US3671444A - Azeotropic composition - Google Patents

Azeotropic composition Download PDF

Info

Publication number
US3671444A
US3671444A US54084A US3671444DA US3671444A US 3671444 A US3671444 A US 3671444A US 54084 A US54084 A US 54084A US 3671444D A US3671444D A US 3671444DA US 3671444 A US3671444 A US 3671444A
Authority
US
United States
Prior art keywords
tetrachlorodifluoroethane
azeotropes
methanol
butanol
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US54084A
Inventor
J Allan Schofield
Roger A Delano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Application granted granted Critical
Publication of US3671444A publication Critical patent/US3671444A/en
Assigned to MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MORGAN BANK ( DELAWARE ) AS COLLATERAL ( AGENTS ) SEE RECORD FOR THE REMAINING ASSIGNEES. reassignment MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MORGAN BANK ( DELAWARE ) AS COLLATERAL ( AGENTS ) SEE RECORD FOR THE REMAINING ASSIGNEES. MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: STP CORPORATION, A CORP. OF DE.,, UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,, UNION CARBIDE CORPORATION, A CORP.,, UNION CARBIDE EUROPE S.A., A SWISS CORP.
Assigned to UNION CARBIDE CORPORATION, reassignment UNION CARBIDE CORPORATION, RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN BANK (DELAWARE) AS COLLATERAL AGENT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/028Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons
    • C23G5/02809Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons containing chlorine and fluorine
    • C23G5/02812Perhalogenated hydrocarbons
    • C23G5/02816Ethanes
    • C23G5/02822C2Cl4F2
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5036Azeotropic mixtures containing halogenated solvents
    • C11D7/5068Mixtures of halogenated and non-halogenated solvents
    • C11D7/5077Mixtures of only oxygen-containing solvents
    • C11D7/5081Mixtures of only oxygen-containing solvents the oxygen-containing solvents being alcohols only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/028Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons
    • C23G5/02806Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents containing halogenated hydrocarbons containing only chlorine as halogen atom

Definitions

  • the disclosure relates to binary azeotropic mixtures of tetrachlorodifluoroethane and methanol. 1! has also been discovered that n-butanol or isobutanol or sec-butanol will form azeotropes with these halogenated solvents.
  • the disclosure also relates to ternary azeotropes of tetrachlorodifluoroethane and trichloroethylene with methanol. It has also been discovered that ethanol or isopropanol will also form ternary azeotropes with these two halogenated solvents.
  • ternary azeotropes comprising tetrachlorodifluoroethane, trichloroethane and methanol. It has also been discovered that ethanol and isopropanol will also form ternary azeotropes with these two halogenated solvents.
  • This invention relates to an azeotropic composition and particularly to the binary and ternary azeotropic mixture of tetrachlorodifluoroethane and methanol or any one of the isomers, n-butanol or iso-butanol or sec.-butanol.
  • the present invention also relates to ternary azeotropes of tetrachlorodifluoroethane and trichloroethylene with either methanol or ethanol or isopropanol.
  • ternary azeotropes have been discovered comprising tetrachlorodifluoro-ethane, trichloroethane and either methanol or ethanol or isopropanol. 1
  • chlorofluoroethanes have attained widespread use as specialty solvents in recent years, particularly tetrachlorodifluoroethane.
  • This is a relatively high melting compound (CCl FCCl F, 24.5 C.), which is nontoxic and nonflammable, and which has satisfactory solvent power for greases, oils, waxes and the like under certain conditions. It has therefore found use in cleaning electric motors, compressors, lithographic plates, typewriters, instruments, gauges, and as non-corrosive brines.
  • Printed cicuits are well known in the electronics art; and consist of a circuit formed from a soft metal on a solid, non-conducting surface such as a reinforced phenolic resin. During manufacture, the solid surface is coated with the metal, the desired portion of metal is coated with an impervious coating, and the excess metal is removed by etching with a suitable acid. After the excess metal has been removed, it is necessary to remove the impervious coating because solder joints must be made to the printed circuit" and these will not form if the coating is present. After the impervious coating is removed, the circuits are coated with a rosin flux to permit the joints to be soldered, after which the rosin flux must then be removed.
  • the chlorofluoroethane solvent does not have sufficient solvent power to clean printed circuits; that is, to effectively remove the rosin flux.
  • mixtures of solvents may be used for this purpose they have the disadvantage that they boil over a range of temperatures and consequently undergo fractionation in vapor degreasing or ultrasonic applications which are open to the atmosphere.
  • the solvent When employing either of these cleaning or degreasing methods the solvent must also be both relatively nontoxic and nonflammable for safety reasons.
  • Tetrachlorodifluoroethane is a relatively high boiling fluorocarbon and for this reason is especially advantageous in vapor degreasing applications since at these temperatures the hot vapor has more of atend'ency to dissolve high melting greases, or fluxes as well as oil residues and the like.
  • the solvent vapors tend to condense on the article until the articles are heated by the vapors from room temperature up to the temperature of the vapor. The condensation thus formed on the articles tends to drip back into the solvent reservoir taking with it some of the soil on the article. For this reason the ability of a cleaning solvent to condense on the surface is especially advantageous.
  • Tetrachlorodifluoroethane also is a better solvent than materials such as trichlorotrifluoromethane, however, it suffers the disadvantage that it is solidus at room temperature whereas the latter is liquidus. Accordingly tetrachlorodifluoroethane is more difficult to handle than I liquid'type cleaning solvents.
  • the above object of this invention may be accomplished by a novel binary azeotropic composition of tetrachlorodifluoroethane (e.g., l l ,2,2,-tetrachlorol .2- difluoroethane) and either methanol or n-butanol or secondary butanol or iso-butanol; ternary azeotropes of tetrachlorodifluoroethane (e.g., 1,1 ,2,2-tetrachloro- 1 ,2- difluoroethane) trichloroethylene and either methanol or ethanol or isopropanol; and ternary azeotropes of tetrachlorodifluoroethane e.g., l, l ,2,2-tetrachlorol ,2-
  • trichloroethane e.g., l,l,l-trichloroethane
  • methanol or ethanol or isopropanol e.g., 1,l,2,2-tetrachloro-l,2-difluoroethane
  • the isomer 1 l l ,2-tetrachloro-2,2- difluoroethane may be substituted therefore in whole or in part and especially in minor amounts or trace amounts.
  • the preferred trichloroethane comprises the 1,1 ,l-trichloroethane isomer.
  • All of these mixtures form azeotropes which distill at a constant temperature, the liquid phase and the vapor phase in equilibrium therewith having the same composition.
  • Such mixture is relatively nonflammable and nontoxic in both the liquid phase and the vapor phase.
  • These mixtures are particularly useful as solvents for greases, oils, waxes, and the like and cleaning electric motors, compressors, lithographic plates, typewriters precision instruments, gauges,-and the like and are particularly useful for cleaning printed circuits.
  • the azeotropic mixtures are obtained at approximately 760 mm Hg a variation in pressure and consequently a change in the compositions and boiling points are also intended to be within the boardscope of the invention.
  • the azeotropes may contain many different proportions of all of the aforementioned components provided a constant boiling mixture is obtained at the various pressures at which the compositions are used. Stated otherwise any pressure may be employed to obtain the azeotropes of this invention as long as a three component or two component constant boiling mixture is obtained, and accordingly the ratio of components of the azeotropes of the invention will also vary.
  • the present invention relates to the aforementioned azeotropes that boil at atmospheric pressure 1 about 25, especially about 15 mm Hg.
  • the desired circuit is drawn on the copper with an asphalt based ink using the silk screen method.
  • the excess copper is then removed by etching with a ferric chloride-hydrochloric acid bath, sometimes containing ammonium chloride, leaving on the board the copper that is covered by the ink.
  • the asphalt ink is removed by cleaning with the azeotropic composition of this invention in an ultrasonic bath (some mechanical scrubbing is often used).
  • the entire surface of the board is coated with a rosin flux and dried.
  • the electronic components (resistors. capacitors, etc.) are then added at the proper places for soldering to the circuit.
  • the board is then passed over a molten solder bath, contacting the desired joints with the molten metal, whereby the soldering is effected. After cooling. the excess rosin flux remaining on the board must be 32 kilocycles per second-at about l0-20 F. below the boiling point of the particular azeotrope for about 1 minute.
  • An azeotropic composition consisting essentially of about 36 parts, by weight, of l,l,2,2-tetrachloro-l,Z-difluoroethane, about 26 parts ethanol and about 38 parts trichloroethylene.
  • a method for cleaning a solid surface comprising contacting said surface with the composition of claim 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Detergent Compositions (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

It is not intended that the following abstract of the disclosure be construed as limiting the invention in any manner. The disclosure relates to binary azeotropic mixtures of tetrachlorodifluoroethane and methanol. It has also been discovered that n-butanol or isobutanol or sec-butanol will form azeotropes with these halogenated solvents. The disclosure also relates to ternary azeotropes of tetrachlorodifluoroethane and trichloroethylene with methanol. It has also been discovered that ethanol or isopropanol will also form ternary azeotropes with these two halogenated solvents. In a further embodiment ternary azeotropes are disclosed comprising tetrachlorodifluoroethane, trichloroethane and methanol. It has also been discovered that ethanol and isopropanol will also form ternary azeotropes with these two halogenated solvents.

Description

United States Patent Schoiield et al.
[ 1 June 20, 1972 [54] AZEOTROPIC COMPOSITION [72] Inventors: J. Allan Schofleld, lrvington; Roger A.
Delano, Dobbs Ferry, both of NY.
52 us. Cl. .252 171, 252/66, 252 010. 9 51 ..Clld 7 50, C23g 5/02 581 ..252/l7l,66-68,
[56] References Cited UNITED STATES PATENTS 3,085,1l6 4/l963 Kvalnes ..260/652.5 3,285,858 ll/l966 Hirschetal ..252/l7l Primary Examiner-Leon D. Rosdol Assistant Examiner-W. Schulz Attorney-Paul A. Rose, Aldo .l. Cozzi, Vincent P. Pirri and Robert C. Brown [57] ABSTRACT It is not intended that the following abstract of the disclosure be construed as limiting the invention in any manner.
The disclosure relates to binary azeotropic mixtures of tetrachlorodifluoroethane and methanol. 1! has also been discovered that n-butanol or isobutanol or sec-butanol will form azeotropes with these halogenated solvents.
The disclosure also relates to ternary azeotropes of tetrachlorodifluoroethane and trichloroethylene with methanol. It has also been discovered that ethanol or isopropanol will also form ternary azeotropes with these two halogenated solvents.
In a further embodiment ternary azeotropes are disclosed comprising tetrachlorodifluoroethane, trichloroethane and methanol. It has also been discovered that ethanol and isopropanol will also form ternary azeotropes with these two halogenated solvents.
3 Claims, No Drawings AZEOTROPIC COMPOSITION This is a division of application, Ser. No. 677,715 filed Oct. 24, 1967 now U.S. Pat. No. 3,554,918.
This invention relates to an azeotropic composition and particularly to the binary and ternary azeotropic mixture of tetrachlorodifluoroethane and methanol or any one of the isomers, n-butanol or iso-butanol or sec.-butanol. The present invention also relates to ternary azeotropes of tetrachlorodifluoroethane and trichloroethylene with either methanol or ethanol or isopropanol. In a further embodiment ternary azeotropes have been discovered comprising tetrachlorodifluoro-ethane, trichloroethane and either methanol or ethanol or isopropanol. 1
Several of the chlorofluoroethanes have attained widespread use as specialty solvents in recent years, particularly tetrachlorodifluoroethane. This is a relatively high melting compound (CCl FCCl F, 24.5 C.), which is nontoxic and nonflammable, and which has satisfactory solvent power for greases, oils, waxes and the like under certain conditions. It has therefore found use in cleaning electric motors, compressors, lithographic plates, typewriters, instruments, gauges, and as non-corrosive brines.
For certain solvent purposes however, the chlorofluoroethanes alone have insufficient solvent power. This is particularly true in the electronic industry during the manufacture of printed circuits." Printed cicuits are well known in the electronics art; and consist of a circuit formed from a soft metal on a solid, non-conducting surface such as a reinforced phenolic resin. During manufacture, the solid surface is coated with the metal, the desired portion of metal is coated with an impervious coating, and the excess metal is removed by etching with a suitable acid. After the excess metal has been removed, it is necessary to remove the impervious coating because solder joints must be made to the printed circuit" and these will not form if the coating is present. After the impervious coating is removed, the circuits are coated with a rosin flux to permit the joints to be soldered, after which the rosin flux must then be removed.
The chlorofluoroethane solvent does not have sufficient solvent power to clean printed circuits; that is, to effectively remove the rosin flux. Although mixtures of solvents may be used for this purpose they have the disadvantage that they boil over a range of temperatures and consequently undergo fractionation in vapor degreasing or ultrasonic applications which are open to the atmosphere. When employing either of these cleaning or degreasing methods the solvent must also be both relatively nontoxic and nonflammable for safety reasons.
Tetrachlorodifluoroethane is a relatively high boiling fluorocarbon and for this reason is especially advantageous in vapor degreasing applications since at these temperatures the hot vapor has more of atend'ency to dissolve high melting greases, or fluxes as well as oil residues and the like. When articles such as circuit boards are passed through a vapor degreaser, the solvent vapors tend to condense on the article until the articles are heated by the vapors from room temperature up to the temperature of the vapor. The condensation thus formed on the articles tends to drip back into the solvent reservoir taking with it some of the soil on the article. For this reason the ability of a cleaning solvent to condense on the surface is especially advantageous. Higher boiling solvents prolong this condensation effect in a continuous degreaser since it takes a greater amount of time to bring the article passing through the degreaser up to the vapor temperature of the solvent. Consequently higher boiling solvents generally have better cleaning power per unit of time in a continuous vapor degreaser than the lower boiling solvents.
Tetrachlorodifluoroethane also is a better solvent than materials such as trichlorotrifluoromethane, however, it suffers the disadvantage that it is solidus at room temperature whereas the latter is liquidus. Accordingly tetrachlorodifluoroethane is more difficult to handle than I liquid'type cleaning solvents.
It is an object of this invention to provide a constant boiling or azeotropic solvent that is a liquid at room temperature, will not fractionate and also has the foregoing advantages' Another object is to provide an azeotropic composition which is valuable as a solvent and particularly for cleaning printed circuits. A further object is to provide an azeotropic composition which is both relatively nontoxic and n'onflammable both in the liquid phase and in the vapor phase and which at the same time is an excellent solvent for cleaning printed circuits especially by means of a continuous vapor degreasing machine. I
The above object of this invention may be accomplished by a novel binary azeotropic composition of tetrachlorodifluoroethane (e.g., l l ,2,2,-tetrachlorol .2- difluoroethane) and either methanol or n-butanol or secondary butanol or iso-butanol; ternary azeotropes of tetrachlorodifluoroethane (e.g., 1,1 ,2,2-tetrachloro- 1 ,2- difluoroethane) trichloroethylene and either methanol or ethanol or isopropanol; and ternary azeotropes of tetrachlorodifluoroethane e.g., l, l ,2,2-tetrachlorol ,2-
difluoroethane), trichloroethane (e.g., l,l,l-trichloroethane) and either methanol or ethanol or isopropanol. Although 1,l,2,2-tetrachloro-l,2-difluoroethane is a preferred tetrachlorodifluoroethane, the isomer 1 l l ,2-tetrachloro-2,2- difluoroethane may be substituted therefore in whole or in part and especially in minor amounts or trace amounts. The preferred trichloroethane comprises the 1,1 ,l-trichloroethane isomer. All of these mixtures form azeotropes which distill at a constant temperature, the liquid phase and the vapor phase in equilibrium therewith having the same composition. Such mixture is relatively nonflammable and nontoxic in both the liquid phase and the vapor phase. These mixtures are particularly useful as solvents for greases, oils, waxes, and the like and cleaning electric motors, compressors, lithographic plates, typewriters precision instruments, gauges,-and the like and are particularly useful for cleaning printed circuits.
Although the azeotropic mixtures are obtained at approximately 760 mm Hg a variation in pressure and consequently a change in the compositions and boiling points are also intended to be within the boardscope of the invention. Thus the azeotropes may contain many different proportions of all of the aforementioned components provided a constant boiling mixture is obtained at the various pressures at which the compositions are used. Stated otherwise any pressure may be employed to obtain the azeotropes of this invention as long as a three component or two component constant boiling mixture is obtained, and accordingly the ratio of components of the azeotropes of the invention will also vary. The variation of components is thus within the skill of the art and is easily determined once it is known that the halogenated hydrocarbons of this invention will form the aforementioned azeotropes. In a preferred embodiment the present invention relates to the aforementioned azeotropes that boil at atmospheric pressure 1 about 25, especially about 15 mm Hg.
EXAMPLE I Components Composition Percent Boiling Point, by Weight F. 760 mm Hg 1, l ,2,2-tetrachlorol ,2-difluoroethane 69.3 140 methanol 30.7
EXAMPLES ll-X The method of Example I is repeated using different mixtures of alcohols and/or l,l,l-trichloroethane or trichloroethylene and l, l ,2,2,-tetrachlorol ,2,- difluoroethane, the results of which are as follows:
COMPONENTS, PERCENT BY WEIGHT 1,1,12,2-tetta- 1,1,1-tri- Example ch1or0-12-di- Trichlorochloro- Bolling mm. Hg. number fluoroethane Methanol Ethanol l-Propanol n-Butanol l-Butanol s-Butanol ethylene ethane point, F. pressure Printed circuit boards are usually prepared by impregnating glass cloth, nylon, or paper laminates with a phenolformaldehyde resin or an epoxy resin. Printed circuits are prepared by a variety of methods. In a typical procedure, the board consists originally ofa phenolic resin impregnated base to which is bonded a sheet of copper. 2 to 4 mils thick, covering one surface of the board. The desired circuit is drawn on the copper with an asphalt based ink using the silk screen method. The excess copper is then removed by etching with a ferric chloride-hydrochloric acid bath, sometimes containing ammonium chloride, leaving on the board the copper that is covered by the ink. After washing 0E the etch solution, the asphalt ink is removed by cleaning with the azeotropic composition of this invention in an ultrasonic bath (some mechanical scrubbing is often used). The entire surface of the board is coated with a rosin flux and dried. The electronic components (resistors. capacitors, etc.) are then added at the proper places for soldering to the circuit. The board is then passed over a molten solder bath, contacting the desired joints with the molten metal, whereby the soldering is effected. After cooling. the excess rosin flux remaining on the board must be 32 kilocycles per second-at about l0-20 F. below the boiling point of the particular azeotrope for about 1 minute.
When the board is cleaned with the azeotropic mixtures of this invention substantially all of the rosin flux is removed without any detrimental effect on the board which constitutes the backing of the printed circuit.
Although the invention has been described by reference to some preferred embodiments it is not intended that the broad scope of the novel azeotropic compositions be limited thereby but that certain modifications are intended to be included within the spirit and broad scope of the following claims.
What is claimed is:
1. An azeotropic composition consisting essentially of about 36 parts, by weight, of l,l,2,2-tetrachloro-l,Z-difluoroethane, about 26 parts ethanol and about 38 parts trichloroethylene.
2. A method for cleaning a solid surface comprising contacting said surface with the composition of claim 1.
3. A method in accordance with claim 2 wherein said composition is in vapor form.

Claims (2)

  1. 2. A method for cleaning a solid surface comprising contacting said surface with the composition of claim 1.
  2. 3. A method in accordance with claim 2 wherein said composition is in vapor form.
US54084A 1967-10-24 1970-06-02 Azeotropic composition Expired - Lifetime US3671444A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US67771567A 1967-10-24 1967-10-24
US5408470A 1970-06-02 1970-06-02
US5408170A 1970-06-02 1970-06-02
US5408270A 1970-06-02 1970-06-02
US5408370A 1970-06-02 1970-06-02
US5408570A 1970-06-02 1970-06-02
US5408670A 1970-06-02 1970-06-02
US00255972A US3833507A (en) 1967-10-24 1972-05-23 Azeotropic composition

Publications (1)

Publication Number Publication Date
US3671444A true US3671444A (en) 1972-06-20

Family

ID=27574375

Family Applications (8)

Application Number Title Priority Date Filing Date
US677715D Pending USB677715I5 (en) 1967-10-24
US677715A Expired - Lifetime US3554918A (en) 1967-10-24 1967-10-24 Azeotropic composition
US54082A Expired - Lifetime US3671443A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54084A Expired - Lifetime US3671444A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54086A Expired - Lifetime US3671445A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54085A Expired - Lifetime US3671446A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54081A Expired - Lifetime US3671442A (en) 1967-10-24 1970-06-02 Azeotropic composition
US00255972A Expired - Lifetime US3833507A (en) 1967-10-24 1972-05-23 Azeotropic composition

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US677715D Pending USB677715I5 (en) 1967-10-24
US677715A Expired - Lifetime US3554918A (en) 1967-10-24 1967-10-24 Azeotropic composition
US54082A Expired - Lifetime US3671443A (en) 1967-10-24 1970-06-02 Azeotropic composition

Family Applications After (4)

Application Number Title Priority Date Filing Date
US54086A Expired - Lifetime US3671445A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54085A Expired - Lifetime US3671446A (en) 1967-10-24 1970-06-02 Azeotropic composition
US54081A Expired - Lifetime US3671442A (en) 1967-10-24 1970-06-02 Azeotropic composition
US00255972A Expired - Lifetime US3833507A (en) 1967-10-24 1972-05-23 Azeotropic composition

Country Status (2)

Country Link
US (8) US3554918A (en)
CA (1) CA955820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936387A (en) * 1972-02-04 1976-02-03 Phillips Petroleum Company Azeotrope of 1,2-dichloro-1-fluoroethane and methanol
US4035258A (en) * 1973-08-27 1977-07-12 Phillips Petroleum Company Azeotropic compositions
US4169807A (en) * 1978-03-20 1979-10-02 Rca Corporation Novel solvent drying agent

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023984A (en) * 1973-02-02 1977-05-17 Imperial Chemical Industries Limited Azeotropic solvent composition for cleaning
US3904542A (en) * 1973-03-06 1975-09-09 Phillips Petroleum Co Azeotropic composition of fluorocarbon
US3957530A (en) * 1973-03-06 1976-05-18 Phillips Petroleum Company Ternary azeotropic paint stripping compositions
JPS5958099A (en) * 1982-09-27 1984-04-03 ダイキン工業株式会社 Detergent composition
US4524011A (en) * 1982-11-08 1985-06-18 The Dow Chemical Company Flux removal solvent blend
KR840006450A (en) * 1982-11-08 1984-11-30 리차드 고든 워터맨 Solvent mixture for removing solvent residues
JPS61190596A (en) * 1985-02-20 1986-08-25 ダイキン工業株式会社 Azeotropic composition
DE3702399A1 (en) * 1987-01-28 1988-08-11 Kali Chemie Ag NEW MIXTURES WITH DIFLUORTETRACHLORAETHANE
US5514221A (en) * 1993-04-15 1996-05-07 Elf Atochem North America, Inc. Cold cleaning process
US5552080A (en) * 1993-04-15 1996-09-03 Elf Atochem North America, Inc. Cold cleaning solvents
US6342471B1 (en) * 2000-01-25 2002-01-29 Toney M. Jackson Electrical contact cleaner
FR2855069B1 (en) * 2003-05-22 2006-06-16 Solvay PROCESS FOR THE SEPARATION OF AT LEAST ONE ORGANIC COMPOUND

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936387A (en) * 1972-02-04 1976-02-03 Phillips Petroleum Company Azeotrope of 1,2-dichloro-1-fluoroethane and methanol
US4035258A (en) * 1973-08-27 1977-07-12 Phillips Petroleum Company Azeotropic compositions
US4169807A (en) * 1978-03-20 1979-10-02 Rca Corporation Novel solvent drying agent

Also Published As

Publication number Publication date
US3671443A (en) 1972-06-20
US3554918A (en) 1971-01-12
US3671445A (en) 1972-06-20
US3833507A (en) 1974-09-03
US3671446A (en) 1972-06-20
CA955820A (en) 1974-10-08
US3671442A (en) 1972-06-20
USB677715I5 (en)

Similar Documents

Publication Publication Date Title
US2999816A (en) Azeotropic composition
US2999815A (en) Azeotropic composition
US3671444A (en) Azeotropic composition
US4842764A (en) Azeotrope-like compositions of 1,1-dichloro-1-fluoroethane and methanol
US5445757A (en) Compositions comprising pentafluorobutane and use of these compositions
US4767561A (en) Azeotrope or azeotrope-like composition of trichlorotrifluoroethane, methanol and 1,2-dichloroethylene
US4836947A (en) Azeotrope-like compositions of 1,1-dichloro-1-fluoroethane and ethanol
US5246617A (en) Azeotropic compositions of 1,1-dichloro-1-fluoroethane and methanol/ethanol
US4715900A (en) Azeotropic compositions of trichlorotrifluoroethane, dichlorodifluoroethane and methanol/ethanol
US4894176A (en) Azeotrope-like compositions of 1,1-dichloro-1-fluoroethane, dichlorotrifluoroethane and methanol
US4999127A (en) Azeotropic composition of 2-chloro-1,1,2-trifluoroethyl-2-difluoromethyl ether with trans-1,2-dichloroethylene and methnanol
US3737389A (en) Azeotropic composition
US3607767A (en) Azeothropic composition of 1,1,2-trifluoroethane,methylene chloride,and cyclopentane
US5834416A (en) Azeotropes of alkyl esters and hexamethyldisiloxane
US4970013A (en) Binary azeotropic composition of 2,3-dichloro-1,1,1,3-3-pentafluoropropane and methanol
US5824632A (en) Azeotropes of decamethyltetrasiloxane
JPH02258732A (en) Azeotropic or azeotropic-like composition of 1,1,2- trichlorotrifluoroethane and trans-1,2-dichloroethylene with ehtanol,n-propanol,isopropanol or acetone,or with ethanol or acetone and nitromethane
US4045366A (en) Azeotrope-like compositions of trichlorotrifluoroethane, nitromethane and acetone
US3846327A (en) Azeotropic composition
US3785987A (en) Ternary azeotropic cleaning solution based on tetradichlorodifluoroethane
EP0389133B1 (en) Azeotropic composition of 2,2-dichloro-1,1,1-trifluoroethane and methanol
US4052328A (en) Azeotrope-like compositions of trichlorotrifluoroethane, ethanol, isopropanol and nitromethane
US3686131A (en) Azeotropic composition of tetrachlorodifluoroethane isopropanol and water
US4812256A (en) Azeotropic compositions of 1,1-difluoro-1,2,2-trichloroethane and methanol, ethanol, isopropanol or n-propanol
US3630926A (en) Azeotropic composition of 1 1 2 2-tetrachloro - 1 2-difluoroethane and trichloroethylene

Legal Events

Date Code Title Description
AS Assignment

Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MOR

Free format text: MORTGAGE;ASSIGNORS:UNION CARBIDE CORPORATION, A CORP.,;STP CORPORATION, A CORP. OF DE.,;UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,;AND OTHERS;REEL/FRAME:004547/0001

Effective date: 19860106

AS Assignment

Owner name: UNION CARBIDE CORPORATION,

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MORGAN BANK (DELAWARE) AS COLLATERAL AGENT;REEL/FRAME:004665/0131

Effective date: 19860925