US3694986A - Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type - Google Patents
Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type Download PDFInfo
- Publication number
- US3694986A US3694986A US3694986DA US3694986A US 3694986 A US3694986 A US 3694986A US 3694986D A US3694986D A US 3694986DA US 3694986 A US3694986 A US 3694986A
- Authority
- US
- United States
- Prior art keywords
- heat insulating
- beams
- plate
- support members
- framework
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gases Substances 0.000 title claims abstract description 21
- 238000010276 construction Methods 0.000 title abstract description 23
- 239000011810 insulating materials Substances 0.000 claims abstract description 17
- 210000001503 Joints Anatomy 0.000 claims abstract description 14
- 230000003014 reinforcing Effects 0.000 claims 1
- 239000010410 layers Substances 0.000 abstract description 31
- 239000002023 wood Substances 0.000 abstract description 27
- 230000001070 adhesive Effects 0.000 abstract description 11
- 239000000853 adhesives Substances 0.000 abstract description 11
- 210000000282 Nails Anatomy 0.000 abstract description 8
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metals Substances 0.000 description 2
- 239000011120 plywood Substances 0.000 description 2
- 281000133700 Bridgestone companies 0.000 description 1
- 230000002730 additional Effects 0.000 description 1
- 239000003915 liquefied petroleum gases Substances 0.000 description 1
- 239000000463 materials Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reactions Methods 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethanes Polymers 0.000 description 1
- 239000000843 powders Substances 0.000 description 1
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N propane Chemical compound   CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000011901 water Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/001—Thermal insulation specially adapted for cryogenic vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/12—Arrangements for supporting insulation from the wall or body insulated, e.g. by means of spacers between pipe and heat-insulating material; Arrangements specially adapted for supporting insulated bodies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/025—Bulk storage in barges or on ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0354—Wood
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0103—Exterior arrangements
- F17C2205/0107—Frames
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/227—Assembling processes by adhesive means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/035—Propane butane, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S220/00—Receptacles
- Y10S220/901—Liquified gas content, cryogenic
Abstract
Description
United States Patent Yamamoto et al.
[ HEAT INSULATING WALL CONSTRUCTION FOR A LOW TEMPERATURE LIQUEFIED GAS TANK OF THE MEMBRANE TYPE [72] Inventors: Katsuro Yamamoto, Tokyo; Ku-
niyoshi Obata, Kawasaki; Toru Sata, Kamakura, all of Japan [73] Assignee: Bridgestone Liquefied Gas Company, Ltd., Tokyo, Japan [22] Filed: Aug. 18, 1970 [21] Appl. No.: 64,671
[58] Field of Search ..52/425, 426, 424, 404, 249, 52/615, 664, 665, 743, 480, 592
[56] References Cited UNITED STATES PATENTS 318,870 5/1885 Chase ..52/404 451 Oct. 3, 1972 Primary Examiner-Price C. Faw, Jr. Attorney-Waters, Roditi, Schwartz & Nissen ABSTRACT A heat insulating wall construction for a membrane type low temperature liquefied gas tank includes a plurality of support members extending in parallel with each other between the inner membranous vessel and the outer rigid vessel. A laminated wood plate is fixed on the inner ends of the support members. Heat insulating material is charged in the space formed among the support members between the laminated wood plate and the outer rigid vessel. The laminated wood plate is composed of inner and outer layers with the joints of the respective layers positioned out of alignment with each other. All the components in the wall construction are bound together by means of adhesives and nails.
2 Claims, 3 Drawing Figures PATENTEDocr 3 m2 SHEET 2 BF 2 FIG. 2
HEAT INSULATING WALL CONSTRUCTION FOR A LOW TEMPERATURE LIQUEFIED GAS TANK OF THE MEMBRANE TYPE The present invention relates to a heat insulating wall, and more particularly to a heat insulating wall to be used in a membrane type tank for containing low temperature liquefied gas such as liquefied petroleum gas which, being normally in the gaseous state at room temperatures, is liquefied at a low temperature under atmospheric pressure.
The low temperature liquefied gas storage tank of the type described above is well known in the art and generally has a heat insulating wall between the inner membranous vessel and the outer rigid vessel. On account of the fact that the internal pressure on the inner membranous vessel is transmitted to the outer rigid vessel through the heat insulating wall, the heat insulating material constituting the heat insulating wall is required to have compressive resistance. In view of the above fact, the heat insulating wall in the conventional membrane type tank has been made of a heat insulating material having a compressive strength such as hard foamed polyurethane and the like. Such heat insulating material having compressive strength, however, is disadvantageous in that it is expensive, which results in considerable increase in the manufacturing costs of the whole tank.
Another disadvantage inherent in the construction of the conventional type of the liquefied gas tank is that a secondary barrier has been separately provided in the heat insulating wall construction in order to temporarily prevent the leakage of the liquefied gas in the event that the liquefied gas leaks out from the inner vessel. And the secondary barrier has been made of low temperature resistive metal. Therefore, it has taken much time and labor to make the heat insulating wall. On account of the above fact and due to the high material cost as well, the manufacturing cost of the tank has been very expensive. Under the above-described conventional disposition of the liquefied gas tank of the membrane type, a new or improved tank has been awaited in which the heat insulating material per se is not required to have compressive strength and no separate secondary barrier is required to be incorporated.
In light of the foregoing observations and description, it is an object of the present invention to provide a heat insulating wall for a membrane type low temperature liquefied gas tank in which a plurality of support members are incorporated in the wall construction so that the heat insulating material per se is not required to have compressive strength.
It is also an object of the present invention to provide a heat insulating wall for a membrane type low temperature liquefied gas tank in which laminated wood is incorporated in the wall construction as a secondary barrier so that no separate secondary barrier may be required to be incorporated. v
Another object of the present invention is to provide a heat insulating wall for a membrane type low temperature liquefied gas tank in which the laminated wood is composed of an inner layer and an outer layer stuck together with adhesives with the joints of the respective layers positioned out of alignment with each other so that the laminated wood serving as a secondary barrier may have sufficient strength against the internal stress caused by temperature variations.
Still another object of the present invention is to provide a heat insulating wall for a membrane type low temperature liquefied gas tank which is made of wood for the most part thereof so that the heat insulating wall as a whole may not lose its heat insulating property.
A further object of the present invention is to provide a heat insulating wall for a liquefied gas tank which has a much improved liquid-tight property by the use of doubled-layer laminated wood with the joints of the respective layers positioned out of alignment with each other.
A still further object of the present invention is to provide a heat insulating wall for a liquefied gas tank having remarkably high strength as a whole by the use of nails together with adhesives.
In order to achieve the above described objects of the invention, the heat insulating wall in accordance with the present invention includes a plurality of support members fixed to the outer vessel at one end and extending in perpendicular thereto. The ends of the support members on the inner side are connected with one another by means of a wooden framework. On the wooden framework is provided laminated wood composed of inner and outer layers with the joints of the respective layers positioned out of alignment with each other. Heat insulating material is disposed in the space between the laminated wood and the other rigid vessel.
In accordance with the heat insulating wall of the present invention constructed as described hereinabove, the heat insulating material is not required to have compressive strength since it only fills up a space formed with rigid support members. Since the laminated wood serves as a secondary barrier to prevent the leakage of the liquefied gas, there is no need to provide a separate secondary barrier made of metal or the like. Thus, the heat insulating wall of the present invention is of simple construction yet can be easily manufactured at low cost.
Various other objects, features and advantages of the present invention will be made apparent by reference to the following detailed description of a preferred embodiment thereof, reference being made to the accompanying drawings, in which:
FIG. 1 is a perspective view of the basic construction of the heat insulating wall in accordance with an embodiment of the present invention;
FIG. 2 is a fragmentary side elevational view of the basic construction of the heat insulating wall partly in section, taken in the direction of the arrow A of FIG. 1; and
FIG. 3 is an explanatory plan view showing the construction of the laminated wood incorporated in the heat insulating wall in accordance with the present invention.
Referring now to FIG. 1, the basic construction of the heat insulating wall on which the heat insulating material, laminated wood serving as a secondary barrier and the inner membranous vessel are to be mounted is shown. On the inner surface of the rigid outer vessel 1, a steel plate 2 is fixed, on which a plurality of channel members 3 are welded in parallel relation with each other. A plurality of support members 4 are fixed by bolts and nuts at the lower end portion thereof to the channel members 3 and stand close together on the rigid outer vessel 1 of the tank.
On the top ends of the support members 4 is mounted a wooden framework 6 constructed with large beams 6a and small beams 6b assembled in a lattice construction. The intersections of the lattice are positioned just above the support members 4. The large beams 6a are secured to the head of the support members 4 with plywood joint plates 7 by means of adhesives and nails.
The top surface of the large beam 6a is made flush with the top surface of the small beam 6b so that the top surface of the framework 6, the surface facing inward the tank, may make a smooth single plane. On this top surface of the framework 6, a laminated wood plate 8 composed of an outer layer 8a and an inner layer 8b is mounted as shown in F IG. 2. The outer and inner layers 8a, 8b are made of plywood respectively. As clearly shown in FIG. 2, a membrane 9 constituting an inner vessel covers the inner layer 8b of the laminated wood plate 8. I
The outer layer 8a of the laminated wood plate 8 is fixed to the top surface of the framework 6 by means of adhesives and nails. The inner layer 8b is also fixed to the outer layer 8a by means of adhesives and'nails.
The outer layer 8a and the inner layer 8b of the laminated wood plate 8 are so arranged that the joints of the respective layers consisting of a plurality of rectangular pieces of wooden plates may be on the beams of the framework 6 and that the joints of the outer layer 8a may be out of alignment with the joints of the inner layer 8b as shown in FIG. 3. Thus, the laminated wood plate 8 as a whole has no joints extending from inside to outside.
In the space formed among the support members 4 between the laminated wood plate 8 and the rigid outer vessel 1, proper heat insulating material such as perlite powder is charged.
The heat insulating wall constructed as described above has a variety of advantages as follows:
1. The laminated wood plate 8 integrally incorporated in the heat insulating wall serves as the secondary barrier for preventing the leakage of the liquefied gas. Since the secondary barrier is composed of an outer layer 8a and an inner layer 8b tightly stuck with each other by means of adhesives and nails, the internal stress caused by the temperature variation is treated as a shearing stress at the stuck surface of the layers. Accordingly, the water tight property of the secondary barrier is maintained to a high degree.
2. Since the internal pressure in the inner membrane vessel 9 is transmitted to the outer rigid vessel 1 through the laminated wood plate 8, framework 6 and the support members 4, the heat insulating material charged in the wall is not required to have compressive strength. Thus, cheap heat insulating material can be employed.
3. Since the basic construction of the wall comprising the laminated wood plate 8, framework 6 and support members 4 is made of wood having comparatively low heat conductivity, there is no fear of losing the heat insulating property on account of its basic construction. 4. Since the outer layer 8a and the inner layer 8b of the laminated wood plate 8 are so arranged that the joints of the rectangular components of the respective layers may not be in alignment with each other, there is no fear of leaking therethrough. If there should be some leakage through the joint of the inner layer 8b, it is almost impossible for the leaked liquefied gas to reach the outer surface of the outer layer 8a because the path from the inner joint to the outer joint is long and filled with adhesives.
5. Since the components in the wall of the present invention are combined together by means of not only adhesives but also nails for providing the necessitated pressure on the surfaces with adhesives sandwitched therebetween, the construction as a whole is considerably strong against the external force exerted thereon.
6. The joint plates 7 combining the large beams 6a with the support members 4 have the additional effect of preventing the support members 4 from thrusting into the large beams 6a by dispersing the load exerted onto the large beams 6a.
While a certain preferred embodiment of the invention has been specifically illustrated and described hereinabove, it will be understood that the invention is not limited thereto as many variations will be apparent to those skilled in the art.
For instance, a steel plate 2 is welded onto the surface of the channel members 3 for protecting the heat insulating wall from moisture in the case where the wall construction is made outdoors. But it will be apparent to those skilled in he art that the steel plate can be eliminated in the case that the wall construction is made directly in the rigid outer vessel.
Furthermore, it will be also apparent that the framework and the support members in the above described embodiment can be reinforced with auxiliary supporting members and the like.
Thus, it should be understood that various additional modifications are possible in the arrangement and construction of its components without departing from the scope of the invention.
What is claimed is:
1. In a low temperature liquefied-gas tank of the membrane type, a heat insulating wall structure, said structure comprising a framework constituted of support members formed of a load supporting and heat insulating material, said framework defining a thickness of the heat insulating wall structure having the spaces formed adapted to be filled with a heat insulating material, and a plate member fastened to and extending over the framework to define an inner surface of the heat insulating wall structure, said framework forming a network comprising a plurality of contiguously arranged flush surfaces, said plate member comprising a plurality of contiguous first plate elements each being supported along at least portions of its periphery by said surfaces, a plurality of contiguous second plate elements being superimposed on said first plate elements in close surface contact therewith, the joints between contiguous of said second plate elements being offset relative to the joints between contiguous of said first plate elements, said framework being substantially constituted of said network, including support members extending between a wall of a rigid outer vessel and said network substantially perpendicularly to said wall and said network, said network being composed of a first group of parallel extending beams, a second group of parallel extending beams smaller than said first beams, said second beams being arranged to extend perpendicularly to said first beams, said support members being connected with said first group of beams at bridging said support members and said first group of beams.
2. A wall structure according to claim 1, comprising channel members for fastening members to the wall of portions where said first and second beams cross each, 5 said rigid Outer Vessel-
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7115069 | 1969-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3694986A true US3694986A (en) | 1972-10-03 |
Family
ID=13452272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3694986D Expired - Lifetime US3694986A (en) | 1969-09-09 | 1970-08-18 | Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type |
Country Status (5)
Country | Link |
---|---|
US (1) | US3694986A (en) |
DE (1) | DE2041889C3 (en) |
FR (1) | FR2061213A5 (en) |
GB (1) | GB1302453A (en) |
SE (1) | SE376456B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862700A (en) * | 1971-09-11 | 1975-01-28 | Hitachi Shipbuilding Eng Co | Low temperature liquified gas storage tank |
US3969860A (en) * | 1974-07-31 | 1976-07-20 | Richard Paul Bentley | Thermal efficiency structure |
US20080289275A1 (en) * | 2007-04-11 | 2008-11-27 | Jeffrey Thomas Ellis | Construction blocking bracket |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US133448A (en) * | 1872-11-26 | Improvement in fire-proof buildings | ||
US318870A (en) * | 1885-05-26 | Wall for refrigerator structures | ||
US3161265A (en) * | 1959-01-27 | 1964-12-15 | Union Carbide Corp | Vacuum panel insulation |
US3186130A (en) * | 1961-07-19 | 1965-06-01 | William C Gray | Building block sealing construction |
US3412518A (en) * | 1967-10-18 | 1968-11-26 | Transco Inc | Insulated wall panel with shiplap joint |
US3572000A (en) * | 1968-07-04 | 1971-03-23 | Entreprenadisolering Ab | Mounting of exterior surface cladding for tanks or similar structures |
-
1970
- 1970-08-11 GB GB3866970A patent/GB1302453A/en not_active Expired
- 1970-08-18 US US3694986D patent/US3694986A/en not_active Expired - Lifetime
- 1970-08-24 DE DE19702041889 patent/DE2041889C3/de not_active Expired
- 1970-09-08 SE SE1215770A patent/SE376456B/xx unknown
- 1970-09-09 FR FR7032809A patent/FR2061213A5/fr not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US133448A (en) * | 1872-11-26 | Improvement in fire-proof buildings | ||
US318870A (en) * | 1885-05-26 | Wall for refrigerator structures | ||
US3161265A (en) * | 1959-01-27 | 1964-12-15 | Union Carbide Corp | Vacuum panel insulation |
US3186130A (en) * | 1961-07-19 | 1965-06-01 | William C Gray | Building block sealing construction |
US3412518A (en) * | 1967-10-18 | 1968-11-26 | Transco Inc | Insulated wall panel with shiplap joint |
US3572000A (en) * | 1968-07-04 | 1971-03-23 | Entreprenadisolering Ab | Mounting of exterior surface cladding for tanks or similar structures |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862700A (en) * | 1971-09-11 | 1975-01-28 | Hitachi Shipbuilding Eng Co | Low temperature liquified gas storage tank |
US3969860A (en) * | 1974-07-31 | 1976-07-20 | Richard Paul Bentley | Thermal efficiency structure |
US20080289275A1 (en) * | 2007-04-11 | 2008-11-27 | Jeffrey Thomas Ellis | Construction blocking bracket |
US7621096B2 (en) * | 2007-04-11 | 2009-11-24 | Jeffrey Thomas Ellis | Construction blocking bracket |
US20100146903A1 (en) * | 2007-04-11 | 2010-06-17 | Jeffrey Thomas Ellis | Construction blocking bracket |
US7882676B2 (en) | 2007-04-11 | 2011-02-08 | Jeffrey Thomas Ellis | Construction blocking bracket |
Also Published As
Publication number | Publication date |
---|---|
FR2061213A5 (en) | 1971-06-18 |
GB1302453A (en) | 1973-01-10 |
DE2041889A1 (en) | 1971-04-01 |
SE376456B (en) | 1975-05-26 |
DE2041889C3 (en) | 1974-04-04 |
DE2041889B2 (en) | 1973-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6349032B2 (en) | Sealed insulated container with bridging elements between the panels of the secondary insulation barrier | |
SU1637669A3 (en) | Heat insulating wall of sealed tank and its unit | |
US3455076A (en) | Roofing membrane with fibrous reinforcing material | |
US6408594B1 (en) | Reinforced structural insulated panels with plastic impregnated paper facings | |
US6854228B2 (en) | Prefabricated sealed composite insulating panel and method of utilizing same to insulate a building | |
US6145690A (en) | Watertight and thermally insulating tank with an improved corner structure, built into the bearing structure of a ship | |
JP6496918B2 (en) | Insulated container | |
US6675731B2 (en) | Watertight and thermally insulating tank with oblique longitudinal solid angles of intersection | |
US3895152A (en) | A composite cellular construction | |
US3313073A (en) | Joint assemblies for insulation panels | |
CN103597266B (en) | Thermally-insulating sealed tank built into a load-bearing structure | |
CN107257900B (en) | Insulating block suitable for forming an insulating wall in a sealing groove | |
US6199497B1 (en) | Watertight and thermally insulating tank with simplified insulating barrier built into the bearing structure of a ship | |
US4105819A (en) | Laminated sheets particularly for cryogenic enclosures, pipes, and the like | |
TWI510419B (en) | Sealed and insulated tank including a pedestal | |
US4012882A (en) | Structural building panels | |
JP6564926B2 (en) | Sealed insulation tank | |
US4366917A (en) | Cryogenic tank | |
US3399800A (en) | Tank for liquefied gas | |
US3800970A (en) | Integrated tank containers for the bulk storage of liquids | |
KR101215629B1 (en) | Insulation panel for corner area of lng cargo containment system | |
US3317074A (en) | Cryogenic containers | |
AU2016290011B2 (en) | Sealed and thermally insulated tank having a secondary sealing membrane equipped with a corner arrangement with corrugated metal sheets | |
JP3911117B2 (en) | Waterproof and insulated tanks built into the ship support structure | |
KR102162020B1 (en) | Sealed and thermally insulating tank for storing a fluid |