US3694986A - Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type - Google Patents
Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type Download PDFInfo
- Publication number
- US3694986A US3694986A US64671A US3694986DA US3694986A US 3694986 A US3694986 A US 3694986A US 64671 A US64671 A US 64671A US 3694986D A US3694986D A US 3694986DA US 3694986 A US3694986 A US 3694986A
- Authority
- US
- United States
- Prior art keywords
- heat insulating
- beams
- support members
- insulating wall
- framework
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 16
- 238000010276 construction Methods 0.000 title abstract description 23
- 239000011810 insulating material Substances 0.000 claims abstract description 17
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 239000002023 wood Substances 0.000 abstract description 27
- 239000000853 adhesive Substances 0.000 abstract description 11
- 230000001070 adhesive effect Effects 0.000 abstract description 11
- 239000007789 gas Substances 0.000 description 18
- 230000004888 barrier function Effects 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011120 plywood Substances 0.000 description 2
- 230000002730 additional effect Effects 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/001—Thermal insulation specially adapted for cryogenic vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/12—Arrangements for supporting insulation from the wall or body insulated, e.g. by means of spacers between pipe and heat-insulating material; Arrangements specially adapted for supporting insulated bodies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/025—Bulk storage in barges or on ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0354—Wood
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0103—Exterior arrangements
- F17C2205/0107—Frames
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/227—Assembling processes by adhesive means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/035—Propane butane, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S220/00—Receptacles
- Y10S220/901—Liquified gas content, cryogenic
Definitions
- a heat insulating wall construction for a membrane type low temperature liquefied gas tank includes a plurality of support members extending in parallel with each other between the inner membranous vessel and the outer rigid vessel.
- a laminated wood plate is fixed on the inner ends of the support members. Heat insulating material is charged in the space formed among the support members between the laminated wood plate and the outer rigid vessel.
- the laminated wood plate is composed of inner and outer layers with the joints of the respective layers positioned out of alignment with each other. All the components in the wall construction are bound together by means of adhesives and nails.
- the present invention relates to a heat insulating wall, and more particularly to a heat insulating wall to be used in a membrane type tank for containing low temperature liquefied gas such as liquefied petroleum gas which, being normally in the gaseous state at room temperatures, is liquefied at a low temperature under atmospheric pressure.
- low temperature liquefied gas such as liquefied petroleum gas which, being normally in the gaseous state at room temperatures, is liquefied at a low temperature under atmospheric pressure.
- the low temperature liquefied gas storage tank of the type described above is well known in the art and generally has a heat insulating wall between the inner membranous vessel and the outer rigid vessel.
- the heat insulating material constituting the heat insulating wall is required to have compressive resistance.
- the heat insulating wall in the conventional membrane type tank has been made of a heat insulating material having a compressive strength such as hard foamed polyurethane and the like.
- Such heat insulating material having compressive strength is disadvantageous in that it is expensive, which results in considerable increase in the manufacturing costs of the whole tank.
- Another disadvantage inherent in the construction of the conventional type of the liquefied gas tank is that a secondary barrier has been separately provided in the heat insulating wall construction in order to temporarily prevent the leakage of the liquefied gas in the event that the liquefied gas leaks out from the inner vessel. And the secondary barrier has been made of low temperature resistive metal. Therefore, it has taken much time and labor to make the heat insulating wall. On account of the above fact and due to the high material cost as well, the manufacturing cost of the tank has been very expensive. Under the above-described conventional disposition of the liquefied gas tank of the membrane type, a new or improved tank has been awaited in which the heat insulating material per se is not required to have compressive strength and no separate secondary barrier is required to be incorporated.
- Another object of the present invention is to provide a heat insulating wall for a membrane type low temperature liquefied gas tank in which the laminated wood is composed of an inner layer and an outer layer stuck together with adhesives with the joints of the respective layers positioned out of alignment with each other so that the laminated wood serving as a secondary barrier may have sufficient strength against the internal stress caused by temperature variations.
- Still another object of the present invention is to provide a heat insulating wall for a membrane type low temperature liquefied gas tank which is made of wood for the most part thereof so that the heat insulating wall as a whole may not lose its heat insulating property.
- a further object of the present invention is to provide a heat insulating wall for a liquefied gas tank which has a much improved liquid-tight property by the use of doubled-layer laminated wood with the joints of the respective layers positioned out of alignment with each other.
- a still further object of the present invention is to provide a heat insulating wall for a liquefied gas tank having remarkably high strength as a whole by the use of nails together with adhesives.
- the heat insulating wall in accordance with the present invention includes a plurality of support members fixed to the outer vessel at one end and extending in perpendicular thereto.
- the ends of the support members on the inner side are connected with one another by means of a wooden framework.
- laminated wood composed of inner and outer layers with the joints of the respective layers positioned out of alignment with each other.
- Heat insulating material is disposed in the space between the laminated wood and the other rigid vessel.
- the heat insulating material is not required to have compressive strength since it only fills up a space formed with rigid support members. Since the laminated wood serves as a secondary barrier to prevent the leakage of the liquefied gas, there is no need to provide a separate secondary barrier made of metal or the like. Thus, the heat insulating wall of the present invention is of simple construction yet can be easily manufactured at low cost.
- FIG. 1 is a perspective view of the basic construction of the heat insulating wall in accordance with an embodiment of the present invention
- FIG. 2 is a fragmentary side elevational view of the basic construction of the heat insulating wall partly in section, taken in the direction of the arrow A of FIG. 1;
- FIG. 3 is an explanatory plan view showing the construction of the laminated wood incorporated in the heat insulating wall in accordance with the present invention.
- FIG. 1 the basic construction of the heat insulating wall on which the heat insulating material, laminated wood serving as a secondary barrier and the inner membranous vessel are to be mounted is shown.
- a steel plate 2 On the inner surface of the rigid outer vessel 1, a steel plate 2 is fixed, on which a plurality of channel members 3 are welded in parallel relation with each other.
- a plurality of support members 4 are fixed by bolts and nuts at the lower end portion thereof to the channel members 3 and stand close together on the rigid outer vessel 1 of the tank.
- a wooden framework 6 constructed with large beams 6a and small beams 6b assembled in a lattice construction. The intersections of the lattice are positioned just above the support members 4.
- the large beams 6a are secured to the head of the support members 4 with plywood joint plates 7 by means of adhesives and nails.
- the top surface of the large beam 6a is made flush with the top surface of the small beam 6b so that the top surface of the framework 6, the surface facing inward the tank, may make a smooth single plane.
- a laminated wood plate 8 composed of an outer layer 8a and an inner layer 8b is mounted as shown in F IG. 2.
- the outer and inner layers 8a, 8b are made of plywood respectively.
- a membrane 9 constituting an inner vessel covers the inner layer 8b of the laminated wood plate 8.
- the outer layer 8a of the laminated wood plate 8 is fixed to the top surface of the framework 6 by means of adhesives and nails.
- the inner layer 8b is also fixed to the outer layer 8a by means of adhesives and'nails.
- the outer layer 8a and the inner layer 8b of the laminated wood plate 8 are so arranged that the joints of the respective layers consisting of a plurality of rectangular pieces of wooden plates may be on the beams of the framework 6 and that the joints of the outer layer 8a may be out of alignment with the joints of the inner layer 8b as shown in FIG. 3.
- the laminated wood plate 8 as a whole has no joints extending from inside to outside.
- the laminated wood plate 8 integrally incorporated in the heat insulating wall serves as the secondary barrier for preventing the leakage of the liquefied gas. Since the secondary barrier is composed of an outer layer 8a and an inner layer 8b tightly stuck with each other by means of adhesives and nails, the internal stress caused by the temperature variation is treated as a shearing stress at the stuck surface of the layers. Accordingly, the water tight property of the secondary barrier is maintained to a high degree.
- the joint plates 7 combining the large beams 6a with the support members 4 have the additional effect of preventing the support members 4 from thrusting into the large beams 6a by dispersing the load exerted onto the large beams 6a.
- a steel plate 2 is welded onto the surface of the channel members 3 for protecting the heat insulating wall from moisture in the case where the wall construction is made outdoors. But it will be apparent to those skilled in he art that the steel plate can be eliminated in the case that the wall construction is made directly in the rigid outer vessel.
- framework and the support members in the above described embodiment can be reinforced with auxiliary supporting members and the like.
- a heat insulating wall structure comprising a framework constituted of support members formed of a load supporting and heat insulating material, said framework defining a thickness of the heat insulating wall structure having the spaces formed adapted to be filled with a heat insulating material, and a plate member fastened to and extending over the framework to define an inner surface of the heat insulating wall structure, said framework forming a network comprising a plurality of contiguously arranged flush surfaces, said plate member comprising a plurality of contiguous first plate elements each being supported along at least portions of its periphery by said surfaces, a plurality of contiguous second plate elements being superimposed on said first plate elements in close surface contact therewith, the joints between contiguous of said second plate elements being offset relative to the joints between contiguous of said first plate elements, said framework being substantially constituted of said network, including support members extending between a wall of a rigid outer vessel and said network substantially perpendicular
- a wall structure according to claim 1 comprising channel members for fastening members to the wall of portions where said first and second beams cross each, 5 said rigid Outer Vessel-
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Building Environments (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7115069 | 1969-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3694986A true US3694986A (en) | 1972-10-03 |
Family
ID=13452272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US64671A Expired - Lifetime US3694986A (en) | 1969-09-09 | 1970-08-18 | Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type |
Country Status (5)
Country | Link |
---|---|
US (1) | US3694986A (enrdf_load_stackoverflow) |
DE (1) | DE2041889C3 (enrdf_load_stackoverflow) |
FR (1) | FR2061213A5 (enrdf_load_stackoverflow) |
GB (1) | GB1302453A (enrdf_load_stackoverflow) |
SE (1) | SE376456B (enrdf_load_stackoverflow) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862700A (en) * | 1971-09-11 | 1975-01-28 | Hitachi Shipbuilding Eng Co | Low temperature liquified gas storage tank |
US3969860A (en) * | 1974-07-31 | 1976-07-20 | Richard Paul Bentley | Thermal efficiency structure |
US20080289275A1 (en) * | 2007-04-11 | 2008-11-27 | Jeffrey Thomas Ellis | Construction blocking bracket |
JP2019504980A (ja) * | 2016-02-02 | 2019-02-21 | アイシー テクノロジー エーエス | 改良された液化天然ガス貯蔵タンク設計 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US133448A (en) * | 1872-11-26 | Improvement in fire-proof buildings | ||
US318870A (en) * | 1885-05-26 | Wall for refrigerator structures | ||
US3161265A (en) * | 1959-01-27 | 1964-12-15 | Union Carbide Corp | Vacuum panel insulation |
US3186130A (en) * | 1961-07-19 | 1965-06-01 | William C Gray | Building block sealing construction |
US3412518A (en) * | 1967-10-18 | 1968-11-26 | Transco Inc | Insulated wall panel with shiplap joint |
US3572000A (en) * | 1968-07-04 | 1971-03-23 | Entreprenadisolering Ab | Mounting of exterior surface cladding for tanks or similar structures |
-
1970
- 1970-08-11 GB GB3866970A patent/GB1302453A/en not_active Expired
- 1970-08-18 US US64671A patent/US3694986A/en not_active Expired - Lifetime
- 1970-08-24 DE DE2041889A patent/DE2041889C3/de not_active Expired
- 1970-09-08 SE SE7012157A patent/SE376456B/xx unknown
- 1970-09-09 FR FR7032809A patent/FR2061213A5/fr not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US133448A (en) * | 1872-11-26 | Improvement in fire-proof buildings | ||
US318870A (en) * | 1885-05-26 | Wall for refrigerator structures | ||
US3161265A (en) * | 1959-01-27 | 1964-12-15 | Union Carbide Corp | Vacuum panel insulation |
US3186130A (en) * | 1961-07-19 | 1965-06-01 | William C Gray | Building block sealing construction |
US3412518A (en) * | 1967-10-18 | 1968-11-26 | Transco Inc | Insulated wall panel with shiplap joint |
US3572000A (en) * | 1968-07-04 | 1971-03-23 | Entreprenadisolering Ab | Mounting of exterior surface cladding for tanks or similar structures |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862700A (en) * | 1971-09-11 | 1975-01-28 | Hitachi Shipbuilding Eng Co | Low temperature liquified gas storage tank |
US3969860A (en) * | 1974-07-31 | 1976-07-20 | Richard Paul Bentley | Thermal efficiency structure |
US20080289275A1 (en) * | 2007-04-11 | 2008-11-27 | Jeffrey Thomas Ellis | Construction blocking bracket |
US7621096B2 (en) * | 2007-04-11 | 2009-11-24 | Jeffrey Thomas Ellis | Construction blocking bracket |
US20100146903A1 (en) * | 2007-04-11 | 2010-06-17 | Jeffrey Thomas Ellis | Construction blocking bracket |
US7882676B2 (en) | 2007-04-11 | 2011-02-08 | Jeffrey Thomas Ellis | Construction blocking bracket |
JP2019504980A (ja) * | 2016-02-02 | 2019-02-21 | アイシー テクノロジー エーエス | 改良された液化天然ガス貯蔵タンク設計 |
Also Published As
Publication number | Publication date |
---|---|
FR2061213A5 (enrdf_load_stackoverflow) | 1971-06-18 |
GB1302453A (enrdf_load_stackoverflow) | 1973-01-10 |
DE2041889C3 (de) | 1974-04-04 |
DE2041889A1 (de) | 1971-04-01 |
DE2041889B2 (de) | 1973-08-30 |
SE376456B (enrdf_load_stackoverflow) | 1975-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4065019A (en) | Fluid-tight isothermal tank for liquefied gas | |
US3341049A (en) | Cryogenic insulation system | |
US3341050A (en) | Cryogenic insulation system | |
US3095014A (en) | Stave secured sectional insulated conduit | |
JPH0338559Y2 (enrdf_load_stackoverflow) | ||
US3862700A (en) | Low temperature liquified gas storage tank | |
KR102480577B1 (ko) | 단열 구조체가 구비된 액화가스 화물창 | |
US3694986A (en) | Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type | |
GB1111274A (en) | Improvements in or relating to fluid-tight insulated walls and applications thereof | |
US3471983A (en) | Wall corner construction | |
KR102011866B1 (ko) | 멤브레인형 저장탱크의 단열시스템 | |
KR102712754B1 (ko) | 액화천연가스 저장탱크의 단열패널 배치구조 | |
KR20210012092A (ko) | Lng 저장탱크의 단열패널 고정장치 | |
KR101563859B1 (ko) | 화물창 방벽구조 | |
US3782053A (en) | Joint construction for low temperature purpose liquid-tight panels | |
US3972166A (en) | Heat insulation structure for liquefied gas storage tank | |
KR101617029B1 (ko) | 화물창 방벽구조 | |
US3826399A (en) | Low temperature liquified gas storage tank | |
KR102342637B1 (ko) | 코너 구조체 및 이를 포함하는 액화가스 저장탱크 | |
KR102538529B1 (ko) | 액화가스 화물창 | |
KR102651474B1 (ko) | Lng 저장탱크의 단열시스템 | |
KR102638282B1 (ko) | 액화천연가스 저장탱크의 단열구조 | |
KR102352003B1 (ko) | 코너 구조체를 포함하는 액화가스 화물창 및 이의 시공방법 | |
KR102662431B1 (ko) | 액화천연가스 저장탱크 | |
KR102651475B1 (ko) | 액화천연가스 저장탱크의 단열패널간 연결 브릿지 구조 |