (en) 2004-10-08 2012-12-25 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US9004323B2 (en) 2004-10-08 2015-04-14 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US8622255B2 (en) 2004-10-08 2014-01-07 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US8883902B2 (en) 2007-04-04 2014-11-11 Homax Products, Inc. Aerosol dispensing systems and methods and compositions for repairing interior structure surfaces
US9415927B2 (en) 2007-04-04 2016-08-16 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US9580233B2 (en) 2007-04-04 2017-02-28 Ppg Architectural Finishes, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8551572B1 (en) 2007-04-04 2013-10-08 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8784942B2 (en) 2007-04-04 2014-07-22 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US9382060B1 (en) 2007-04-05 2016-07-05 Homax Products, Inc. Spray texture material compositions, systems, and methods with accelerated dry times
US9592527B2 (en) 2007-04-05 2017-03-14 Ppg Architectural Finishes, Inc. Spray texture material compositions, systems, and methods with accelerated dry times
US8580349B1 (en) 2007-04-05 2013-11-12 Homax Products, Inc. Pigmented spray texture material compositions, systems, and methods
US9248457B2 (en) 2011-07-29 2016-02-02 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9156042B2 (en) 2011-07-29 2015-10-13 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9156602B1 (en) 2012-05-17 2015-10-13 Homax Products, Inc. Actuators for dispensers for texture material
US9435120B2 (en) 2013-03-13 2016-09-06 Homax Products, Inc. Acoustic ceiling popcorn texture materials, systems, and methods
US9776785B2 (en) 2013-08-19 2017-10-03 Ppg Architectural Finishes, Inc. Ceiling texture materials, systems, and methods
US20150225168A1 (en) * 2014-02-12 2015-08-13 Jayson Thompson Portable pressurized toilet cleaning apparatus
USD787326S1 (en) 2014-12-09 2017-05-23 Ppg Architectural Finishes, Inc. Cap with actuator

Also Published As

Publication number Publication date
FR2127904A5 (en) 1972-10-13
DE2209843A1 (en) 1972-09-14
IT949801B (en) 1973-06-11
GB1342442A (en) 1974-01-03
NL7202736A (en) 1972-09-05
CA947723A (en) 1974-05-21

Similar Documents

Publication Publication Date Title
US3698645A (en) Spray head
US3346195A (en) Aerosol spray device
US6367711B1 (en) Dismantable dispensing head
AU730259B2 (en) High pressure swirl atomizer
US3764069A (en) Method and apparatus for spraying
EP0941144B1 (en) A colliding stream spray dispensing system with a moldable nozzle
EP0528559B1 (en) Spray dispensing device
US3734406A (en) Method and apparatus for producing a flat fan paint spray pattern
CA1090748A (en) Foam-generating device for a pump sprayer
CN106163672B (en) Improved swozzle assembly with high efficiency mechanical break-up for producing uniform small droplet spray
US6042025A (en) Two hole dispenser with baffles
US6050504A (en) Spray dispensing device using swirl passages and using the Bernoulli effect
JPS60232265A (en) Air type spray nozzle device
US6267304B1 (en) Variable discharge dispensing head for a squeeze dispenser
US5350116A (en) Dispensing apparatus
US3730437A (en) Ejection device for multiple-product dispensers
US20200070190A1 (en) Multi-orifice nozzle for droplet atomization
AU2001275464A1 (en) Variable discharge dispensing head for a squeeze dispenser
US3416737A (en) Mechanical break-up spray button
US3806028A (en) Spray head
US11453017B2 (en) Liquid slurry spraying system
US3365137A (en) Liquid dispenser head which develops a fan-like spray
GB1350794A (en) Mechanical nebulization device for the product stream from a pressurized dispenser
US5779156A (en) Spray dispenser and system for spraying viscous liquids
JPS5831980B2 (en) push button for sprayer