US3694986A - Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type - Google Patents

Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type Download PDF

Info

Publication number
US3694986A
US3694986A US64671A US3694986DA US3694986A US 3694986 A US3694986 A US 3694986A US 64671 A US64671 A US 64671A US 3694986D A US3694986D A US 3694986DA US 3694986 A US3694986 A US 3694986A
Authority
US
United States
Prior art keywords
heat insulating
beams
support members
insulating wall
framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US64671A
Inventor
Katsuro Yamamoto
Kuniyoshi Obata
Toru Sata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Globe Corp
Original Assignee
Eneos Globe Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos Globe Corp filed Critical Eneos Globe Corp
Application granted granted Critical
Publication of US3694986A publication Critical patent/US3694986A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/12Arrangements for supporting insulation from the wall or body insulated, e.g. by means of spacers between pipe and heat-insulating material; Arrangements specially adapted for supporting insulated bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0354Wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0107Frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/227Assembling processes by adhesive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic

Definitions

  • a heat insulating wall construction for a membrane type low temperature liquefied gas tank includes a plurality of support members extending in parallel with each other between the inner membranous vessel and the outer rigid vessel.
  • a laminated wood plate is fixed on the inner ends of the support members. Heat insulating material is charged in the space formed among the support members between the laminated wood plate and the outer rigid vessel.
  • the laminated wood plate is composed of inner and outer layers with the joints of the respective layers positioned out of alignment with each other. All the components in the wall construction are bound together by means of adhesives and nails.
  • the present invention relates to a heat insulating wall, and more particularly to a heat insulating wall to be used in a membrane type tank for containing low temperature liquefied gas such as liquefied petroleum gas which, being normally in the gaseous state at room temperatures, is liquefied at a low temperature under atmospheric pressure.
  • low temperature liquefied gas such as liquefied petroleum gas which, being normally in the gaseous state at room temperatures, is liquefied at a low temperature under atmospheric pressure.
  • the low temperature liquefied gas storage tank of the type described above is well known in the art and generally has a heat insulating wall between the inner membranous vessel and the outer rigid vessel.
  • the heat insulating material constituting the heat insulating wall is required to have compressive resistance.
  • the heat insulating wall in the conventional membrane type tank has been made of a heat insulating material having a compressive strength such as hard foamed polyurethane and the like.
  • Such heat insulating material having compressive strength is disadvantageous in that it is expensive, which results in considerable increase in the manufacturing costs of the whole tank.
  • Another disadvantage inherent in the construction of the conventional type of the liquefied gas tank is that a secondary barrier has been separately provided in the heat insulating wall construction in order to temporarily prevent the leakage of the liquefied gas in the event that the liquefied gas leaks out from the inner vessel. And the secondary barrier has been made of low temperature resistive metal. Therefore, it has taken much time and labor to make the heat insulating wall. On account of the above fact and due to the high material cost as well, the manufacturing cost of the tank has been very expensive. Under the above-described conventional disposition of the liquefied gas tank of the membrane type, a new or improved tank has been awaited in which the heat insulating material per se is not required to have compressive strength and no separate secondary barrier is required to be incorporated.
  • Another object of the present invention is to provide a heat insulating wall for a membrane type low temperature liquefied gas tank in which the laminated wood is composed of an inner layer and an outer layer stuck together with adhesives with the joints of the respective layers positioned out of alignment with each other so that the laminated wood serving as a secondary barrier may have sufficient strength against the internal stress caused by temperature variations.
  • Still another object of the present invention is to provide a heat insulating wall for a membrane type low temperature liquefied gas tank which is made of wood for the most part thereof so that the heat insulating wall as a whole may not lose its heat insulating property.
  • a further object of the present invention is to provide a heat insulating wall for a liquefied gas tank which has a much improved liquid-tight property by the use of doubled-layer laminated wood with the joints of the respective layers positioned out of alignment with each other.
  • a still further object of the present invention is to provide a heat insulating wall for a liquefied gas tank having remarkably high strength as a whole by the use of nails together with adhesives.
  • the heat insulating wall in accordance with the present invention includes a plurality of support members fixed to the outer vessel at one end and extending in perpendicular thereto.
  • the ends of the support members on the inner side are connected with one another by means of a wooden framework.
  • laminated wood composed of inner and outer layers with the joints of the respective layers positioned out of alignment with each other.
  • Heat insulating material is disposed in the space between the laminated wood and the other rigid vessel.
  • the heat insulating material is not required to have compressive strength since it only fills up a space formed with rigid support members. Since the laminated wood serves as a secondary barrier to prevent the leakage of the liquefied gas, there is no need to provide a separate secondary barrier made of metal or the like. Thus, the heat insulating wall of the present invention is of simple construction yet can be easily manufactured at low cost.
  • FIG. 1 is a perspective view of the basic construction of the heat insulating wall in accordance with an embodiment of the present invention
  • FIG. 2 is a fragmentary side elevational view of the basic construction of the heat insulating wall partly in section, taken in the direction of the arrow A of FIG. 1;
  • FIG. 3 is an explanatory plan view showing the construction of the laminated wood incorporated in the heat insulating wall in accordance with the present invention.
  • FIG. 1 the basic construction of the heat insulating wall on which the heat insulating material, laminated wood serving as a secondary barrier and the inner membranous vessel are to be mounted is shown.
  • a steel plate 2 On the inner surface of the rigid outer vessel 1, a steel plate 2 is fixed, on which a plurality of channel members 3 are welded in parallel relation with each other.
  • a plurality of support members 4 are fixed by bolts and nuts at the lower end portion thereof to the channel members 3 and stand close together on the rigid outer vessel 1 of the tank.
  • a wooden framework 6 constructed with large beams 6a and small beams 6b assembled in a lattice construction. The intersections of the lattice are positioned just above the support members 4.
  • the large beams 6a are secured to the head of the support members 4 with plywood joint plates 7 by means of adhesives and nails.
  • the top surface of the large beam 6a is made flush with the top surface of the small beam 6b so that the top surface of the framework 6, the surface facing inward the tank, may make a smooth single plane.
  • a laminated wood plate 8 composed of an outer layer 8a and an inner layer 8b is mounted as shown in F IG. 2.
  • the outer and inner layers 8a, 8b are made of plywood respectively.
  • a membrane 9 constituting an inner vessel covers the inner layer 8b of the laminated wood plate 8.
  • the outer layer 8a of the laminated wood plate 8 is fixed to the top surface of the framework 6 by means of adhesives and nails.
  • the inner layer 8b is also fixed to the outer layer 8a by means of adhesives and'nails.
  • the outer layer 8a and the inner layer 8b of the laminated wood plate 8 are so arranged that the joints of the respective layers consisting of a plurality of rectangular pieces of wooden plates may be on the beams of the framework 6 and that the joints of the outer layer 8a may be out of alignment with the joints of the inner layer 8b as shown in FIG. 3.
  • the laminated wood plate 8 as a whole has no joints extending from inside to outside.
  • the laminated wood plate 8 integrally incorporated in the heat insulating wall serves as the secondary barrier for preventing the leakage of the liquefied gas. Since the secondary barrier is composed of an outer layer 8a and an inner layer 8b tightly stuck with each other by means of adhesives and nails, the internal stress caused by the temperature variation is treated as a shearing stress at the stuck surface of the layers. Accordingly, the water tight property of the secondary barrier is maintained to a high degree.
  • the joint plates 7 combining the large beams 6a with the support members 4 have the additional effect of preventing the support members 4 from thrusting into the large beams 6a by dispersing the load exerted onto the large beams 6a.
  • a steel plate 2 is welded onto the surface of the channel members 3 for protecting the heat insulating wall from moisture in the case where the wall construction is made outdoors. But it will be apparent to those skilled in he art that the steel plate can be eliminated in the case that the wall construction is made directly in the rigid outer vessel.
  • framework and the support members in the above described embodiment can be reinforced with auxiliary supporting members and the like.
  • a heat insulating wall structure comprising a framework constituted of support members formed of a load supporting and heat insulating material, said framework defining a thickness of the heat insulating wall structure having the spaces formed adapted to be filled with a heat insulating material, and a plate member fastened to and extending over the framework to define an inner surface of the heat insulating wall structure, said framework forming a network comprising a plurality of contiguously arranged flush surfaces, said plate member comprising a plurality of contiguous first plate elements each being supported along at least portions of its periphery by said surfaces, a plurality of contiguous second plate elements being superimposed on said first plate elements in close surface contact therewith, the joints between contiguous of said second plate elements being offset relative to the joints between contiguous of said first plate elements, said framework being substantially constituted of said network, including support members extending between a wall of a rigid outer vessel and said network substantially perpendicular
  • a wall structure according to claim 1 comprising channel members for fastening members to the wall of portions where said first and second beams cross each, 5 said rigid Outer Vessel-

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Building Environments (AREA)

Abstract

A heat insulating wall construction for a membrane type low temperature liquefied gas tank includes a plurality of support members extending in parallel with each other between the inner membranous vessel and the outer rigid vessel. A laminated wood plate is fixed on the inner ends of the support members. Heat insulating material is charged in the space formed among the support members between the laminated wood plate and the outer rigid vessel. The laminated wood plate is composed of inner and outer layers with the joints of the respective layers positioned out of alignment with each other. All the components in the wall construction are bound together by means of adhesives and nails.

Description

United States Patent Yamamoto et al.
[ HEAT INSULATING WALL CONSTRUCTION FOR A LOW TEMPERATURE LIQUEFIED GAS TANK OF THE MEMBRANE TYPE [72] Inventors: Katsuro Yamamoto, Tokyo; Ku-
niyoshi Obata, Kawasaki; Toru Sata, Kamakura, all of Japan [73] Assignee: Bridgestone Liquefied Gas Company, Ltd., Tokyo, Japan [22] Filed: Aug. 18, 1970 [21] Appl. No.: 64,671
[58] Field of Search ..52/425, 426, 424, 404, 249, 52/615, 664, 665, 743, 480, 592
[56] References Cited UNITED STATES PATENTS 318,870 5/1885 Chase ..52/404 451 Oct. 3, 1972 Primary Examiner-Price C. Faw, Jr. Attorney-Waters, Roditi, Schwartz & Nissen ABSTRACT A heat insulating wall construction for a membrane type low temperature liquefied gas tank includes a plurality of support members extending in parallel with each other between the inner membranous vessel and the outer rigid vessel. A laminated wood plate is fixed on the inner ends of the support members. Heat insulating material is charged in the space formed among the support members between the laminated wood plate and the outer rigid vessel. The laminated wood plate is composed of inner and outer layers with the joints of the respective layers positioned out of alignment with each other. All the components in the wall construction are bound together by means of adhesives and nails.
2 Claims, 3 Drawing Figures PATENTEDocr 3 m2 SHEET 2 BF 2 FIG. 2
HEAT INSULATING WALL CONSTRUCTION FOR A LOW TEMPERATURE LIQUEFIED GAS TANK OF THE MEMBRANE TYPE The present invention relates to a heat insulating wall, and more particularly to a heat insulating wall to be used in a membrane type tank for containing low temperature liquefied gas such as liquefied petroleum gas which, being normally in the gaseous state at room temperatures, is liquefied at a low temperature under atmospheric pressure.
The low temperature liquefied gas storage tank of the type described above is well known in the art and generally has a heat insulating wall between the inner membranous vessel and the outer rigid vessel. On account of the fact that the internal pressure on the inner membranous vessel is transmitted to the outer rigid vessel through the heat insulating wall, the heat insulating material constituting the heat insulating wall is required to have compressive resistance. In view of the above fact, the heat insulating wall in the conventional membrane type tank has been made of a heat insulating material having a compressive strength such as hard foamed polyurethane and the like. Such heat insulating material having compressive strength, however, is disadvantageous in that it is expensive, which results in considerable increase in the manufacturing costs of the whole tank.
Another disadvantage inherent in the construction of the conventional type of the liquefied gas tank is that a secondary barrier has been separately provided in the heat insulating wall construction in order to temporarily prevent the leakage of the liquefied gas in the event that the liquefied gas leaks out from the inner vessel. And the secondary barrier has been made of low temperature resistive metal. Therefore, it has taken much time and labor to make the heat insulating wall. On account of the above fact and due to the high material cost as well, the manufacturing cost of the tank has been very expensive. Under the above-described conventional disposition of the liquefied gas tank of the membrane type, a new or improved tank has been awaited in which the heat insulating material per se is not required to have compressive strength and no separate secondary barrier is required to be incorporated.
In light of the foregoing observations and description, it is an object of the present invention to provide a heat insulating wall for a membrane type low temperature liquefied gas tank in which a plurality of support members are incorporated in the wall construction so that the heat insulating material per se is not required to have compressive strength.
It is also an object of the present invention to provide a heat insulating wall for a membrane type low temperature liquefied gas tank in which laminated wood is incorporated in the wall construction as a secondary barrier so that no separate secondary barrier may be required to be incorporated. v
Another object of the present invention is to provide a heat insulating wall for a membrane type low temperature liquefied gas tank in which the laminated wood is composed of an inner layer and an outer layer stuck together with adhesives with the joints of the respective layers positioned out of alignment with each other so that the laminated wood serving as a secondary barrier may have sufficient strength against the internal stress caused by temperature variations.
Still another object of the present invention is to provide a heat insulating wall for a membrane type low temperature liquefied gas tank which is made of wood for the most part thereof so that the heat insulating wall as a whole may not lose its heat insulating property.
A further object of the present invention is to provide a heat insulating wall for a liquefied gas tank which has a much improved liquid-tight property by the use of doubled-layer laminated wood with the joints of the respective layers positioned out of alignment with each other.
A still further object of the present invention is to provide a heat insulating wall for a liquefied gas tank having remarkably high strength as a whole by the use of nails together with adhesives.
In order to achieve the above described objects of the invention, the heat insulating wall in accordance with the present invention includes a plurality of support members fixed to the outer vessel at one end and extending in perpendicular thereto. The ends of the support members on the inner side are connected with one another by means of a wooden framework. On the wooden framework is provided laminated wood composed of inner and outer layers with the joints of the respective layers positioned out of alignment with each other. Heat insulating material is disposed in the space between the laminated wood and the other rigid vessel.
In accordance with the heat insulating wall of the present invention constructed as described hereinabove, the heat insulating material is not required to have compressive strength since it only fills up a space formed with rigid support members. Since the laminated wood serves as a secondary barrier to prevent the leakage of the liquefied gas, there is no need to provide a separate secondary barrier made of metal or the like. Thus, the heat insulating wall of the present invention is of simple construction yet can be easily manufactured at low cost.
Various other objects, features and advantages of the present invention will be made apparent by reference to the following detailed description of a preferred embodiment thereof, reference being made to the accompanying drawings, in which:
FIG. 1 is a perspective view of the basic construction of the heat insulating wall in accordance with an embodiment of the present invention;
FIG. 2 is a fragmentary side elevational view of the basic construction of the heat insulating wall partly in section, taken in the direction of the arrow A of FIG. 1; and
FIG. 3 is an explanatory plan view showing the construction of the laminated wood incorporated in the heat insulating wall in accordance with the present invention.
Referring now to FIG. 1, the basic construction of the heat insulating wall on which the heat insulating material, laminated wood serving as a secondary barrier and the inner membranous vessel are to be mounted is shown. On the inner surface of the rigid outer vessel 1, a steel plate 2 is fixed, on which a plurality of channel members 3 are welded in parallel relation with each other. A plurality of support members 4 are fixed by bolts and nuts at the lower end portion thereof to the channel members 3 and stand close together on the rigid outer vessel 1 of the tank.
On the top ends of the support members 4 is mounted a wooden framework 6 constructed with large beams 6a and small beams 6b assembled in a lattice construction. The intersections of the lattice are positioned just above the support members 4. The large beams 6a are secured to the head of the support members 4 with plywood joint plates 7 by means of adhesives and nails.
The top surface of the large beam 6a is made flush with the top surface of the small beam 6b so that the top surface of the framework 6, the surface facing inward the tank, may make a smooth single plane. On this top surface of the framework 6, a laminated wood plate 8 composed of an outer layer 8a and an inner layer 8b is mounted as shown in F IG. 2. The outer and inner layers 8a, 8b are made of plywood respectively. As clearly shown in FIG. 2, a membrane 9 constituting an inner vessel covers the inner layer 8b of the laminated wood plate 8. I
The outer layer 8a of the laminated wood plate 8 is fixed to the top surface of the framework 6 by means of adhesives and nails. The inner layer 8b is also fixed to the outer layer 8a by means of adhesives and'nails.
The outer layer 8a and the inner layer 8b of the laminated wood plate 8 are so arranged that the joints of the respective layers consisting of a plurality of rectangular pieces of wooden plates may be on the beams of the framework 6 and that the joints of the outer layer 8a may be out of alignment with the joints of the inner layer 8b as shown in FIG. 3. Thus, the laminated wood plate 8 as a whole has no joints extending from inside to outside.
In the space formed among the support members 4 between the laminated wood plate 8 and the rigid outer vessel 1, proper heat insulating material such as perlite powder is charged.
The heat insulating wall constructed as described above has a variety of advantages as follows:
1. The laminated wood plate 8 integrally incorporated in the heat insulating wall serves as the secondary barrier for preventing the leakage of the liquefied gas. Since the secondary barrier is composed of an outer layer 8a and an inner layer 8b tightly stuck with each other by means of adhesives and nails, the internal stress caused by the temperature variation is treated as a shearing stress at the stuck surface of the layers. Accordingly, the water tight property of the secondary barrier is maintained to a high degree.
2. Since the internal pressure in the inner membrane vessel 9 is transmitted to the outer rigid vessel 1 through the laminated wood plate 8, framework 6 and the support members 4, the heat insulating material charged in the wall is not required to have compressive strength. Thus, cheap heat insulating material can be employed.
3. Since the basic construction of the wall comprising the laminated wood plate 8, framework 6 and support members 4 is made of wood having comparatively low heat conductivity, there is no fear of losing the heat insulating property on account of its basic construction. 4. Since the outer layer 8a and the inner layer 8b of the laminated wood plate 8 are so arranged that the joints of the rectangular components of the respective layers may not be in alignment with each other, there is no fear of leaking therethrough. If there should be some leakage through the joint of the inner layer 8b, it is almost impossible for the leaked liquefied gas to reach the outer surface of the outer layer 8a because the path from the inner joint to the outer joint is long and filled with adhesives.
5. Since the components in the wall of the present invention are combined together by means of not only adhesives but also nails for providing the necessitated pressure on the surfaces with adhesives sandwitched therebetween, the construction as a whole is considerably strong against the external force exerted thereon.
6. The joint plates 7 combining the large beams 6a with the support members 4 have the additional effect of preventing the support members 4 from thrusting into the large beams 6a by dispersing the load exerted onto the large beams 6a.
While a certain preferred embodiment of the invention has been specifically illustrated and described hereinabove, it will be understood that the invention is not limited thereto as many variations will be apparent to those skilled in the art.
For instance, a steel plate 2 is welded onto the surface of the channel members 3 for protecting the heat insulating wall from moisture in the case where the wall construction is made outdoors. But it will be apparent to those skilled in he art that the steel plate can be eliminated in the case that the wall construction is made directly in the rigid outer vessel.
Furthermore, it will be also apparent that the framework and the support members in the above described embodiment can be reinforced with auxiliary supporting members and the like.
Thus, it should be understood that various additional modifications are possible in the arrangement and construction of its components without departing from the scope of the invention.
What is claimed is:
1. In a low temperature liquefied-gas tank of the membrane type, a heat insulating wall structure, said structure comprising a framework constituted of support members formed of a load supporting and heat insulating material, said framework defining a thickness of the heat insulating wall structure having the spaces formed adapted to be filled with a heat insulating material, and a plate member fastened to and extending over the framework to define an inner surface of the heat insulating wall structure, said framework forming a network comprising a plurality of contiguously arranged flush surfaces, said plate member comprising a plurality of contiguous first plate elements each being supported along at least portions of its periphery by said surfaces, a plurality of contiguous second plate elements being superimposed on said first plate elements in close surface contact therewith, the joints between contiguous of said second plate elements being offset relative to the joints between contiguous of said first plate elements, said framework being substantially constituted of said network, including support members extending between a wall of a rigid outer vessel and said network substantially perpendicularly to said wall and said network, said network being composed of a first group of parallel extending beams, a second group of parallel extending beams smaller than said first beams, said second beams being arranged to extend perpendicularly to said first beams, said support members being connected with said first group of beams at bridging said support members and said first group of beams.
2. A wall structure according to claim 1, comprising channel members for fastening members to the wall of portions where said first and second beams cross each, 5 said rigid Outer Vessel-

Claims (2)

1. In a low temperature liquefied-gas tank of the membrane type, a heat insulating wall structure, said structure comprising a framework constituted of support members formed of a load supporting and heat insulating material, said framework defining a thickness of the heat insulating wall structure having the spaces formed adapted to be filled with a heat insulating material, and a plate member fastened to and extending over the framework to define an inner surface of the heat insulating wall structure, said framework forming a network comprising a plurality of contiguously arranged flush surfaces, said plate member comprising a plurality of contiguous first plate elements each being supported along at least portions of its periphery by said surfaces, a plurality of contiguous second plate elements being superimposed on said first plate elements in close surface contact therewith, the joints between contiguous of said second plate elements being offset relative to the joints between contiguous of said first plate elements, said framework being substantially constituted of said network, including support members extending between a wall of a rigid outer vessel and said network substantially perpendicularly to said wall and said network, said network being composed of a first group of parallel extending beams, a second group of parallel extending beams smaller than said first beams, said second beams being arranged to extend perpendicularly to said first beams, said support members being connected with said first group of beams at portions where said first and second beams cross each, and reinforcing joint plates being fastened to and bridging said support members and said first group of beams.
2. A wall structure according to claim 1, comprising channel members for fastening members to the wall of said rigid outer vessel.
US64671A 1969-09-09 1970-08-18 Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type Expired - Lifetime US3694986A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7115069 1969-09-09

Publications (1)

Publication Number Publication Date
US3694986A true US3694986A (en) 1972-10-03

Family

ID=13452272

Family Applications (1)

Application Number Title Priority Date Filing Date
US64671A Expired - Lifetime US3694986A (en) 1969-09-09 1970-08-18 Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type

Country Status (5)

Country Link
US (1) US3694986A (en)
DE (1) DE2041889C3 (en)
FR (1) FR2061213A5 (en)
GB (1) GB1302453A (en)
SE (1) SE376456B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862700A (en) * 1971-09-11 1975-01-28 Hitachi Shipbuilding Eng Co Low temperature liquified gas storage tank
US3969860A (en) * 1974-07-31 1976-07-20 Richard Paul Bentley Thermal efficiency structure
US20080289275A1 (en) * 2007-04-11 2008-11-27 Jeffrey Thomas Ellis Construction blocking bracket
JP2019504980A (en) * 2016-02-02 2019-02-21 アイシー テクノロジー エーエス Improved liquefied natural gas storage tank design

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US133448A (en) * 1872-11-26 Improvement in fire-proof buildings
US318870A (en) * 1885-05-26 Wall for refrigerator structures
US3161265A (en) * 1959-01-27 1964-12-15 Union Carbide Corp Vacuum panel insulation
US3186130A (en) * 1961-07-19 1965-06-01 William C Gray Building block sealing construction
US3412518A (en) * 1967-10-18 1968-11-26 Transco Inc Insulated wall panel with shiplap joint
US3572000A (en) * 1968-07-04 1971-03-23 Entreprenadisolering Ab Mounting of exterior surface cladding for tanks or similar structures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US133448A (en) * 1872-11-26 Improvement in fire-proof buildings
US318870A (en) * 1885-05-26 Wall for refrigerator structures
US3161265A (en) * 1959-01-27 1964-12-15 Union Carbide Corp Vacuum panel insulation
US3186130A (en) * 1961-07-19 1965-06-01 William C Gray Building block sealing construction
US3412518A (en) * 1967-10-18 1968-11-26 Transco Inc Insulated wall panel with shiplap joint
US3572000A (en) * 1968-07-04 1971-03-23 Entreprenadisolering Ab Mounting of exterior surface cladding for tanks or similar structures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862700A (en) * 1971-09-11 1975-01-28 Hitachi Shipbuilding Eng Co Low temperature liquified gas storage tank
US3969860A (en) * 1974-07-31 1976-07-20 Richard Paul Bentley Thermal efficiency structure
US20080289275A1 (en) * 2007-04-11 2008-11-27 Jeffrey Thomas Ellis Construction blocking bracket
US7621096B2 (en) * 2007-04-11 2009-11-24 Jeffrey Thomas Ellis Construction blocking bracket
US20100146903A1 (en) * 2007-04-11 2010-06-17 Jeffrey Thomas Ellis Construction blocking bracket
US7882676B2 (en) 2007-04-11 2011-02-08 Jeffrey Thomas Ellis Construction blocking bracket
JP2019504980A (en) * 2016-02-02 2019-02-21 アイシー テクノロジー エーエス Improved liquefied natural gas storage tank design

Also Published As

Publication number Publication date
DE2041889C3 (en) 1974-04-04
FR2061213A5 (en) 1971-06-18
SE376456B (en) 1975-05-26
GB1302453A (en) 1973-01-10
DE2041889B2 (en) 1973-08-30
DE2041889A1 (en) 1971-04-01

Similar Documents

Publication Publication Date Title
US4021982A (en) Heat insulating wall structure for a fluid-tight tank and the method of making same
US4065019A (en) Fluid-tight isothermal tank for liquefied gas
CN100453402C (en) Lng storage tank and constructing method thereof
US3341049A (en) Cryogenic insulation system
US3341050A (en) Cryogenic insulation system
JPH0338559Y2 (en)
KR20120013228A (en) Liquefied natural gas storage tank
US3862700A (en) Low temperature liquified gas storage tank
US3694986A (en) Heat insulating wall construction for a low temperature liquefied gas tank of the membrane type
GB1111274A (en) Improvements in or relating to fluid-tight insulated walls and applications thereof
KR102011866B1 (en) Insulation system of membrane type storage tank
US3471983A (en) Wall corner construction
KR100754726B1 (en) Seam butt type insulation system with barrier attached high performance insulation box or panel for lng tank
CN116324259A (en) Sealed heat-insulating storage tank
KR102020969B1 (en) Insulation System For Liquefied Natural Gas Storage Tank
US3495732A (en) Insulated cryogenic tank
US3782053A (en) Joint construction for low temperature purpose liquid-tight panels
US3972166A (en) Heat insulation structure for liquefied gas storage tank
KR101563859B1 (en) Cargo barrier structure
US3826399A (en) Low temperature liquified gas storage tank
KR102342637B1 (en) A corner structure and liquefied gas storage tank including the same
KR102150460B1 (en) Insulation Panel Securing Device of Liquefied Natural Gas Storage Tank
KR102638282B1 (en) Insulation Structure of Liquefied Natural Gas Storage Tank
KR102538529B1 (en) Cargo for liquefied gas
KR102651474B1 (en) Insulation System of Liquefied Natural Gas Storage Tank