US3675891A - Continuous catheter flushing apparatus - Google Patents
Continuous catheter flushing apparatus Download PDFInfo
- Publication number
- US3675891A US3675891A US73314A US3675891DA US3675891A US 3675891 A US3675891 A US 3675891A US 73314 A US73314 A US 73314A US 3675891D A US3675891D A US 3675891DA US 3675891 A US3675891 A US 3675891A
- Authority
- US
- United States
- Prior art keywords
- valve
- flow
- block
- catheter
- pass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/22—Valves or arrangement of valves
- A61M39/225—Flush valves, i.e. bypass valves for flushing line
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
Definitions
- CONTINUOUS CATHETER FLUSHING APPARATUS [72] Inventors: Gordon S. Reynolds; Karl A. Pannier, Jr.; James L. Sorenson, all of Salt Lake City,
- the apparatus embodies a small block having therein passages for a flushing solution in one of which is a flow resistor to limit the flushing to a small amount, a fail-safe valve in another passage connected by a bypass to the first passage for fast flushing with a much larger amount of solution, and means for connecting the catheter to a monitoring apparatus.
- Stopcocks have minute leaks, and although great pains were taken to maintain high quality stopcock integrity, it was found that that was almost impossible to achieve in practice. Even with a perfect stopcock system there is still a small volume displaced with each pressure pulse, and, therefore, a small amount of blood enters the catheter tip with each pressure pulse, and evenwith a perfectly tight system it was virtually impossible to keep blood out of the tip of the catheter.
- Blood once entering the tip of the catheter can then, by a process of diffusion, penetrate further and further into the catheter and finally an occlusion results and pressure pulse fidelity decreases. Further, if the system were to be filled in a reasonable time, which is essential before operation can begin, an additional stopcock and fluid source was required.
- the instant invention overcomes the foregoing deficiencies in the provision of a small unitary piece of apparatus for connection in the catheter flushing system and which is so constructed so as to eliminate the use of all stopcoc-ks in that flushing system.
- the instant invention includes a resilient valve controlling a bypass around the flow resistor and this valve is leak-proof, fail-safe, and quick acting and permits the measurement of dynamic characteristics of a catheter transducer system, that is, allowing fast shut-off for square wave testing of a catheter system on an oscilloscope or the like.
- FIG. 1 is a diagrammatic disclosure illustrating a device embodying principles of the instant invention in operative association with a catheter cannulated patient and a source of flushing solution, the device itself being exaggerated in the showing for purposes of clarity;
- FIG. 2 is an enlarged central vertical sectional view through the device itself, with the valve in closed position;
- FIG. 3 is a transverse sectional view taken substantially as indicated by the line III-III of FIG. 2;
- FIG. 4 is a plan sectional view taken substantially as indicated by the line IV-IV of FIG. 2;
- FIG. 5 is a view similar to FIG. 2 but showing the valve in open position.
- the instant invention may be incorporated in various catheter systems and even in certain other systems for the purpose of governing flow through the system, and is highly useful in systems for monitoring venous and arterial pressures, by way of example, the system is shown and will be described herein with regard to a catheter system for. monitoring central arterial pressure and permit high quality clinical recording of central arterial pulse waveforms.
- the catheter used in such a system is a thin catheter having an inside diameter in the neighborhood of one-half a millimeter and which is preferably made of polytetrafluoroethylene.
- Such a catheter must be kept patent during use by preventing the formation of a blood clot or other occlusion at the body end of the catheter and sufficient infusion solution must be continuously passed through the catheter for that purpose, but not in such amount as to be harmful to a patient during a relatively long period of monitoring. It has been detennined that in the case of an infant 1 cc. of infusion solution per hour is sufficient, and in the case of an adult 2 to 3 cc. per hour of solution is sufficient.
- FIG. 1 we have given a diagrammatic showing of a control device I embodying principles of the present invention installed in a system for monitoring cardiovascular pressure.
- the overall system includes a pressurized infusion container 2 connected by a tube 3 to a micron filter 4 which prevents clogging of the flow resistance element to be later described and eliminates bacteria that may be in the infusion solution, the filter being connected to one end of a tube 5, the other end of which is securely afiixed in the device 1.
- the device is also provided with a fitting 6 to which the catheter 7 is connected. In the illustrated showing the catheter is advanced into the thoracic cavity of a patient 8 by way of entrance into the radial artery.
- Another fitting 9 is provided on the device I for connection to an indicating mechanism such as a manometer, as diagrammatically indicated at 10, or to a pressure transducer associated with an oscilloscope, or the fitting may be equipped with a self-sealing plug for hypodermic injection in case such becomes indicated.
- an indicating mechanism such as a manometer, as diagrammatically indicated at 10, or to a pressure transducer associated with an oscilloscope, or the fitting may be equipped with a self-sealing plug for hypodermic injection in case such becomes indicated.
- the instant invention is usable in catheter systems wherein the catheter may be entered into various veins or arteries of the body.
- the device 1 may be fabricated of several parts molded of rigid plastic material, preferably transparent, and the parts may be secured together cementitiously, by fusing or welding, with the use of a solvent, or in any other suitable manner.
- the device consists of a housing in the form of a block composed of a body 11, an end cap 12 carrying the catheter fitting 6, and an opposite end cap 13 carrying the fitting 9 as well as other points of entry into passages in the body.
- the body and end caps exclusive of the fittings 6 and 9 may be sized as little as seveneighths inch long, three-quarter inches wide, and one-quarter inch thick
- the advantage of the instant invention in eliminating apparatus utilized herebefore, including all stopcocks, in providing an easily connectable structure and one which may be suspended from the tubing since it weighs extremely little, and performs all the above desired operations in controlling flow through the system, will be at once appreciated.
- the body 11 is molded to provide a passage 14 connecting the hollow fittings 7 and 9, the fitting 9 being internally shaped as indicated at 15 to provide a connection for a Luer fitting.
- Another and larger passage 16 is provided in the body 11 and cap 13 and this passage communicates with a cross-passage 17 by way of a reduced outlet opening 18, the passage 17 connecting at one end with the aforesaid passage 14.
- Still a further passage 19 is provided in the body 11 and the inner end of the passage 19 tapers inwardly to a reduced size 20 and establishes a valve seat at 21, the reduced passage 20 also communicating with the cross-passage 17.
- a small bypass passage 22 is provided in open communication with the passage 19 and this passage connects with the passage 16 by way of a side branch 22.
- the aforesaid tube 5 for connection to the infusion system has its end portion permanently connected inside the passage 16, the cap 13 being provided with a stop element 23 thereon to prevent the tube from blocking the branch passage 22 when the tube is initially being assembled to the cap 13.
- a flow resistance in the form of a tube 24 having a resilient apertured sealing washer 25 at each end thereof.
- the resistance 24 is what is referred to as a marine-bore tube and the actual bore 26 through the tube is but several hundredths of a millimeter in diameter so as to afford a high resistance to the flow of infusion solution through the resistance element. It will be appreciated that the showing in the drawing is highly exaggerated insofar as the instant invention is concerned for purposes of clarity since the bore 26 in the tube 24 is virtually invisible to the naked eye when gazing at an end ofthe tube.
- the capillary tube 24 with its minute bore 26 provides a high resistance to flow therethrough.
- An increase or decrease in the length of tube 24 will decrease or increase the rate of flow in a linear fashion. Since this flow is laminar, Poiseuilles law is applicable, and therefore small variations in the radius of the bore 26 in the resistance tube will cause relatively large variations in the amount of flow.
- the resistances of the catheter and the filter 4 must also be taken into consideration. Those resistances are known, that of the catheter being relatively high, namely about eighty millimeters of mercury per cubic centimeter per minute, and that of the 0.22 micron filter is millimeters of mercury per cubic centimeter per minute.
- means are provided in the passage 19 to provide for a rapid flushing or quick filling of the entire system.
- Such means comprise a valve 27 of resilient material, such as rubber or synthetic rubber, which seats on the seat 21.
- the valve has a cylindrical extension 28 extending from the valve body and the outer end of this extension is seatingly engaged over aninwardly extending nipple 29 on the cap 13.
- the length of the valve body and extension 28 is slightly greater than the distance from the valve seat to the cap 13 so that the valve is sealed against its seat under its own pressure and blocks any bypassing of solution through the passages 20 and 21.
- valve is actuated manually by means of a valve stem 30 extending from the valve body through the extension and through the cap 13.
- a valve stem 30 extending from the valve body through the extension and through the cap 13.
- the valve is drawn away from the seat 21 opening the bypass and the extension 28 of the valve will assume a corrugated effect as indicated at 31 in FIG. 5.
- the structure of the valve makes it fail-safe, in that it cannot accidentally be left in open position because when the stem 30 is released the valve will automatically and forcefully close quickly.
- the valve will also seat accurately because of a guiding projection 34 extending from the valve body into the smaller passage 20.
- the flow control device 1 is extremely efiicient.
- the stem of the valve 30 Prior to the insertion of the catheter in the patients body, but after the connection of the device 1 to the pressurized infusion solution source, the stem of the valve 30 is pulled to open the valve and flush out the system including the catheter so as to eliminate any possible air bubbles. During such flushing infusion solution will follow the line of arrows 32 through the bypass passageways and out the fitting 6. The valve is closed after the initial flushing out, but the catheter may be inserted in the patients body while the flow flushing infusion through the resistance tube 24, as indicated by the arrows 33 in FIG. 2, continues.
- the fitting 9 is, of course, connected to whatever indicating or recording means may be desired, or to a pressure transducer for oscilloscopic observations, and the catheter will be maintained patent throughout a long interval of time. It is essential for assuring waveform quality to determine the dynamic response of the entire system from time to time. This is simply accomplished by opening the valve 27 and permit it to quickly close. Such a rapid flush will cause what is termed a square wave to appear on an oscilloscope and such will not mislead the observer nor will it confuse any permanent record.
- the valve is amply rapid in its action to perform that function.
- the instant flow control and flushing device 1 there can be no backflow because the blood pressure of the patient is insufficient to force liquid through the capillary tube 24 in the reverse direction.
- the device is extremely light in weight, highly efiicient as to its functioning, eliminates complicated setups of apparatus, and makes it possible to monitor the central arterial pulse waveform with its various derived parameters with much greater ease, flexibility and accuracy than was heretofore possible. Also, the device is sufficiently economical to warrant its disposition along with the catheter after a single usage, if such may be indicated, although the device may be repeatedly used, sterilized if deemed necessary, if the conditions of the patients permit.
- a continuous flow control apparatus highly desirable for use in a liquid flow system for pressure monitoring of hemodynamics, such system including a catheter which must be kept patent by continuous flushing when in use, comprising a block having passages therein defining continuously open inlet-outlet path through the block,
- a flow resistor in the form of a marine-bore capillary tube in said path to limit flow of liquid under pressure therethrough to a desired minimum amount
- said block having other passages therein defining a by-pass around the pan of said path containing said resistor which by-pass is of a size to permit a fast flow of liquid
- said by-pass being interiorly shaped to provide a valve seat
- a resilient valve means having a stem projecting out of said block positioned in said by-pass and so mounted as to forcefully press against said valve seat and automatically and instantaneously close when said stem is released.
- valve comprises a solid body shaped to fit against said valve seat
- said valve comprises a solid body shaped to fit against said valve seat
- valve and extension are slightly longer than the space occupied whereby there is continuous pressure urging the valve against said seat
- said stem extends from the valve body through said extension for actuating said valve.
- extension and stem are all integral.
- a guide projection on said valve extends through the valve seat into the narrower part of said by-pass to insure accurate seating of the valve.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Vascular Medicine (AREA)
- Physics & Mathematics (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7331470A | 1970-09-18 | 1970-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3675891A true US3675891A (en) | 1972-07-11 |
Family
ID=22113018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US73314A Expired - Lifetime US3675891A (en) | 1970-09-18 | 1970-09-18 | Continuous catheter flushing apparatus |
Country Status (8)
Country | Link |
---|---|
US (1) | US3675891A (fr) |
JP (1) | JPS5323638B1 (fr) |
AU (1) | AU458521B2 (fr) |
BE (1) | BE772749A (fr) |
CA (1) | CA952402A (fr) |
FR (1) | FR2112208B1 (fr) |
GB (1) | GB1360439A (fr) |
IT (1) | IT940753B (fr) |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3916892A (en) * | 1974-04-29 | 1975-11-04 | Haemonetics Corp | Phlebotomy needle system incorporating means to add anticoagulant and wash liquid |
US4018136A (en) * | 1974-12-18 | 1977-04-19 | Kaetterhenry Lorell D | Hydraulic apparatus for controlling movement of a member under loading |
US4034754A (en) * | 1975-08-07 | 1977-07-12 | Baxter Travenol Laboratories, Inc. | Intravenous solution set having a constricted inner diameter portion |
US4037596A (en) * | 1975-12-03 | 1977-07-26 | Burron Medical Products, Inc. | Parenteral administration set with internal valve and flow restrictor |
US4077394A (en) * | 1976-08-25 | 1978-03-07 | Mccurdy Martin D | Integral pressure sensor probe for a cardiac assistance device |
EP0006761A1 (fr) * | 1978-06-29 | 1980-01-09 | James Ellis Young | Dispositif de régulation de l'écoulement |
US4192303A (en) * | 1978-06-29 | 1980-03-11 | Walker Ralph S | Flow regulating device for arterial catheter systems |
US4200119A (en) * | 1978-05-08 | 1980-04-29 | Cunningham Patrick J | Adjustable fluid flow restrictor |
US4202333A (en) * | 1978-11-08 | 1980-05-13 | Minnesota Mining And Manufacturing Company | Fluid dispensing device |
US4210178A (en) * | 1977-08-10 | 1980-07-01 | Basta Michael I | Perpetual by-pass flushing device |
US4211387A (en) * | 1978-03-13 | 1980-07-08 | G. W. Dahl Company, Inc. | Valve construction |
US4230128A (en) * | 1978-03-30 | 1980-10-28 | Aramayo Rene S | Catheter attachment for blood sampling |
US4241761A (en) * | 1979-01-09 | 1980-12-30 | Michael Ebert | Manifold valve assembly |
FR2459646A1 (fr) * | 1979-06-25 | 1981-01-16 | Gould Inc | Appareil de commande de debit pour dispositif de controle de la pression sanguine, ou analogue |
US4245636A (en) * | 1979-01-24 | 1981-01-20 | Sorenson Research Co., Inc. | Continuous flushing apparatus |
US4267834A (en) * | 1979-04-24 | 1981-05-19 | American Hospital Supply Corporation | System for flushing a medical fluid |
US4267833A (en) * | 1979-04-24 | 1981-05-19 | American Hospital Supply Corporation | Method of flushing a medical fluid |
US4267835A (en) * | 1979-04-24 | 1981-05-19 | American Hospital Supply Corporation | Medical flushing valve |
US4291702A (en) * | 1979-06-25 | 1981-09-29 | Gould Inc. | Catheter flushing apparatus |
US4298000A (en) * | 1978-11-08 | 1981-11-03 | Minnesota Mining And Manufacturing Company | Fluid dispensing device |
US4300571A (en) * | 1979-07-27 | 1981-11-17 | Medex Inc. | Constant flush device |
US4335729A (en) * | 1979-08-01 | 1982-06-22 | Sorenson Research Co., Inc. | Apparatus and method for suppressing resonance in an electromanometry system |
US4337770A (en) * | 1979-06-07 | 1982-07-06 | Young James E | Flow regulating device for arterial catheter systems |
US4341224A (en) * | 1980-02-04 | 1982-07-27 | Gould Inc. | Catheter flushing apparatus |
US4373524A (en) * | 1979-05-14 | 1983-02-15 | Saul Leibinsohn | Liquid flow control devices particularly useful in infusion administration sets |
US4381591A (en) * | 1979-04-24 | 1983-05-03 | American Hospital Supply Corporation | Method of assembling medical flushing valve |
US4414999A (en) * | 1980-12-12 | 1983-11-15 | Basta Michael I | Continuous flushing device |
WO1984000291A1 (fr) * | 1982-07-14 | 1984-02-02 | Gould Inc | Systeme jetable de detection de pression physiologique |
US4440378A (en) * | 1981-10-16 | 1984-04-03 | Sullivan Michael P | Flow control apparatus |
US4444198A (en) * | 1981-12-21 | 1984-04-24 | Petre John H | Circulatory monitoring system and method |
US4456223A (en) * | 1981-12-03 | 1984-06-26 | Bentley Laboratories, Inc. | Flow control apparatus |
US4457487A (en) * | 1982-06-23 | 1984-07-03 | The Kendall Company | Flushing device |
US4458877A (en) * | 1982-06-23 | 1984-07-10 | The Kendall Company | Flushing apparatus |
US4464179A (en) * | 1981-03-20 | 1984-08-07 | American Hospital Supply Corporation | Medical flushing valve |
EP0129779A2 (fr) * | 1983-06-22 | 1985-01-02 | Abbott Laboratories | Appareil de transducteur jetable pour un système d'électro-manomètres |
US4498500A (en) * | 1979-01-09 | 1985-02-12 | Michael Ebert | Manifold valve assembly |
US4509946A (en) * | 1982-09-23 | 1985-04-09 | Mcfarlane Richard H | Flow control device |
US4550748A (en) * | 1983-04-08 | 1985-11-05 | Warner-Lambert Company | Fluid flow regulating unit for intravascular catheter systems |
US4624662A (en) * | 1982-11-24 | 1986-11-25 | Transamerica Delaval Inc. | Catheter flushing systems |
US4645496A (en) * | 1986-01-09 | 1987-02-24 | Rao Medical Devices, Inc. | Continuous catheter flushing flow control device |
US4683894A (en) * | 1984-07-09 | 1987-08-04 | Gould, Inc. | Disposable physiological pressure sensing system |
US4696305A (en) * | 1985-07-15 | 1987-09-29 | Peter von Berg Extrakorporale Systems-Medizintechnik GmbH | Flow controller |
US4703759A (en) * | 1986-05-20 | 1987-11-03 | Hewlett-Packard Company | Flush valve device |
US4718634A (en) * | 1986-09-23 | 1988-01-12 | Hewlett-Packard Company | Physiological pressure monitoring system flush valve |
US4741733A (en) * | 1985-01-07 | 1988-05-03 | Baxter Travenol Laboratories, Inc. | Infusor having a distal flow regulator |
US4743235A (en) * | 1986-09-05 | 1988-05-10 | Medex, Inc. | Flush control device |
US4834108A (en) * | 1986-06-09 | 1989-05-30 | Manresa, Inc. | Blocking filter to prevent air flow into a fluid conduit to a transducer |
EP0328105A2 (fr) * | 1988-02-12 | 1989-08-16 | Terumo Kabushiki Kaisha | Dispositif pour corriger la forme de l'onde de la pression sanguine |
US4904239A (en) * | 1985-01-07 | 1990-02-27 | Baxter International Inc. | Infusor having a distal flow regulator |
US4934375A (en) * | 1988-03-04 | 1990-06-19 | Spectramed, Inc. | Flush-valve assembly for blood pressure measurement catheter |
US4936542A (en) * | 1989-03-27 | 1990-06-26 | Abbott Laboratories | Catheter flow control valve |
US4947856A (en) * | 1988-10-26 | 1990-08-14 | Abbott Laboratories | Fluid pressure monitoring and flow control apparatus |
US5108373A (en) * | 1989-09-25 | 1992-04-28 | Baxter International Inc. | Intravenous metering device |
US5190527A (en) * | 1989-09-25 | 1993-03-02 | Baxter International Inc. | Intravenous metering device |
DE4243935A1 (de) * | 1992-12-23 | 1994-07-07 | Renate Milosevic | Ventilanordnung zwischen einem zum Injizieren dienenden Port und einem Katheter |
US5358004A (en) * | 1993-04-19 | 1994-10-25 | Louis D. Atkinson | Pressure fluid stabilized regulator with leakage orifice |
US5396925A (en) * | 1993-12-16 | 1995-03-14 | Abbott Laboratories | Anti-free flow valve, enabling fluid flow as a function of pressure and selectively opened to enable free flow |
US5401255A (en) * | 1993-07-20 | 1995-03-28 | Baxter International Inc. | Multi-functional valve with unitary valving member and improved safety |
US5411848A (en) * | 1993-08-16 | 1995-05-02 | Eastman Kodak Company | Photographic color couplers and photographic materials containing them |
WO1997039679A1 (fr) | 1996-04-18 | 1997-10-30 | Sunscope International, Inc. | Capteur de pression a coupole jetable |
US5740810A (en) * | 1993-12-23 | 1998-04-21 | Abbott Laboratories | One hand push button fast flush device |
US6511434B1 (en) | 2001-06-07 | 2003-01-28 | Elcam Plastic Cooperative Agricultural Association Ltd. | Blood-pressure transducer assembly |
US6830563B1 (en) | 2001-08-24 | 2004-12-14 | Scott Singer | Syringe tip providing nonlaminar spiral flow and method of use for flushing catheters |
US20080058720A1 (en) * | 2004-04-16 | 2008-03-06 | Medrad, Inc. | Flow Based Pressure Isolation and Fluid Delivery System Including Flow Based Pressure Isolation and Flow Initiating Mechanism |
US11607489B2 (en) | 2017-05-26 | 2023-03-21 | Bayer Healthcare Llc | Injector state logic with hemodynamic monitoring |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4396016A (en) * | 1977-09-07 | 1983-08-02 | Becker Karl E | Intravenous solution flow regulator |
DE3200724C1 (de) * | 1982-01-13 | 1983-08-11 | B. Braun Melsungen Ag, 3508 Melsungen | Spuelvorrichtung fuer einen Katheter |
GB2156486B (en) * | 1984-03-26 | 1987-07-15 | American Hospital Supply Corp | Flow control apparatus |
DE3417257A1 (de) * | 1984-05-10 | 1985-11-14 | B. Braun Melsungen Ag, 3508 Melsungen | Spuelvorrichtung fuer einen katheter |
IL73598A (en) * | 1984-11-23 | 1991-01-31 | Leibinsohn Saul | Fluid control device particularly useful in liquid transfusion apparatus |
KR0141688B1 (ko) * | 1989-05-24 | 1998-06-15 | 스까다 쇼오에이 | 액체형 약제를 연속적으로 주입하기 위한 기구를 가진 주입기 |
JP3152149B2 (ja) * | 1996-05-23 | 2001-04-03 | 株式会社ニッショー | プライミング機構を備えた流量制御装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1983227A (en) * | 1933-04-24 | 1934-12-04 | United Gas Improvement Co | Gas pilot light control |
US2181900A (en) * | 1936-10-06 | 1939-12-05 | Jesse D Langdon | Piston and flush valve |
US2229903A (en) * | 1939-02-04 | 1941-01-28 | Arthur L Parker | Metering valve |
US3107894A (en) * | 1962-10-17 | 1963-10-22 | Zyrotron Ind Inc | Snap acting flow control valve with venturi formed between the orifice and conical valve plug |
US3298367A (en) * | 1964-01-10 | 1967-01-17 | Richard I Bergman | Apparatus for administering parenteral liquids |
-
1970
- 1970-09-18 US US73314A patent/US3675891A/en not_active Expired - Lifetime
-
1971
- 1971-09-06 GB GB4138971A patent/GB1360439A/en not_active Expired
- 1971-09-09 AU AU33314/71A patent/AU458521B2/en not_active Expired
- 1971-09-17 CA CA123,133A patent/CA952402A/en not_active Expired
- 1971-09-17 JP JP7237871A patent/JPS5323638B1/ja active Pending
- 1971-09-17 FR FR7133651A patent/FR2112208B1/fr not_active Expired
- 1971-09-17 BE BE772749A patent/BE772749A/fr not_active IP Right Cessation
- 1971-09-17 IT IT28790/71A patent/IT940753B/it active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1983227A (en) * | 1933-04-24 | 1934-12-04 | United Gas Improvement Co | Gas pilot light control |
US2181900A (en) * | 1936-10-06 | 1939-12-05 | Jesse D Langdon | Piston and flush valve |
US2229903A (en) * | 1939-02-04 | 1941-01-28 | Arthur L Parker | Metering valve |
US3107894A (en) * | 1962-10-17 | 1963-10-22 | Zyrotron Ind Inc | Snap acting flow control valve with venturi formed between the orifice and conical valve plug |
US3298367A (en) * | 1964-01-10 | 1967-01-17 | Richard I Bergman | Apparatus for administering parenteral liquids |
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3916892A (en) * | 1974-04-29 | 1975-11-04 | Haemonetics Corp | Phlebotomy needle system incorporating means to add anticoagulant and wash liquid |
US4018136A (en) * | 1974-12-18 | 1977-04-19 | Kaetterhenry Lorell D | Hydraulic apparatus for controlling movement of a member under loading |
US4034754A (en) * | 1975-08-07 | 1977-07-12 | Baxter Travenol Laboratories, Inc. | Intravenous solution set having a constricted inner diameter portion |
US4105029A (en) * | 1975-08-07 | 1978-08-08 | Baxter Travenol Laboratories, Inc. | Intravenous solution set having an air access site and constricted inner diameter portion |
US4037596A (en) * | 1975-12-03 | 1977-07-26 | Burron Medical Products, Inc. | Parenteral administration set with internal valve and flow restrictor |
US4077394A (en) * | 1976-08-25 | 1978-03-07 | Mccurdy Martin D | Integral pressure sensor probe for a cardiac assistance device |
US4210178A (en) * | 1977-08-10 | 1980-07-01 | Basta Michael I | Perpetual by-pass flushing device |
US4211387A (en) * | 1978-03-13 | 1980-07-08 | G. W. Dahl Company, Inc. | Valve construction |
US4230128A (en) * | 1978-03-30 | 1980-10-28 | Aramayo Rene S | Catheter attachment for blood sampling |
US4200119A (en) * | 1978-05-08 | 1980-04-29 | Cunningham Patrick J | Adjustable fluid flow restrictor |
US4192303A (en) * | 1978-06-29 | 1980-03-11 | Walker Ralph S | Flow regulating device for arterial catheter systems |
WO1980000123A1 (fr) * | 1978-06-29 | 1980-02-07 | J Young | Dispositif regulateur de debit pour systemes de catheteres arteriels |
US4278083A (en) * | 1978-06-29 | 1981-07-14 | Young James E | Flow regulating device for arterial catheter systems |
EP0006761A1 (fr) * | 1978-06-29 | 1980-01-09 | James Ellis Young | Dispositif de régulation de l'écoulement |
US4202333A (en) * | 1978-11-08 | 1980-05-13 | Minnesota Mining And Manufacturing Company | Fluid dispensing device |
US4298000A (en) * | 1978-11-08 | 1981-11-03 | Minnesota Mining And Manufacturing Company | Fluid dispensing device |
US4241761A (en) * | 1979-01-09 | 1980-12-30 | Michael Ebert | Manifold valve assembly |
US4498500A (en) * | 1979-01-09 | 1985-02-12 | Michael Ebert | Manifold valve assembly |
US4245636A (en) * | 1979-01-24 | 1981-01-20 | Sorenson Research Co., Inc. | Continuous flushing apparatus |
US4267835A (en) * | 1979-04-24 | 1981-05-19 | American Hospital Supply Corporation | Medical flushing valve |
US4267834A (en) * | 1979-04-24 | 1981-05-19 | American Hospital Supply Corporation | System for flushing a medical fluid |
US4267833A (en) * | 1979-04-24 | 1981-05-19 | American Hospital Supply Corporation | Method of flushing a medical fluid |
US4381591A (en) * | 1979-04-24 | 1983-05-03 | American Hospital Supply Corporation | Method of assembling medical flushing valve |
US4373524A (en) * | 1979-05-14 | 1983-02-15 | Saul Leibinsohn | Liquid flow control devices particularly useful in infusion administration sets |
US4337770A (en) * | 1979-06-07 | 1982-07-06 | Young James E | Flow regulating device for arterial catheter systems |
US4291702A (en) * | 1979-06-25 | 1981-09-29 | Gould Inc. | Catheter flushing apparatus |
DE3023435A1 (de) * | 1979-06-25 | 1981-01-22 | Gould Inc | Durchflussregelvorrichtung |
FR2459646A1 (fr) * | 1979-06-25 | 1981-01-16 | Gould Inc | Appareil de commande de debit pour dispositif de controle de la pression sanguine, ou analogue |
US4300571A (en) * | 1979-07-27 | 1981-11-17 | Medex Inc. | Constant flush device |
US4335729A (en) * | 1979-08-01 | 1982-06-22 | Sorenson Research Co., Inc. | Apparatus and method for suppressing resonance in an electromanometry system |
US4341224A (en) * | 1980-02-04 | 1982-07-27 | Gould Inc. | Catheter flushing apparatus |
US4414999A (en) * | 1980-12-12 | 1983-11-15 | Basta Michael I | Continuous flushing device |
US4464179A (en) * | 1981-03-20 | 1984-08-07 | American Hospital Supply Corporation | Medical flushing valve |
US4440378A (en) * | 1981-10-16 | 1984-04-03 | Sullivan Michael P | Flow control apparatus |
US4456223A (en) * | 1981-12-03 | 1984-06-26 | Bentley Laboratories, Inc. | Flow control apparatus |
US4444198A (en) * | 1981-12-21 | 1984-04-24 | Petre John H | Circulatory monitoring system and method |
US4457487A (en) * | 1982-06-23 | 1984-07-03 | The Kendall Company | Flushing device |
US4458877A (en) * | 1982-06-23 | 1984-07-10 | The Kendall Company | Flushing apparatus |
US4545389A (en) * | 1982-07-14 | 1985-10-08 | Gould Inc. | Disposable physiological pressure sensing system |
WO1984000291A1 (fr) * | 1982-07-14 | 1984-02-02 | Gould Inc | Systeme jetable de detection de pression physiologique |
US4509946A (en) * | 1982-09-23 | 1985-04-09 | Mcfarlane Richard H | Flow control device |
US4624662A (en) * | 1982-11-24 | 1986-11-25 | Transamerica Delaval Inc. | Catheter flushing systems |
US4550748A (en) * | 1983-04-08 | 1985-11-05 | Warner-Lambert Company | Fluid flow regulating unit for intravascular catheter systems |
EP0129779A2 (fr) * | 1983-06-22 | 1985-01-02 | Abbott Laboratories | Appareil de transducteur jetable pour un système d'électro-manomètres |
EP0129779A3 (en) * | 1983-06-22 | 1988-07-20 | Abbott Laboratories | Disposable transducer apparatus for an electromanometry system |
US4683894A (en) * | 1984-07-09 | 1987-08-04 | Gould, Inc. | Disposable physiological pressure sensing system |
US4741733A (en) * | 1985-01-07 | 1988-05-03 | Baxter Travenol Laboratories, Inc. | Infusor having a distal flow regulator |
US4904239A (en) * | 1985-01-07 | 1990-02-27 | Baxter International Inc. | Infusor having a distal flow regulator |
US4696305A (en) * | 1985-07-15 | 1987-09-29 | Peter von Berg Extrakorporale Systems-Medizintechnik GmbH | Flow controller |
US4645496A (en) * | 1986-01-09 | 1987-02-24 | Rao Medical Devices, Inc. | Continuous catheter flushing flow control device |
US4703759A (en) * | 1986-05-20 | 1987-11-03 | Hewlett-Packard Company | Flush valve device |
US4834108A (en) * | 1986-06-09 | 1989-05-30 | Manresa, Inc. | Blocking filter to prevent air flow into a fluid conduit to a transducer |
US4743235A (en) * | 1986-09-05 | 1988-05-10 | Medex, Inc. | Flush control device |
US4718634A (en) * | 1986-09-23 | 1988-01-12 | Hewlett-Packard Company | Physiological pressure monitoring system flush valve |
EP0328105A2 (fr) * | 1988-02-12 | 1989-08-16 | Terumo Kabushiki Kaisha | Dispositif pour corriger la forme de l'onde de la pression sanguine |
EP0328105A3 (en) * | 1988-02-12 | 1989-10-11 | Terumo Kabushiki Kaisha | Device for correcting blood pressure waveform |
US4934375A (en) * | 1988-03-04 | 1990-06-19 | Spectramed, Inc. | Flush-valve assembly for blood pressure measurement catheter |
US4947856A (en) * | 1988-10-26 | 1990-08-14 | Abbott Laboratories | Fluid pressure monitoring and flow control apparatus |
US4936542A (en) * | 1989-03-27 | 1990-06-26 | Abbott Laboratories | Catheter flow control valve |
US5108373A (en) * | 1989-09-25 | 1992-04-28 | Baxter International Inc. | Intravenous metering device |
US5190527A (en) * | 1989-09-25 | 1993-03-02 | Baxter International Inc. | Intravenous metering device |
DE4243935A1 (de) * | 1992-12-23 | 1994-07-07 | Renate Milosevic | Ventilanordnung zwischen einem zum Injizieren dienenden Port und einem Katheter |
US5358004A (en) * | 1993-04-19 | 1994-10-25 | Louis D. Atkinson | Pressure fluid stabilized regulator with leakage orifice |
US5401255A (en) * | 1993-07-20 | 1995-03-28 | Baxter International Inc. | Multi-functional valve with unitary valving member and improved safety |
US5411848A (en) * | 1993-08-16 | 1995-05-02 | Eastman Kodak Company | Photographic color couplers and photographic materials containing them |
US5396925A (en) * | 1993-12-16 | 1995-03-14 | Abbott Laboratories | Anti-free flow valve, enabling fluid flow as a function of pressure and selectively opened to enable free flow |
US5740810A (en) * | 1993-12-23 | 1998-04-21 | Abbott Laboratories | One hand push button fast flush device |
WO1997039679A1 (fr) | 1996-04-18 | 1997-10-30 | Sunscope International, Inc. | Capteur de pression a coupole jetable |
US6511434B1 (en) | 2001-06-07 | 2003-01-28 | Elcam Plastic Cooperative Agricultural Association Ltd. | Blood-pressure transducer assembly |
US6830563B1 (en) | 2001-08-24 | 2004-12-14 | Scott Singer | Syringe tip providing nonlaminar spiral flow and method of use for flushing catheters |
US10137294B2 (en) | 2001-10-18 | 2018-11-27 | Bayer Healthcare Llc | Flow based pressure isolation and fluid delivery system including flow based pressure isolation and flow initiating mechanism |
US9526829B2 (en) | 2001-10-18 | 2016-12-27 | Bayer Healthcare Llc | Flow based pressure isolation and fluid delivery system including flow based pressure isolation and flow initiating mechanism |
US8919384B2 (en) | 2002-12-20 | 2014-12-30 | Bayer Medical Care Inc. | Flow based pressure isolation mechanism for a fluid delivery system |
US20080058720A1 (en) * | 2004-04-16 | 2008-03-06 | Medrad, Inc. | Flow Based Pressure Isolation and Fluid Delivery System Including Flow Based Pressure Isolation and Flow Initiating Mechanism |
US7610936B2 (en) | 2004-04-16 | 2009-11-03 | Medrad, Inc. | Flow based pressure isolation mechanism for a fluid delivery system |
US8251092B2 (en) | 2006-12-22 | 2012-08-28 | Medrad, Inc. | Flow based pressure isolation mechanism for a fluid delivery system |
US20080154214A1 (en) * | 2006-12-22 | 2008-06-26 | Medrad, Inc. | Flow Based Pressure Isolation and Fluid Delivery System Including Flow Based Pressure Isolation |
US11607489B2 (en) | 2017-05-26 | 2023-03-21 | Bayer Healthcare Llc | Injector state logic with hemodynamic monitoring |
Also Published As
Publication number | Publication date |
---|---|
AU3331471A (en) | 1973-03-15 |
IT940753B (it) | 1973-02-20 |
JPS5323638B1 (fr) | 1978-07-15 |
FR2112208B1 (fr) | 1974-09-27 |
GB1360439A (en) | 1974-07-17 |
DE2146588B2 (de) | 1975-07-31 |
CA952402A (en) | 1974-08-06 |
AU458521B2 (en) | 1975-02-27 |
DE2146588A1 (de) | 1972-03-23 |
FR2112208A1 (fr) | 1972-06-16 |
BE772749A (fr) | 1972-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3675891A (en) | Continuous catheter flushing apparatus | |
US4245636A (en) | Continuous flushing apparatus | |
US4192303A (en) | Flow regulating device for arterial catheter systems | |
US4278083A (en) | Flow regulating device for arterial catheter systems | |
US5454374A (en) | Pressure-measuring method and needle system for hemodialysis | |
US4190057A (en) | Device for determining the patentcy of a blood vessel | |
US4645496A (en) | Continuous catheter flushing flow control device | |
US4468224A (en) | System and method for catheter placement in blood vessels of a human patient | |
US3585996A (en) | Arterial catheter placement unit and method of use | |
US4741345A (en) | Continuous flow tissue pressure measurement | |
US4267835A (en) | Medical flushing valve | |
US4258717A (en) | Vascular interface | |
US3581733A (en) | Heart catheterization device | |
US4509946A (en) | Flow control device | |
US3720201A (en) | Disposable body fluid pressure monitor | |
JPWO2004016314A1 (ja) | 流体制御装置 | |
US4210178A (en) | Perpetual by-pass flushing device | |
US3435819A (en) | Venous pressure monitoring apparatus | |
US5544519A (en) | Method and apparatus for measuring the flow resistance of a catheter in an implanted medication infusion system | |
US4834108A (en) | Blocking filter to prevent air flow into a fluid conduit to a transducer | |
Burton et al. | The measurement of tension in vascular smooth muscle | |
Gardner et al. | Safety and efficacy of continuous flush systems for arterial and pulmonary artery catheters | |
Langfitt | Clinical methods for monitoring intracranial pressure and measuring cerebral blood flow | |
US3533400A (en) | Continuous reading venous manometer for injecting parenteral fluids | |
US3124133A (en) | Infusion apparatus |