US3684719A - Method of stripping the oxide film from a zinc surface - Google Patents

Method of stripping the oxide film from a zinc surface Download PDF

Info

Publication number
US3684719A
US3684719A US787589A US3684719DA US3684719A US 3684719 A US3684719 A US 3684719A US 787589 A US787589 A US 787589A US 3684719D A US3684719D A US 3684719DA US 3684719 A US3684719 A US 3684719A
Authority
US
United States
Prior art keywords
pickling
parts
acid
zinc
ferric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US787589A
Inventor
Samuel S Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OAKITE PRODUCTS Inc A DE CORP
SAMUEL S FREY
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3684719A publication Critical patent/US3684719A/en
Assigned to BANQUE PARIBAS, A FRENCH BANKING CORPORATION reassignment BANQUE PARIBAS, A FRENCH BANKING CORPORATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLAIRE MANUFACTURING COMPANY, A CORP. OF DE., DELAWARE OAKITE, INC., A CORP. OF DE., METROVAL, INC., A CORP. OF DE, OAKITE PRODUCTS, INC., A CORP. OF NY., REILLY-WHITEMAN, INC., A CORP. OF DE., SPRAYWAY, INC., A CORP. OF DE.
Anticipated expiration legal-status Critical
Assigned to CM SURFACE TREATMENT INC. reassignment CM SURFACE TREATMENT INC. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: OAKITE PRODUCTS, INC.
Assigned to OAKITE PRODUCTS, INC. A DE CORP. reassignment OAKITE PRODUCTS, INC. A DE CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 08/30/1991 Assignors: CM SURFACE TREATMENT INC. A DE CORP.
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D9/00Chemical paint or ink removers

Definitions

  • This invention is that of the conditioning of surfaces of zinc and zinc base alloys (jointly called zinc surfaces) to receive a coating such as a protective coating and especially an electrodeposit.
  • the invention more particularly is that of a method of conditioning such zinc surfaces, which usually are subjected to plating an electrodeposit over them, for such plating.
  • the invention includes also a pickling process used in this conditioning method.
  • the method of the invention is applicable especially to conditioning surfaces of such zinc alloys which generally have no more than one percent of copper content, such as the alloy commonly known as Zamak-3 which contains about 0.1% of copper and is widely used for preparing die castings.
  • An important part of the method of the invention is an initial stage wherein the zinc die casting is anodized in a stable, specific aqueous alkaline bath which provides a uniform anodized film over and integral with the usual oxide film (which conveniently is called the natural film) ordinarily existing on the surface of the zinc base die castings.
  • a feature of this initial anodizing stage of the invention is its elfective treatment of porous areas in the zinc surface to minimize the possibility of their being a source for defects. Thereby they avoid the heretofore experienced entrapment of solutions used prior to and/or in the plating, which allowed their reacting with the zinc to generate hydrogen and cause blisters and other damage to the electrodeposit.
  • This stage of the invention involves immersing the preferably initially precleaned zinc surface in an aqueous anodizing bath containing a suflicient concentration of a water-soluble alkaline anodizing mixture as more fully described and exemplified in applicants copending application Ser. No. 447,089, new Pat. No. 3,446,715 to produce a substantially uniform, adherent and from overall gray to black surface color change on the zinc surface by the anodizing procedure more fully described and exemplified in said patent.
  • a further significant aspect and succeeding stage of the method of the invention involves subjecting the satisfactorily anodized zinc surface developed in the first stage treatment, desirably after an intermediate water rinse, to a specific pickling treatment by immersing the articles for from about 15 seconds to about 100 seconds, more effectively from about 35 seconds to about seconds, to the action of an aqueous acid pickling bath containing a sufiicient concentration of a pickling composition, prepared either as a solid mixtures or an aqueous liquid concentrate, having three essential cooperating pickling ingredients (a) a watersoluble inorganic ferric salt, (b) sulfuric acid or an alkali metal bisulfate, and (c) a water-soluble inorganic fluorineelement containing compound such as hydrofluoric acid, fiuoroboric acid or fiuorotitanic acid, or an alkali metal salt of any of those acids, or the ferric salt with a mixture of any of the (b) compounds, and a mixture of any of the (c) compounds,
  • the water-soluble inorganic fluorine-element-containing compound can be represented by the formula M-D wherein M is the cation hydrogen, an alkali metal, or the ammonium group, and D is a fluorine-element-containing anion.
  • the essential pickling constituents of the solid pickling mixture include as principle agents an alkali metal (advantageously sodium) acid sulfate (i.e. bisulfate) and a water-soluble, advantageously inorganic ferric salt such as beneficially ferric sulfate, or ferric chloride or also ferric nitrate; and advantageously along with an alkali metal (preferably sodium) acid fluoride, or an alkali metal fiuoroborate or fluorotitanate such as the sodium salt of eitlher of the latter two salts, and also their ammonium sa ts.
  • an alkali metal (advantageously sodium) acid sulfate i.e. bisulfate
  • a water-soluble, advantageously inorganic ferric salt such as beneficially ferric sulfate, or ferric chloride or also ferric nitrate
  • the alkali metal, beneficially sodium, bisulfate can range from about 90 to about 9 parts with the watersoluble ferric salt ranging from about 10 to about 90 parts (that is to say, the higher the content of the bisulfate, the lower the ferric salt content), and advantageously there can be included with them generally about one part of the alkali metal bifluoride, preferably sodium acid fluoride (i.e. NaH-F or the fluorine-elementcontaining equivalent amount of an alkali metal, such as the sodium, fluoroborate or fiuorotitanate.
  • NaH-F sodium acid fluoride
  • the various respective parts of these constituents are by weight (herein and in the claims) except where otherwise said to be by volume.
  • the principal or essential pickling constituents of the liquid pickling compositions are (a) the above-noted inorganic ferric salt, (b) an inorganic fluorine-elementcontaining acid as hydrofluoric acid, fluoroboric acid, fluorotitanic acid or mixtures of any of them, and sulfuric acid and with said essential constituents being in solution in an amount of water sufficient to hold the ferric salt in solution.
  • the liquid pickling concentrate it is beneficial to use as the source of the ferric salt the commercially readily available aqueous solution containing 50 percent ferric sulfate and in the range from about 0.9 to parts of that solution, from about 2 to about 4 parts of the 10% (as HF) aqueous hydrofluoric acid, and from about 0.5 part to about 8 parts of 66 Baum sulfuric acid, wherein all parts are by weight.
  • the concentrate then can contain by weight from about 13 to about 22.5 percent of ferric sulfate (anhydrous basis), from 6 to about 2 percent of hydrogen fluoride, from about 13.5 to about 35 percent of H 50 and from about 67.5 to about 41.5 percent of water.
  • the ferric sulfate can be replaced by the ferric ion equivalent amount of any other water-soluble inorganic ferric salt; and the hydrofluoric acid by the fluoride-containing equivalent of fluoroboric acid or fluorotitanic acid.
  • a pickling bath can be prepared with from about 1.5 to about 3.5 ounces (weight) of the solid mix per gallon of water, although somewhat less or more can be used to provide a pH from about 1.2 to about 2.
  • the pickling bath then can contain, by weight, the inorganic ferric salt to the extent to provide from about 0.06 to about 0.33 percent of the ferric ion, the fluorine-element-containing compound to provide from about 0.01 to about 0.114 percent of fluoride ion equivalent, sulfuric acid to provide from about 0.52 to about 1.96 percent of sulfate ion (including any from ferric sulfate when it is used as the ferric salt), and from about 0.009 to about 0.190 of hydrogen ion from the acidic ingredients.
  • the thus pickled zinc articles are removed from the pickling bath and subjected to a running, preferably cold, water rinse sufficient to remove entrained pickling solution and the pickling products.
  • the anodized film and the natural oxide film are seen to be uniformly removed leaving an overall clean, matte, silvery fresh metal zincsurface. That is so also in any pores which thus were completely cleaned and so to allow a completely uniformly continuous electrodeposit to be plated over the entire surface without entrapping any plating solution.
  • a feature of this pickling treatment stage of the invention is such complete removal of both the anodized and natural films to expose the clean fresh zine metal surface as just described.
  • a further feature of this aspect of the invention is accomplishment of such maximum removal of the films in a minimum of time, even as little as only seconds in many cases, and with such substantially low concentration of the combined acid pickling agents.
  • EXAMPLE 1 Pickling mix 250 parts of ferric sulfate (with 9H,O water of crystallization) are admixed with 730 parts of anhydrous sodium EXAMPLE 2 40 parts of ferric sulfate, 50 parts of sodium bisulfate, and 10 parts of sodium bifluoride, as used in Example 1, are homogeneously mixed and similarly packaged in the same size drums.
  • EXAMPLE 3 200 parts of the ferric sulfate, 790 parts of sodium bisulfate, and 10 parts of sodium bifluoride, as used in Example 1, are homogeneously mixed and similarly packaged in the same size drums.
  • the sodium bifluoride can be replaced by its fluoride ion equivalent of sodium fluoborate or sodium fluorotitanate.
  • any of the sodium salts used in any of these solid mixes can be replaced by any other practical alkali metal salt such as the corresponding potassium salt where the additional cost is not a factor or in an area where the potassium salt is competitively priced.
  • EXAMPLE 5 45 parts of a 50% aqueous ferric sulfate solution is diluted with 13.6 parts of water. Into the resulting diluted solution are admixed -18 parts of a 10% (as HF) hydrofluoric acid and then 23.4 parts of 66 Baum sulfuric acid. The mixture is stirred to give a uniform pickling concentrate.
  • EXAMPLE 6 35 parts of the 50% ferric sulfate solution are diluted with 23.6 parts of water and into the resulting dilute solution are admixed the same respective number of parts of the same hydrofluoric acid and sulfuric acid as used in Example 5, and the resulting mix agitated to uniformity.
  • EXAMPLE 7 25 parts of the same 50% ferric sulfate solution are diluted with 33.6 parts of water, and into the resulting diluted solution are admixed the same respective number of parts of the same hydrofluoric acid and sulfuric acid as used in Example 5, and the resulting mix agitated to uniformity.
  • EXAMPLE 8 Example is repeated by reducing the ferric sulfate solution to 15 parts and increasing to 43.6 parts the water with which it is diluted.
  • Example 5 is repeated by increasing its ferric sulfate solution to 55 parts and reducing its water added for dilution to 3.6 parts.
  • Example 10 is repeated with its fluoroboric acid replaced by 10.2 parts of an aqueous solution containing 25% of ammonium bifluoride and its water for dilution reduced to 21.4 parts.
  • Example 10 is repeated with its water reduced to 27.5 parts and its fluoroboric acid replaced by 4.1 parts of an aqueous solution containing 60% of fiuorotitantic acid.
  • ferric sulfate can be replaced in part or as a whole by any other ap plicable inorganic water-soluble ferric salt; and so also the fluorine-containing acid of any of them can be replaced in part or as a whole by an equivalent amount of any other such acid or of an alkali metal salt of any of them.
  • any of the liquid concentrates of any of the foregoing examples and above described modifications of them, and any others prepared by using the different principal pickling ingredients within the earlier above-mentioned respective ranges of content for them, can be used for preparing pickling baths for use in the pickling method of the invention by dissolving from about 2 to about 4 percent by volume of such concentrate per gallon of water, to provide a pickling bath within the earlier above pH range, and beneficially from about pH 0.9 to about 1.5 electrometric
  • a compatible wetting agent, beneficially anionic, can be included where seen to be helpful and generally to the extent of less than one percent.
  • EXAMPLE 13 Methods of pickling the anodized die castings Water was run into a rubber-lined tank of 300 gallons capacity to over half of its capacity. There then was admixed a concentrated aqueous acid solution of the solid pickling mix of Example 1 to provide in the tank a-dilute solution as a pickling bath having dissolved therein two ounces of that solid pickling mix per gallon of water at ambient temperature. The pH of the resulting pickling bath was 1.5.
  • the thus pickled and rinsed zinc die castings then were ready for electroplating, and so were electroplated in the customary manner with a copper strike, then regular copper electroplate, followed by nickel plate and finally chrome plate.
  • the plated castings showed improved luster and overall appearance and enhanced adhesion of the electrodeposits particularly on unbuifed areas of the castings, as well as on the buffed areas.
  • Example 13 can be repeated in the same way by using in place of the solid pickling mix of Example 1 the solid pickling mix of any of Examples 2, 3 and 4, or of any of the earlier described possible modifications of them, separately respectively and at the samev concentration as in Example 13 or any suitable different concentration within the range disclosed herein and similarly for 30 seconds or more up to 90 seconds as any modification in pickling agents and working concentration may indicate to be necessary.
  • Example 13 can be repeated similarly by using the liquid pickling concentrate of any of the Examples 5 through 12, or of any of the de scribed possible modifications of them, at a concentration disclosed for them and optimally with the pickling bath at a pH of from about 0.9 to about 1.5 and immersion in the bath for from about 45 to about 90 seconds.
  • such heavier anodized coatings can be removed by extending the immersion in the acid pickling bath up to 60 or 90 seconds.
  • such heavier coating can be removed by increasing the concentration of the pickling mix or liquid concentrate in the bath to any suitable concentration within the disclosed ranges as a quick simple test on one or two castings, or areas of a single casting or panels, of the same zinc alloy might show that immersion of the casting or portion of it or panel in the acid pickling solution at a particular concentration removes fully the colored anodized film with the underlying natural film and exposes the silvery sheen of the freshly exposed zinc.
  • an aqueous acid pickling bath prepared from the acid pickling mix of Example 1 shows satisfactory effectiveness when used in a concentration even as low as one ounce, as well as between one and two ounces, per gallon.
  • an aqueous acid pickling bath prepared from one ounce per gallon of the acid pickling mix of Example 4 shows satisfactory effectiveness in a full minute, whereas at a cencentration of two ounces per gallon the separate different acid-pickling bath from the pickling mix of each of the Examples 1 through 4 shows full effectiveness in from as little as 15 seconds to one minute.
  • an aqueous acid pickling bath prepared from two ounces per gallon of an acid pickling mix containing 60 parts of the ferric sulfate, 39 parts of the sodium bi sulfate, and 1 part of the sodium bifluoride is equal in effectiveness to the aqueous pickling bath of the same concentration of the mix of Example 1, but only in the immersion range of 30 to 60 seconds, and is effective in an immersion time of as little as 15 seconds at a concentration of four ounces per gallon.
  • the aqueous acid pickling bath prepared from one to two ounces of the pickling v mix containing ten parts of the ferric sulfate, parts of the sodium bisulfate, and 10 parts of the sodium bifluoride requires an immersion time of more than 30 seconds but up to one minute to be as effective as is the same concentration bath from the mix of Example 2 in an irnmersion time of as little as seconds.
  • Both the solid pickling mixes and the liquid pickling concentrates as well as their respective pickling baths are easily prepared. Their effectiveness is readily tested by easy electrodeposition application of ordinary copper plate, followed by nickel plate, and then with the easy test of baking at a reasonably elevated temperature, say, within 275 to 300 F., to see whether blistering or flaking can occur, within an hour.
  • the pickling baths from both the solid mixes and the liquid concentrates because of their effective quick action within such short time respectively, and long service life, are compatible with, and readily can be, and have been, included in, the modern automatic rack-holding conveyor continuous systems.
  • the pickling bath from either a solid mix or a liquid concentrate is quite easily controlled not only as to its maintenance but also as to its continuing efiectiveness in operation. In that connection, only visual observation is needed to follow the proper operation of these baths, for example, by watching for the development of the overall matte, silvery sheen of the freshly exposed zinc surfaces when both the anodized film and the natural oxide film are removed in the pickling operation.
  • the anodizing step followed by the pickling stage conditions the basis fresh zinc surface for the subsequent preliminary copper plating deemed necessary before nickel is to be deposited over zinc.
  • the pickling treatment of the invention provides for uniform removal of the natural film as well as the particular anodized film in minimum operating time with low and minimum concentrations of pickling agents.
  • the method of stripping the oxide film from a zinc surface to expose the clean fresh metal surface thereof which comprises immersing the oxide film-coated zinc surface in an aqueous acid pickling bath having a pH of from about 0.8 to about 2.5 and containing dissolved in its water a sufficient amount, to provide said pH, of a mixture composition consisting essentially of the cooperating agents (i) a water-soluble inorganic ferric salt in an amount wherein its iron content is equivalent to from about 10 to about 90 parts of crystalline ferric sulfate, (ii) at least one of the alkali metal bisulfates and sulfuric acid and in an amount equivalent in acidity to from about 90 to about 9 parts of sodium bisulfate, and (iii) at least one water-soluble inorganic fluorine-element-containing compound of the formula M-D wherein M is a cation selected from hydrogen, an alkali metal, and the ammonium group, and D is a fluorine-element-containing anion, said compound being in an amount

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

A PROCESS TO REMOVE OXIDE FILM FROM ZINC SURFACES COMPRISING A BATH CONTAINING A WATER SOLUBLE INORGANIC FERRIC SALT, SULFURIC ACID OR BISULFATE SALT, AND A WATER SOLUBLE INORGANIC FLUORIDE SALT.

Description

United States Patent Office AU 165 EX 3,684,719 Patented Aug. 15, 1972 Ser. No. 787,589
Int. Cl. C09k 3/00 US. Cl. 252-79.: 4 Clainu ABSTRACT OF THE DISCLOSURE A process to remove oxide film from zinc surfaces comprising a bath containing a water soluble inorganic ferric salt, sulfuric acid or bisulfate salt, and a water soluble inorganic fluoride salt.
This application is a continuation-in-part of applicants copending application Ser. No. 447,089 filed Apr. 9, 1965 now Pat. No. 3,446,715.
This invention is that of the conditioning of surfaces of zinc and zinc base alloys (jointly called zinc surfaces) to receive a coating such as a protective coating and especially an electrodeposit. The invention more particularly is that of a method of conditioning such zinc surfaces, which usually are subjected to plating an electrodeposit over them, for such plating. The invention includes also a pickling process used in this conditioning method. The method of the invention is applicable especially to conditioning surfaces of such zinc alloys which generally have no more than one percent of copper content, such as the alloy commonly known as Zamak-3 which contains about 0.1% of copper and is widely used for preparing die castings.
Zinc surfaces whereon can be formed a so-called natural oxide film from contact with air, as well as an anodicallyformed oxide film, especially such zinc alloy die castings, are given an electrodeposit, such as copper followed by nickel and then usually by chromium, for such use as parts (e.g. door handles, radiator ornaments, light reflector frames) for automobiles, and other products used in large numbers. While a number of attempts have been made to improve the preparation of these zinc surfaces, e.g. the surfaces of such die castings, to take on satisfactory electrodeposits, that still remains a serious problem. Extensive improvement still is needed because of the considerable lack of surface uniformity and frequency of blistering which still is experienced with electrodeposits on zinc surfaces, particularly of zinc die castings.
These and other still existing shortcomings and disadvantages are significantly appreciably diminished, and to an unusual extent practically overcome, by using the method of the invention empolying its disclosed baths and compositions.
An important part of the method of the invention is an initial stage wherein the zinc die casting is anodized in a stable, specific aqueous alkaline bath which provides a uniform anodized film over and integral with the usual oxide film (which conveniently is called the natural film) ordinarily existing on the surface of the zinc base die castings.
A feature of this initial anodizing stage of the invention is its elfective treatment of porous areas in the zinc surface to minimize the possibility of their being a source for defects. Thereby they avoid the heretofore experienced entrapment of solutions used prior to and/or in the plating, which allowed their reacting with the zinc to generate hydrogen and cause blisters and other damage to the electrodeposit.
This stage of the invention involves immersing the preferably initially precleaned zinc surface in an aqueous anodizing bath containing a suflicient concentration of a water-soluble alkaline anodizing mixture as more fully described and exemplified in applicants copending application Ser. No. 447,089, new Pat. No. 3,446,715 to produce a substantially uniform, adherent and from overall gray to black surface color change on the zinc surface by the anodizing procedure more fully described and exemplified in said patent.
For said anodizing baths and procedure, see, for example, column 2 line 4 to column 3 line 17 and column 7 4 line 3 to column 6 line 31 of that Pat. No. 3,446,715.
A further significant aspect and succeeding stage of the method of the invention, broadly considered, involves subjecting the satisfactorily anodized zinc surface developed in the first stage treatment, desirably after an intermediate water rinse, to a specific pickling treatment by immersing the articles for from about 15 seconds to about 100 seconds, more effectively from about 35 seconds to about seconds, to the action of an aqueous acid pickling bath containing a sufiicient concentration of a pickling composition, prepared either as a solid mixtures or an aqueous liquid concentrate, having three essential cooperating pickling ingredients (a) a watersoluble inorganic ferric salt, (b) sulfuric acid or an alkali metal bisulfate, and (c) a water-soluble inorganic fluorineelement containing compound such as hydrofluoric acid, fiuoroboric acid or fiuorotitanic acid, or an alkali metal salt of any of those acids, or the ferric salt with a mixture of any of the (b) compounds, and a mixture of any of the (c) compounds, to provide a pH from about 0.8 to about 2.5 to enable substantially complete removal of the anodized film with the natural film in the above indicated time and at ambient temperature. The water-soluble inorganic fluorine-element-containing compound can be represented by the formula M-D wherein M is the cation hydrogen, an alkali metal, or the ammonium group, and D is a fluorine-element-containing anion.
The essential pickling constituents of the solid pickling mixture include as principle agents an alkali metal (advantageously sodium) acid sulfate (i.e. bisulfate) and a water-soluble, advantageously inorganic ferric salt such as beneficially ferric sulfate, or ferric chloride or also ferric nitrate; and advantageously along with an alkali metal (preferably sodium) acid fluoride, or an alkali metal fiuoroborate or fluorotitanate such as the sodium salt of eitlher of the latter two salts, and also their ammonium sa ts.
The alkali metal, beneficially sodium, bisulfate can range from about 90 to about 9 parts with the watersoluble ferric salt ranging from about 10 to about 90 parts (that is to say, the higher the content of the bisulfate, the lower the ferric salt content), and advantageously there can be included with them generally about one part of the alkali metal bifluoride, preferably sodium acid fluoride (i.e. NaH-F or the fluorine-elementcontaining equivalent amount of an alkali metal, such as the sodium, fluoroborate or fiuorotitanate. The various respective parts of these constituents are by weight (herein and in the claims) except where otherwise said to be by volume.
For the most part, that single part of sodium acid fluoride or equivalent amount of other water-soluble inorganic fiuorineelement-containing salt is adequate with the just above recited respective range of the sodium bisulfate and the ferric salt. However, it is possible to include even up to 10 parts of the sodium bifluoride or the equivalent amount of sodium fluoroborate or fiuorotitanate or mixtures of any of them with the noted respective ranges of the bisulfate and the ferric salt, and generally without adverse effect where the increased cost does not matter, although ordinarily it is more desirable to use the lower concentrations of the alkali metal bifluoride for generally simpler operation.
The principal or essential pickling constituents of the liquid pickling compositions are (a) the above-noted inorganic ferric salt, (b) an inorganic fluorine-elementcontaining acid as hydrofluoric acid, fluoroboric acid, fluorotitanic acid or mixtures of any of them, and sulfuric acid and with said essential constituents being in solution in an amount of water sufficient to hold the ferric salt in solution.
For the liquid pickling concentrate, it is beneficial to use as the source of the ferric salt the commercially readily available aqueous solution containing 50 percent ferric sulfate and in the range from about 0.9 to parts of that solution, from about 2 to about 4 parts of the 10% (as HF) aqueous hydrofluoric acid, and from about 0.5 part to about 8 parts of 66 Baum sulfuric acid, wherein all parts are by weight. The concentrate then can contain by weight from about 13 to about 22.5 percent of ferric sulfate (anhydrous basis), from 6 to about 2 percent of hydrogen fluoride, from about 13.5 to about 35 percent of H 50 and from about 67.5 to about 41.5 percent of water.
In each of the foregoing concentrates, the ferric sulfate can be replaced by the ferric ion equivalent amount of any other water-soluble inorganic ferric salt; and the hydrofluoric acid by the fluoride-containing equivalent of fluoroboric acid or fluorotitanic acid.
For generally good pickling operation, a pickling bath can be prepared with from about 1.5 to about 3.5 ounces (weight) of the solid mix per gallon of water, although somewhat less or more can be used to provide a pH from about 1.2 to about 2. The pickling bath then can contain, by weight, the inorganic ferric salt to the extent to provide from about 0.06 to about 0.33 percent of the ferric ion, the fluorine-element-containing compound to provide from about 0.01 to about 0.114 percent of fluoride ion equivalent, sulfuric acid to provide from about 0.52 to about 1.96 percent of sulfate ion (including any from ferric sulfate when it is used as the ferric salt), and from about 0.009 to about 0.190 of hydrogen ion from the acidic ingredients.
After immersion for the sufficiently short time to complete the pickling, the thus pickled zinc articles are removed from the pickling bath and subjected to a running, preferably cold, water rinse sufficient to remove entrained pickling solution and the pickling products. The anodized film and the natural oxide film are seen to be uniformly removed leaving an overall clean, matte, silvery fresh metal zincsurface. That is so also in any pores which thus were completely cleaned and so to allow a completely uniformly continuous electrodeposit to be plated over the entire surface without entrapping any plating solution.
A feature of this pickling treatment stage of the invention is such complete removal of both the anodized and natural films to expose the clean fresh zine metal surface as just described.
A further feature of this aspect of the invention is accomplishment of such maximum removal of the films in a minimum of time, even as little as only seconds in many cases, and with such substantially low concentration of the combined acid pickling agents.
The solid pickling mixture compositions, from which are prepared the pickling baths used in the method of pickling according to the invention are illustrated by, but not restricted to, the following examples wherein parts are by weight:
EXAMPLE 1 Pickling mix 250 parts of ferric sulfate (with 9H,O water of crystallization) are admixed with 730 parts of anhydrous sodium EXAMPLE 2 40 parts of ferric sulfate, 50 parts of sodium bisulfate, and 10 parts of sodium bifluoride, as used in Example 1, are homogeneously mixed and similarly packaged in the same size drums.
EXAMPLE 3 200 parts of the ferric sulfate, 790 parts of sodium bisulfate, and 10 parts of sodium bifluoride, as used in Example 1, are homogeneously mixed and similarly packaged in the same size drums.
EXAMPLE 4 parts of ferric sulfate, 890 parts of sodium bisulfate and 10 parts of sodium bifluoride, as used in Example 1,
are homogeneously mixed and similarly packaged in the same size drums.
Other solid pickling mixes having various other proportions of the three ingredients of the preceding Examples 1 through 4 can be prepared within the ranges recited above page 4 lines 8-28. The ferric sulfate can be replaced in any of them by substantially equal weights of technical grade of ferric chloride (6H,O water of crystallization) or the ferric ion equivalent of ferric nitrate.
Similarly, in any of these solid mixes, the sodium bifluoride can be replaced by its fluoride ion equivalent of sodium fluoborate or sodium fluorotitanate. Likewise, any of the sodium salts used in any of these solid mixes can be replaced by any other practical alkali metal salt such as the corresponding potassium salt where the additional cost is not a factor or in an area where the potassium salt is competitively priced.
The sodium bifluoride used, or other alkali metal bifluoride mentioned as applicable in, any of the foregoing examples or modifications of any of them can be replaced in part or as a whole by an equivalent amount of ammonium bifluoride to provide corresponding additional solid mix examples. Ordinarily, with the then resulting quite low percentage content of ammonium bifluoride in such solids mixes, there should be no concern about the deliquescent property of ammonium bifluoride itself, particularly if the drums in which the mixes are packed are airtight. Because of the closeness in molecular weight between sodium bifluoride and ammonium bifluoride, each of Examples 1-4 can be considered as if prepared with their respective sodium bifluoride content replaced by the same weight of ammonium bifluoride.
The following illustrative only and not restrictive examples illustrated liquid concentrates from which additional pickling baths can be prepared.
EXAMPLE 5 45 parts of a 50% aqueous ferric sulfate solution is diluted with 13.6 parts of water. Into the resulting diluted solution are admixed -18 parts of a 10% (as HF) hydrofluoric acid and then 23.4 parts of 66 Baum sulfuric acid. The mixture is stirred to give a uniform pickling concentrate.
EXAMPLE 6 35 parts of the 50% ferric sulfate solution are diluted with 23.6 parts of water and into the resulting dilute solution are admixed the same respective number of parts of the same hydrofluoric acid and sulfuric acid as used in Example 5, and the resulting mix agitated to uniformity.
EXAMPLE 7 25 parts of the same 50% ferric sulfate solution are diluted with 33.6 parts of water, and into the resulting diluted solution are admixed the same respective number of parts of the same hydrofluoric acid and sulfuric acid as used in Example 5, and the resulting mix agitated to uniformity.
EXAMPLE 8 Example is repeated by reducing the ferric sulfate solution to 15 parts and increasing to 43.6 parts the water with which it is diluted.
EXAMPLE 9 Example 5 is repeated by increasing its ferric sulfate solution to 55 parts and reducing its water added for dilution to 3.6 parts.
EXAMPLE 10 EXAMPLE 11 Example 10 is repeated with its fluoroboric acid replaced by 10.2 parts of an aqueous solution containing 25% of ammonium bifluoride and its water for dilution reduced to 21.4 parts.
EXAMPLE 12 Example 10 is repeated with its water reduced to 27.5 parts and its fluoroboric acid replaced by 4.1 parts of an aqueous solution containing 60% of fiuorotitantic acid.
In any of the Examples 5 through 12, the ferric sulfate can be replaced in part or as a whole by any other ap plicable inorganic water-soluble ferric salt; and so also the fluorine-containing acid of any of them can be replaced in part or as a whole by an equivalent amount of any other such acid or of an alkali metal salt of any of them.
Any of the liquid concentrates of any of the foregoing examples and above described modifications of them, and any others prepared by using the different principal pickling ingredients within the earlier above-mentioned respective ranges of content for them, can be used for preparing pickling baths for use in the pickling method of the invention by dissolving from about 2 to about 4 percent by volume of such concentrate per gallon of water, to provide a pickling bath within the earlier above pH range, and beneficially from about pH 0.9 to about 1.5 electrometric A compatible wetting agent, beneficially anionic, can be included where seen to be helpful and generally to the extent of less than one percent.
EXAMPLE 13 Methods of pickling the anodized die castings Water was run into a rubber-lined tank of 300 gallons capacity to over half of its capacity. There then was admixed a concentrated aqueous acid solution of the solid pickling mix of Example 1 to provide in the tank a-dilute solution as a pickling bath having dissolved therein two ounces of that solid pickling mix per gallon of water at ambient temperature. The pH of the resulting pickling bath was 1.5.
Racked, cold water rinsed anodized door handle zinc die castings, e.g. the anodized product of Example 6 of the aforesaid Patent No. 3,446,715, then were complete ly immersed in that (dilute) acid pickling bath for a full half minute of immersion time, after which they were removed and rinsed with sufficient cold running water to remove entrained pickling bath solution. The rinsed castings presented an overall clean, matte, silvery sheen of the fresh metal n'nc surface exposed after removal of the dark brown to black anodized film and with its also the natural oxide film that was present on the castings before their surfaces were anodized by the method of said Example 6.
The thus pickled and rinsed zinc die castings then were ready for electroplating, and so were electroplated in the customary manner with a copper strike, then regular copper electroplate, followed by nickel plate and finally chrome plate. The plated castings showed improved luster and overall appearance and enhanced adhesion of the electrodeposits particularly on unbuifed areas of the castings, as well as on the buffed areas.
The procedure of Example 13 can be repeated in the same way by using in place of the solid pickling mix of Example 1 the solid pickling mix of any of Examples 2, 3 and 4, or of any of the earlier described possible modifications of them, separately respectively and at the samev concentration as in Example 13 or any suitable different concentration within the range disclosed herein and similarly for 30 seconds or more up to 90 seconds as any modification in pickling agents and working concentration may indicate to be necessary.
So also the pickling process of Example 13 can be repeated similarly by using the liquid pickling concentrate of any of the Examples 5 through 12, or of any of the de scribed possible modifications of them, at a concentration disclosed for them and optimally with the pickling bath at a pH of from about 0.9 to about 1.5 and immersion in the bath for from about 45 to about 90 seconds.
Tests with acid pickling baths prepared separately from the solid pickling mix of each of the Examples 1 through 4, as well as from the liquid pickling concentrate of Examples 5 through 12, showed satisfactory removal of similarly prepared anodic films together with the underlying natural film from other Zamak-3 zinc surfaces, at their same respective concentrations in as little as 15 seconds and also that they can be retained in the pickling bath for 45 to 60 seconds and even up to 90 seconds.
Where the anodized film is heavier because of longer application of the current in the anodizing procedure, such heavier anodized coatings can be removed by extending the immersion in the acid pickling bath up to 60 or 90 seconds. Alternatively, such heavier coating can be removed by increasing the concentration of the pickling mix or liquid concentrate in the bath to any suitable concentration within the disclosed ranges as a quick simple test on one or two castings, or areas of a single casting or panels, of the same zinc alloy might show that immersion of the casting or portion of it or panel in the acid pickling solution at a particular concentration removes fully the colored anodized film with the underlying natural film and exposes the silvery sheen of the freshly exposed zinc.
Obviously, variations in the individual activity of different acid pickling baths will vary with their respective individual compositions within the ranges recited earlier above. For example, an aqueous acid pickling bath prepared from the acid pickling mix of Example 1 shows satisfactory effectiveness when used in a concentration even as low as one ounce, as well as between one and two ounces, per gallon.
Then also, an aqueous acid pickling bath prepared from one ounce per gallon of the acid pickling mix of Example 4 shows satisfactory effectiveness in a full minute, whereas at a cencentration of two ounces per gallon the separate different acid-pickling bath from the pickling mix of each of the Examples 1 through 4 shows full effectiveness in from as little as 15 seconds to one minute.
Then also, an aqueous acid pickling bath prepared from two ounces per gallon of an acid pickling mix containing 60 parts of the ferric sulfate, 39 parts of the sodium bi sulfate, and 1 part of the sodium bifluoride is equal in effectiveness to the aqueous pickling bath of the same concentration of the mix of Example 1, but only in the immersion range of 30 to 60 seconds, and is effective in an immersion time of as little as 15 seconds at a concentration of four ounces per gallon. The aqueous acid pickling bath prepared from one to two ounces of the pickling v mix containing ten parts of the ferric sulfate, parts of the sodium bisulfate, and 10 parts of the sodium bifluoride requires an immersion time of more than 30 seconds but up to one minute to be as effective as is the same concentration bath from the mix of Example 2 in an irnmersion time of as little as seconds.
Both the solid pickling mixes and the liquid pickling concentrates as well as their respective pickling baths are easily prepared. Their effectiveness is readily tested by easy electrodeposition application of ordinary copper plate, followed by nickel plate, and then with the easy test of baking at a reasonably elevated temperature, say, within 275 to 300 F., to see whether blistering or flaking can occur, within an hour.
The pickling baths from both the solid mixes and the liquid concentrates, because of their effective quick action within such short time respectively, and long service life, are compatible with, and readily can be, and have been, included in, the modern automatic rack-holding conveyor continuous systems.
The pickling bath from either a solid mix or a liquid concentrate is quite easily controlled not only as to its maintenance but also as to its continuing efiectiveness in operation. In that connection, only visual observation is needed to follow the proper operation of these baths, for example, by watching for the development of the overall matte, silvery sheen of the freshly exposed zinc surfaces when both the anodized film and the natural oxide film are removed in the pickling operation.
The anodizing step followed by the pickling stage conditions the basis fresh zinc surface for the subsequent preliminary copper plating deemed necessary before nickel is to be deposited over zinc.
' The pickling treatment of the invention provides for uniform removal of the natural film as well as the particular anodized film in minimum operating time with low and minimum concentrations of pickling agents.
While the invention has been explained in detail by describing certain specific embodiments of it, it is understood that various modifications and substitutions may be made in any of the specific embodiments within the scope of the appended claims which are intended also to cover equivalents of the specific embodiments.
I claim:
1. The method of stripping the oxide film from a zinc surface to expose the clean fresh metal surface thereof, which comprises immersing the oxide film-coated zinc surface in an aqueous acid pickling bath having a pH of from about 0.8 to about 2.5 and containing dissolved in its water a sufficient amount, to provide said pH, of a mixture composition consisting essentially of the cooperating agents (i) a water-soluble inorganic ferric salt in an amount wherein its iron content is equivalent to from about 10 to about 90 parts of crystalline ferric sulfate, (ii) at least one of the alkali metal bisulfates and sulfuric acid and in an amount equivalent in acidity to from about 90 to about 9 parts of sodium bisulfate, and (iii) at least one water-soluble inorganic fluorine-element-containing compound of the formula M-D wherein M is a cation selected from hydrogen, an alkali metal, and the ammonium group, and D is a fluorine-element-containing anion, said compound being in an amount wherein its fluorine content is equivalent to thatof sodium bifluoride present to the extent of from about 0.1 to about one percent by weight of said cooperating agents; and allowing said immersion to continue for a time sufficient for the oxide film to be removed as shown by the appearance of a clean fresh metal sheen over the immersed zinc surface.
2. The method of stripping the oxide film from a zinc surface as claimed in claim 1, wherein said pickling ba'th contains dissolved in its water from about 1 to 5 percent by volume of the aqueous solution prepared by dissolving by weight from about 45 parts to about 1 part of said cooperating agents mixture in from about to about 99 parts of water and wherein the ferric salt is selected from ferric sulfate, ferric chloride, and ferric nitrate; and the member of the alkali metal bisulfates and sulfuric acid is sulfuric acid, and the fluorine-element-containing compound is hydrogen fluoride.
3. The method of stripping the oxide film from a zinc surface as claimed in claim 2, wherein said pickling bath contains by weight from about 0.18 to about 0.54 percent of ferric ion, from about 0.59 to about 1.76 percent of sulfate ion, from about 0.006 to about 0.018 percent of fluoride ion, and said pH is from about 1.2 to about 2.5.
4. The stripping method as claimed in claim 3', wherein the ferric salt is ferric sulfate, the bisulfate is sodium bisulfate, and the bifluoride is sodium bifluoride.
References Cited UNITED STATES PATENTS 2,266,430 12/1941 Matthews et a1. 252-793 2,965,577 12/1960 Heimann et a1. 252-148 3,197,341 7/1965 Wallace 252-142 X 3,275,562 9/1966 Smith 252-147 MAYER WEINBLA'IT, Primary Examiner US. Cl. X.R.
3,684,719 Dated August 15, 1972 SQ/Iq? Patent No.
Inventor(s) Samuel S. Frey It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the heading, column 1, line 6, after "07208", insert assignor to Oakite Products, Inc., Berkeley Heights, NJ. Column 2, lines 23-24, "mixtures" should read mixture ;'lines 27-28, fluorine-element containing" should read fluorine-elament-containing Column 3, line 10, "acid" should read acid; Column 4, line 27, "page 4, lines 8-28" should read column 2, line 50 to column 3, line 4 line 55, "illustrated" should read illustrate Column 5, line 72, "its" should read it Signed and sealed this 8th day of May 1973.
(SEAL) Attest:
ROBERT GOTTSCHALK Commissioner of Patents EDWARD M.FLE'I'CHER,JR. Attesting officer GOVERNMENT PRINTING OFFICE: II! O-366-3J4. r;
UNITED STATES PATENT OFFICE 2 (73 CERTIFICATE OF CORRECTION Patent No. 3, 684 ,719 Dated August l5 19 72 Inventor(s) Samuel S. Frey It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the heading, column 1, line 6, after "07208", insert assignor to Oakite Products, Inc., Berkeley Heights, NJ. Column 2, lines 23-24, "mixtures" should read mixture lines 27-28, "fluorine-element containing should read fluorine-element-containing Column 3, line 10, "acid" should read acid; Column 4, line 27, "page 4, lines 8-28" should read column 2, line 50 to column 3, line 4 line 55, "illustrated" should read illustrate Column 5, line 72, "its" should read it Signed and sealed this 8th day of May 1973.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOT'ISCHALK Attesting Officer Commissioner of Patents 9 U.S. GOVERNMENT PRINTING OFFICE "l9 0-366-334.
I UNITED STATES PATENT OFFICE 7 CERTIFICATE OF CORRECTION Patent No. 3,684,719 Dated August 15, 1972 Inventofls) Samuel S. Frey It is certified that error appears in the above-identified patent" and that said LettersvPatent are hereby corrected as shown below:
7 In the heading, column 1, line 6, after "07208",
insert assignor to Oakite Products, Inc. Berkeley Heights, NJ. vColumn 2, lines 23-24, "mixtures" should read mixture lines 27-28, "fluorine-element containing should read fluorine-elament-containing Column 3, line l0, "acid" should read acid; Column 4, line 27, "page 4, lines 828" should read column 2, line 50 tp column 3, line 4 line 55, "illustrated" should read illustrate Column 5, line 72, "its" should read it r Signed and sealed this 8th day of May 1973. F
(SEAL) 'Attest:
EDWARD 'M.FLETCHER, R. I 7 ROBERT GO'ITSCHALK Attesting Officer 7 v Commissi'ESner of Patents USCOMM'DC 6O376-P69 u.s. GOVERNMENT PRINTING OFFICE: 1959 U, -356334,
US787589A 1968-12-27 1968-12-27 Method of stripping the oxide film from a zinc surface Expired - Lifetime US3684719A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78758968A 1968-12-27 1968-12-27

Publications (1)

Publication Number Publication Date
US3684719A true US3684719A (en) 1972-08-15

Family

ID=25141966

Family Applications (1)

Application Number Title Priority Date Filing Date
US787589A Expired - Lifetime US3684719A (en) 1968-12-27 1968-12-27 Method of stripping the oxide film from a zinc surface

Country Status (1)

Country Link
US (1) US3684719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994817A (en) * 1975-07-28 1976-11-30 Rockwell International Corporation Etchant for etching silicon
US6863738B2 (en) * 2001-01-29 2005-03-08 General Electric Company Method for removing oxides and coatings from a substrate
DE102006051384A1 (en) * 2006-10-27 2008-04-30 Seppeler Holding Und Verwaltungs Gmbh & Co. Kg Process for the pre-weathering of metal parts with a predominantly zinc surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994817A (en) * 1975-07-28 1976-11-30 Rockwell International Corporation Etchant for etching silicon
US6863738B2 (en) * 2001-01-29 2005-03-08 General Electric Company Method for removing oxides and coatings from a substrate
DE102006051384A1 (en) * 2006-10-27 2008-04-30 Seppeler Holding Und Verwaltungs Gmbh & Co. Kg Process for the pre-weathering of metal parts with a predominantly zinc surface

Similar Documents

Publication Publication Date Title
US3098018A (en) Sealing anodized aluminum
US3876435A (en) Chromate conversion coating solutions having chloride, sulfate, and nitrate anions
US3785866A (en) Method for avoiding pitting in plating oxide-film-developing metals
CA1137396A (en) Composition and process for chemically stripping metallic deposits
US2976193A (en) Process and compositions for producing aluminum surface conversion coatings
US2654701A (en) Plating aluminum
US2541083A (en) Electroplating on aluminum
US3843430A (en) Chromate-free bright dip for zinc and cadmium surfaces
US3684719A (en) Method of stripping the oxide film from a zinc surface
GB534471A (en) Improvements in or relating to the production of protective coatings on magnesium and magnesium alloys
EP0056675B1 (en) Pretreatment composition for phosphatising ferrous metals, and method of preparing the same
US4356069A (en) Stripping composition and method for preparing and using same
US3429792A (en) Method of electrolytically descaling and pickling steel
CA1064853A (en) Bright acid zinc plating
ES312338A1 (en) Electrodeposition process with pretreatment in zinc phosphate solution containing fluoride
US2581490A (en) Electrolytic process of stripping metallic coatings from a ferrous metal base
US2714089A (en) Electrodepositing iron
US3400021A (en) Conversion coating compositions and method
US2706171A (en) Stripping chromium plating from zinc electrolytically
US3647650A (en) Method of treating tin plate or galvanized sheet
US3615897A (en) Black films for metal surfaces
US3457147A (en) Chromium plating bath and process
US3288691A (en) Method of electrolytically chemically treating metals
US2802779A (en) Electrodeposition of nickel and nickel alloys
GB1186729A (en) Electroplating Chromium onto Continuous Metal Strip

Legal Events

Date Code Title Description
AS Assignment

Owner name: BANQUE PARIBAS, A FRENCH BANKING CORPORATION, NEW

Free format text: SECURITY INTEREST;ASSIGNORS:OAKITE PRODUCTS, INC., A CORP. OF NY.;DELAWARE OAKITE, INC., A CORP. OFDE.;SPRAYWAY, INC., A CORP. OF DE.;AND OTHERS;REEL/FRAME:005284/0032

Effective date: 19890124

AS Assignment

Owner name: CM SURFACE TREATMENT INC., NEW JERSEY

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:OAKITE PRODUCTS, INC.;REEL/FRAME:005906/0234

Effective date: 19910830

AS Assignment

Owner name: OAKITE PRODUCTS, INC. A DE CORP.

Free format text: CHANGE OF NAME;ASSIGNOR:CM SURFACE TREATMENT INC. A DE CORP.;REEL/FRAME:006169/0910

Effective date: 19910830