US3686274A - Process for preparing esters - Google Patents

Process for preparing esters Download PDF

Info

Publication number
US3686274A
US3686274A US30243A US3686274DA US3686274A US 3686274 A US3686274 A US 3686274A US 30243 A US30243 A US 30243A US 3686274D A US3686274D A US 3686274DA US 3686274 A US3686274 A US 3686274A
Authority
US
United States
Prior art keywords
acid
carbon atoms
organic
normal
halides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US30243A
Inventor
Russell G Hay
John G Mcnulty
William L Walsh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Gulf Research and Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf Research and Development Co filed Critical Gulf Research and Development Co
Application granted granted Critical
Publication of US3686274A publication Critical patent/US3686274A/en
Assigned to CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. reassignment CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom

Definitions

  • This invention relates to a process for preparing esters.
  • the first reactant employed herein to produce the desired ester are dibasic acids that include dibasic organic acids such as aliphatic straight and branched chain dibasic acids having from four to 22 carbon atoms, preferably from four to 18 carbon atoms, straight and branched chain olefinic dibasic acids having from four to 22 carbon atoms, preferably from four to 18 carbon atoms, cyclic dibasic acids having from five to 22 carbon atoms, preferably from five to 18 carbon atoms, and aromatic dibasic acids having from eight to 22 carbon atoms, preferably from eight to 18 carbon atoms; and polybasic acids having from four to 22 carbon atoms, preferably from four to 18 carbon atoms.
  • dibasic organic acids such as aliphatic straight and branched chain dibasic acids having from four to 22 carbon atoms, preferably from four to 18 carbon atoms, straight and branched chain olefinic dibasic acids having from four to 22 carbon atoms, preferably from four to 18
  • dibasic acids that can be employed include aliphatic straight and branched dibasic acids, such as succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, suberic acid, methylsuccinic acid, dimethylsuccinic acid, methyladipic acid, etc.; straight and branched olefinic dibasic acids, such as maleic acid, fumaric acid, methylmaleic acid, dimethylmaleic acid, ethylmaleic acid, methylfumaric acid, dimethylfumaric acid, chloromaleic acid, dichloromaleic acid, glutarconic acid, etc.; cyclic dibasic acids, such as cyclohexane dicarboxylic acid, cyclopentane dicarboxylic acid, cyclododecane dicarboxylic acid, etc.; aromatic dibasic acids, such as ortho-phthalic acid, nitrophthalic acid, tet
  • the first reactant is a dibasic acid
  • an anhydride of a defined dibasic acid exists it can be used in place of the dibasic acid.
  • an anhydride as a first reactant.
  • an organic halide selected from the group consisting of primary straight and branched chain alkyl halides having from one to 30 carbon atoms, preferably from one to 22 carbon atoms; secondary straight and branched chain alkyl halides having from one to 30 carbon atoms, preferably from one to 22 carbon atoms; primary cyclic halides having from four to 22 carbon atoms, preferably from four to 12 carbon atoms; secondary cyclic halides having from three to 22 carbon atoms, preferably from three to 12 carbon atoms, primary straight and branched chain olefinic halides having from three to 22 carbon atoms, preferably from six to 22 carbon atoms; and secondary straight and branched chain olefinic halides having from three to 22 carbon atoms, preferably from six to 22 carbon atoms.
  • organic halides that can be used herein are the same as those defined in application Ser. No. 333,624, filed Dec. 26, 1963, starting on page 4, line 21 thereof and ending on page 18, line 16, which organic halides are incorporated herein 'by reference.
  • alkyl halides particularly primary straight and branched chain alkyl halides.
  • alkyl chlorides and alkyl bromides we prefer to employ the organic acids and the organic halides in approximately stoichiometric amounts, the molar proportions thereof can vary from about 10:1 to about 1:10.
  • water In order that the dibasic acid be made to react with the organic halide herein water must be added to the reaction system.
  • the molar ratio of water to the organic halide reactant defined above can be from about 1:1 to about :1, but preferably is about 2:1 to about 40:1.
  • a basic salt of a sulfonic acid having from 12 to 20 carbon atoms, preferably from 14 to 18 carbon atoms, wherein the basic portion thereof, as an ionization constant, has a pK, basicity of about 10- to about 10- preferably about 10- to about 10-
  • sulfonic acid salts that can be employed are ammonium normal dodecylbenzenesulfonate, pyridine normal dodecylbenzenesulfonate, piperidine normal dodecylbenzenesulfonate, quinoline normal dodecylbenzenesulfonate, zinc normal dodecylbenzenesulfonate, aluminum normal dodecylbenzenesulfonate, ammonium normal decylbenzenesulfonate, pyridine normal decylbenzenesulfulfonate
  • the reactants defined above, water and the defined sulfonic acid salt are merely brought together in any convenient manner.
  • the temperature can be as low as about and as high as about 250 C., but preferably is about to about 200 C. At the low temperatures, the reaction proceeds slowly, while at the higher temperatures shorter reaction times are required and the production of alcohols corresponding to the organic halide and some olefins and a slight increase in ether are obtained. Pressures are not critical and any pressure is suitable, but in order to maintain water in the reaction zone, a pressure of at least about one hundred pounds per square inch gauge is preferred and pressures up to about 1000 pounds per square inch gauge can be used.
  • the reaction time is similarly not critical and is dependent upon the other variables involved and on the amount of conversion desired. In general, a reaction time of about one minute to about 40 hours, preferably from about 15 minutes to about three hours can be used.
  • an ester, hydrogen halide, water and some alcohol, ether and olefin are produced.
  • the ester can be recovered from the reaction product in any convenient manner.
  • the reaction mixture resolves itself into an aqueous layer and an organic layer.
  • the organic layer can be either the upper or lower layer.
  • the two layers can be separated from each other in any convenient manner, for example, by decantation.
  • the organic layer will contain the organic components and the same can be separated from each other in any suitable manner, for example, by distillation.
  • the aqueous layer contains the water originally present, water that formed, unreacted organic acid and hydrogen halide.
  • the hydrogen halide complexes or in some manner attaches itself to the water.
  • the complex exists as a liquid.
  • the aqueous layer can be discarded, if desired, but in a preferred embodiment, the hydrogen halide and unreacted organic acid can be recovered by subjecting the aqueous layer to distillation at low pressures, for example, 100 millimeters of mercury, to remove substantially all of the uncomplexed water and organic acid overhead, after which the complex is subjected to distillation at an elevated pressure, for example, 75 pounds per square inch gauge, to remove substantially anhydrous hydrogen halide overhead.
  • the process defined herein can further be illustrated by the following.
  • an organic halide an anhydride, water, a normal sulfonic acid alone, a salt of a normal sulfonic acid alone or a normal sulfonic acid with an ammonium salt.
  • the glass was placed in a shielded cage and the contents were stirred by a magnetic stirrer.
  • the contents of the glass reactor were raised to 170 C. and the pressure rose to 150 pounds per square inch gauge. After holding the contents of the reactor under these conditions for one hour, the reactor was permitted to cool to room temperature, opened and the contents were found to be present in two layers, an upper organic layer and a lower aqueous layer.
  • the organic layer was analyzed by gas liquid chromatography to determine the product distribution.
  • the organic ester product was obtained by distillation of the total organic layer.
  • the bromine content of the ester product was determined by neutron activation analysis. The results obtained are tabulated below in Table I.
  • a process for preparing an ester which comprises contacting a dibasic organic acid selected from the group consisting of aliphatic straight and branched chain dibasic acids having from four to 22 carbon atoms, straight and branched chain olefinic dibasic acids having from four to 22 carbon atoms, cyclic dibasic acids having from five to 22 carbon atoms and aromatic dibasic acids having from eight to 22 carbon atoms or a corresponding anhydride thereof with an organic halide selected from the group consisting of primary straight and branched chain alkyl halides having from one to 30 carbon atoms, secondary straight and branched chain alkyl halides having up to 30 carbon atoms, primary cyclic halides having from four to 22 carbon atoms, secondary cyclic halides having from three to 22 carbon atoms, primary straight and branched chain olefinic halides having from three to 22 carbon atoms and secondary straight and branched chain olefinic halides having from three to 22 carbon
  • reaction is 031- References Cited ried out at a tempeature of about 100 to about 200 C.
  • UNITED STATES PATENTS 12.
  • reaction is car- 2,903,477 9/1959 Hughes et aL ried out at a temperature of about 120 to about 200 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A PROCESS FOR PRODUCING ESTERS WHICH INVOLVE REACTING A DIBASIC ORGANIC ACID WITH AN ORGANIC HALIDE IN ADDED WATER CONTAINING A BASIC SALT OF A SULFONIC ACID HAVING FROM 12 TO 20 CARBON ATOMS.

Description

United States Patent 3,686,274 PROCESS FOR PREPARING ESTERS Russell G. Hay, Gibsonia, and John G. McNulty and William L. Walsh, Glenshaw, Pa., assignors to Gulf Research & Development Company, Pittsburgh, Pa. No Drawing. Filed Apr. 20, 1970, Ser. No. 30,243
. Int. Cl. C070 69/34, 69/80 US. Cl. 260-475 R 14 Claims ABSTRACT OF THE DISCLOSURE A process for producing esters which involve reacting a dibasic organic acid with an organic halide in added water containing a basic salt of a sulfonic acid having from 12 to 20 carbon atoms.
This invention relates to a process for preparing esters.
In our copending application Ser. No. 30,244, filed concurrently herewith and assigned to the same assignee as the present application, we defined and claimed a process for preparing esters by reaction of selected dibasic organic acids with selected organic halides in added water containing a sulfonic acid having from 12 to 20 carbon atoms. Although satisfactory yields of esters are produced by such process, unfortunately the esters so obtained are contaminated with bromine or chlorine and impart a color thereto. Since these esters find great utility as plasticizers, wherein color bodies are undesirable, it is apparent that to the extent they contain color bodies they tend to become less commercially attractive. We have now found that when the reaction between the dibasic organic acid and the organic halide is carried out in added water containing a basic salt of a sulfonic acid having from 12 to 20 carbon atoms, the halogen content of the ester produced is materially reduced.
The first reactant employed herein to produce the desired ester are dibasic acids that include dibasic organic acids such as aliphatic straight and branched chain dibasic acids having from four to 22 carbon atoms, preferably from four to 18 carbon atoms, straight and branched chain olefinic dibasic acids having from four to 22 carbon atoms, preferably from four to 18 carbon atoms, cyclic dibasic acids having from five to 22 carbon atoms, preferably from five to 18 carbon atoms, and aromatic dibasic acids having from eight to 22 carbon atoms, preferably from eight to 18 carbon atoms; and polybasic acids having from four to 22 carbon atoms, preferably from four to 18 carbon atoms. Specific examples of dibasic acids that can be employed include aliphatic straight and branched dibasic acids, such as succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, suberic acid, methylsuccinic acid, dimethylsuccinic acid, methyladipic acid, etc.; straight and branched olefinic dibasic acids, such as maleic acid, fumaric acid, methylmaleic acid, dimethylmaleic acid, ethylmaleic acid, methylfumaric acid, dimethylfumaric acid, chloromaleic acid, dichloromaleic acid, glutarconic acid, etc.; cyclic dibasic acids, such as cyclohexane dicarboxylic acid, cyclopentane dicarboxylic acid, cyclododecane dicarboxylic acid, etc.; aromatic dibasic acids, such as ortho-phthalic acid, nitrophthalic acid, tetrachlorophthalic acid, etc., and polybasic acids, such as tricarballylic acid, aconitic acid, citric acid, etc.
Although we have defined the first reactant as being a dibasic acid, it is apparent that wherein an anhydride of a defined dibasic acid exists it can be used in place of the dibasic acid. In fact, as the data hereinafter show, in the specific examples we have employed an anhydride as a first reactant.
To react with the dibasic acids defined above to produce the desired ester in accordance with the process 3,686,274 Patented Aug. 22, 1972 defined and claimed herein there must be employed an organic halide selected from the group consisting of primary straight and branched chain alkyl halides having from one to 30 carbon atoms, preferably from one to 22 carbon atoms; secondary straight and branched chain alkyl halides having from one to 30 carbon atoms, preferably from one to 22 carbon atoms; primary cyclic halides having from four to 22 carbon atoms, preferably from four to 12 carbon atoms; secondary cyclic halides having from three to 22 carbon atoms, preferably from three to 12 carbon atoms, primary straight and branched chain olefinic halides having from three to 22 carbon atoms, preferably from six to 22 carbon atoms; and secondary straight and branched chain olefinic halides having from three to 22 carbon atoms, preferably from six to 22 carbon atoms. Specific examples of organic halides that can be used herein are the same as those defined in application Ser. No. 333,624, filed Dec. 26, 1963, starting on page 4, line 21 thereof and ending on page 18, line 16, which organic halides are incorporated herein 'by reference. Of the organic halides defined above, we prefer to employ alkyl halides, particularly primary straight and branched chain alkyl halides. Of the alkyl halides, we prefer alkyl chlorides and alkyl bromides. Although we prefer to employ the organic acids and the organic halides in approximately stoichiometric amounts, the molar proportions thereof can vary from about 10:1 to about 1:10.
In order that the dibasic acid be made to react with the organic halide herein water must be added to the reaction system. The molar ratio of water to the organic halide reactant defined above can be from about 1:1 to about :1, but preferably is about 2:1 to about 40:1.
To increase the amount of ester produced and to reduce the halogen impurity associated therewith, it is imperative that there also be present in the reaction zone a basic salt of a sulfonic acid having from 12 to 20 carbon atoms, preferably from 14 to 18 carbon atoms, wherein the basic portion thereof, as an ionization constant, has a pK, basicity of about 10- to about 10- preferably about 10- to about 10- Specific examples of sulfonic acid salts that can be employed are ammonium normal dodecylbenzenesulfonate, pyridine normal dodecylbenzenesulfonate, piperidine normal dodecylbenzenesulfonate, quinoline normal dodecylbenzenesulfonate, zinc normal dodecylbenzenesulfonate, aluminum normal dodecylbenzenesulfonate, ammonium normal decylbenzenesulfonate, pyridine normal decylbenzenesulfonate, zinc normal decylbenzenesulfonate, ammonium normal octylbenzenesulfonate, pyridine normal octylbenzenesulfonate, zinc normal octylbenzenesulfonate, ammonium normal dodecanesulfonate, pyridine normal dodecanesulfonate, zinc normal dodecanesulfonate, ammonium normal octadecanesulfonate, pyridine normal octadecanesulfonate, zinc normal octadecanesulfonate, ammonium normal eicosanesulfonate, pyridine normal eicosanesulfonate, zinc normal eicosanesulfonate, ammonium 3 methyldodecanesulfonate, pyridine 3-methyldecylbenzenesulfonate, zinc 4- ethyloctylbenzenesulfonate, etc. By normal we mean linear. The amount of sulfonic acid salt required is at least about 0.05 percent by weight based upon the total reaction mixture, preferably from about 0.2 to about two percent by weight.
In carrying out the reaction, the reactants defined above, water and the defined sulfonic acid salt are merely brought together in any convenient manner. The temperature can be as low as about and as high as about 250 C., but preferably is about to about 200 C. At the low temperatures, the reaction proceeds slowly, while at the higher temperatures shorter reaction times are required and the production of alcohols corresponding to the organic halide and some olefins and a slight increase in ether are obtained. Pressures are not critical and any pressure is suitable, but in order to maintain water in the reaction zone, a pressure of at least about one hundred pounds per square inch gauge is preferred and pressures up to about 1000 pounds per square inch gauge can be used. The reaction time is similarly not critical and is dependent upon the other variables involved and on the amount of conversion desired. In general, a reaction time of about one minute to about 40 hours, preferably from about 15 minutes to about three hours can be used.
During the course of the reaction, an ester, hydrogen halide, water and some alcohol, ether and olefin are produced. The ester can be recovered from the reaction product in any convenient manner. For example, upon cooling, the reaction mixture resolves itself into an aqueous layer and an organic layer. Depending on the density of the organic product formed, the organic layer can be either the upper or lower layer. The two layers can be separated from each other in any convenient manner, for example, by decantation. The organic layer will contain the organic components and the same can be separated from each other in any suitable manner, for example, by distillation. The aqueous layer contains the water originally present, water that formed, unreacted organic acid and hydrogen halide. It is believed that the hydrogen halide complexes or in some manner attaches itself to the water. The complex exists as a liquid. The aqueous layer can be discarded, if desired, but in a preferred embodiment, the hydrogen halide and unreacted organic acid can be recovered by subjecting the aqueous layer to distillation at low pressures, for example, 100 millimeters of mercury, to remove substantially all of the uncomplexed water and organic acid overhead, after which the complex is subjected to distillation at an elevated pressure, for example, 75 pounds per square inch gauge, to remove substantially anhydrous hydrogen halide overhead.
The process defined herein can further be illustrated by the following. Into a 300-milliliter glass pressure reactor there was introduced an organic halide, an anhydride, water, a normal sulfonic acid alone, a salt of a normal sulfonic acid alone or a normal sulfonic acid with an ammonium salt. The glass was placed in a shielded cage and the contents were stirred by a magnetic stirrer. The contents of the glass reactor were raised to 170 C. and the pressure rose to 150 pounds per square inch gauge. After holding the contents of the reactor under these conditions for one hour, the reactor was permitted to cool to room temperature, opened and the contents were found to be present in two layers, an upper organic layer and a lower aqueous layer. The organic layer was analyzed by gas liquid chromatography to determine the product distribution. The organic ester product was obtained by distillation of the total organic layer. The bromine content of the ester product was determined by neutron activation analysis. The results obtained are tabulated below in Table I.
contaminated with 879 parts per million of broine. In each of Runs 2 and 3, wherein a basic salt of a' sulfonic acid falling within the defined basicity was used, a satisfactory yield of ester was obtained and the bromine impurity was reduced dramatically. In Run 4, wherein a basic salt of a sulfonic acid falling outside the defined range was used, a substantial reduction in bromine impurity was achieved, but the amount of ester produced was similar to that which would be obtained in its absence. Run 5 shows that the basic salt used need not be added as such but can be formed in situ.
Obviously, many modifications and variations of the invention, as hereinabove set forth, can be made without departing from the spirit and scope thereof, and therefore only such limitations should be imposed as are indicated in the appended claims.
We claim:
1. A process for preparing an ester which comprises contacting a dibasic organic acid selected from the group consisting of aliphatic straight and branched chain dibasic acids having from four to 22 carbon atoms, straight and branched chain olefinic dibasic acids having from four to 22 carbon atoms, cyclic dibasic acids having from five to 22 carbon atoms and aromatic dibasic acids having from eight to 22 carbon atoms or a corresponding anhydride thereof with an organic halide selected from the group consisting of primary straight and branched chain alkyl halides having from one to 30 carbon atoms, secondary straight and branched chain alkyl halides having up to 30 carbon atoms, primary cyclic halides having from four to 22 carbon atoms, secondary cyclic halides having from three to 22 carbon atoms, primary straight and branched chain olefinic halides having from three to 22 carbon atoms and secondary straight and branched chain olefinic halides having from three to 22 carbon atoms in the presence of added water containing a basic salt of a sulfonic acid having from 12 to 20 carbon atoms, wherein the basic portion thereof, as an ionization constant, has a pK, basicity of about 10- to about 10- 2. The process of claim 1 wherein the K, basicity is in the range of about 10* to about 10- 3. The process of claim 1 wherein the basic salt is ammonium dodecylbenzenesulfonate.
4. The process of claim 1 wherein the basic salt is pyridine dodecylbenzenesulfonate.
5. The process of claim 1 wherein the amount of basic salt present is at least about 0.05 percent by weight based on the reaction mixture.
6. The process of claim 1 wherein the amount of basic salt present is from about 0.2 to about two percent by Weight based upon the total reaction mixture.
7. The process of claim 1 wherein said anhydride is phthalic anhydride.
8. The process of claim 1 wherein said organic halide is l-bromo octane.
TABLE I Grams of additive Mols charged Ammo- Parts Weight percent in product ofnium Sodium Pyridine Dodecyl- Ammoper mil- 1- Phthalic dodecyldodecyldodecylbenzenenium lion of Dioctyl bromo anbenzenebenzenebenzenesulfonic brobromine phthall-oc- Dioctyl Run No. octane hydride Water sulfonate sulfonate sulfonate acid mide in ester ate tanol Octenes ether The uniqueness of the present process is apparent from 9. The process of claim 1 wherein the molar ratio of a study of the above data. In Run No. 1 wherein the addiwater to organic halide is from about 1:1 to about 80:1. tive employed was solely normal dodecylbenzenesulfonic 10. The process of claim 1 wherein the molar ratio of acid the yield of ester was satisfactory but the same was water to organic halide is from about 2:1 to about 40:1.
6 11. The process of claim 1 wherein the reaction is 031- References Cited ried out at a tempeature of about 100 to about 200 C. UNITED STATES PATENTS 12. The process of claim 1 wherein the reaction is car- 2,903,477 9/1959 Hughes et aL ried out at a temperature of about 120 to about 200 C.
13. The process of claim 1 wherein the basic salt is ob- LEWIS GOTTS, Primary Examiner tained from a sulfonic acid and having from 12 to 20 L SKELLY Assistant Examiner carbon atoms and an ammonium salt.
14. The process of claim 1 wherein the basic salt is US. C1.X.R. obtained from normal dodecylbenzenesulfonic acid and 10 260.468 H, 468 K, 471 R, 75 N, 4 P, 485 R, 43 5 H, ammonium bromide. 435 4 5 N
US30243A 1970-04-20 1970-04-20 Process for preparing esters Expired - Lifetime US3686274A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3024370A 1970-04-20 1970-04-20

Publications (1)

Publication Number Publication Date
US3686274A true US3686274A (en) 1972-08-22

Family

ID=21853261

Family Applications (1)

Application Number Title Priority Date Filing Date
US30243A Expired - Lifetime US3686274A (en) 1970-04-20 1970-04-20 Process for preparing esters

Country Status (1)

Country Link
US (1) US3686274A (en)

Similar Documents

Publication Publication Date Title
US2910490A (en) Process for preparing glycol monoesters of organic carboxylic acids
US2093695A (en) Process for the preparation of carboxylic acid esters
US3167585A (en) Process for carboxylation of iso-olefins
US3701729A (en) Oil-soluble mixed copper soap products
US3686274A (en) Process for preparing esters
US2957023A (en) Treatment of plasticizer esters with alkali metal borohydrides
US2054814A (en) Method of making chlorhydrin esters
US3703549A (en) Production of dicarboxylic acids
ES275323A1 (en) Polyester production using a guanidine catalyst
US3692822A (en) Process for preparing esters
US3341575A (en) Preparation of esters from alkyl chlorides and carboxylic acid salts in the presenceof amide solvent and a soluble iodide compound
US3634474A (en) Esterification of carboxylic acids with organic halides in the presence of water
US3544626A (en) Quaternary ammonium and phosphonium salts as catalysts in the production of carboxylic acid chlorides
GB1015227A (en) Process for making tetramethyl lead
US3686286A (en) Esterification of organic halides with reduced olefin production
US2876253A (en) Process of esterification in the presence of hydroxylamine to inhibit discoloration
US3686275A (en) Process for preparing esters
GB827718A (en) Improvements in or relating to the manufacture of vinyl esters
US2500009A (en) Chloroalkyl acylates
GB1423495A (en) Oligocarboxyalkane-phosphonic acids and process for makiing them
US3056827A (en) Preparation of esters by reacting an anhydride with carbonic acid diesters
US3562315A (en) Hydrous reaction of organic halides and carboxylic acid amides
US2115905A (en) Method of making esters of glycols
GB970969A (en) Dicarboxylic acids and their esters and a process for the preparation thereof
US2273785A (en) Organic acids from ketones

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423