US3671420A - Conversion of heavy petroleum oils - Google Patents
Conversion of heavy petroleum oils Download PDFInfo
- Publication number
- US3671420A US3671420A US101444A US3671420DA US3671420A US 3671420 A US3671420 A US 3671420A US 101444 A US101444 A US 101444A US 3671420D A US3671420D A US 3671420DA US 3671420 A US3671420 A US 3671420A
- Authority
- US
- United States
- Prior art keywords
- catalyst
- riser
- zone
- overhead
- cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003208 petroleum Substances 0.000 title claims abstract description 19
- 239000003921 oil Substances 0.000 title abstract description 22
- 238000006243 chemical reaction Methods 0.000 title description 36
- 238000004523 catalytic cracking Methods 0.000 claims abstract description 21
- 239000003054 catalyst Substances 0.000 claims description 108
- 238000000034 method Methods 0.000 claims description 38
- 238000005336 cracking Methods 0.000 claims description 32
- 238000009835 boiling Methods 0.000 claims description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 239000003350 kerosene Substances 0.000 claims description 3
- 238000004517 catalytic hydrocracking Methods 0.000 abstract description 35
- 229930195733 hydrocarbon Natural products 0.000 description 49
- 150000002430 hydrocarbons Chemical class 0.000 description 49
- 239000004215 Carbon black (E152) Substances 0.000 description 33
- 239000000047 product Substances 0.000 description 31
- 229910052739 hydrogen Inorganic materials 0.000 description 28
- 239000001257 hydrogen Substances 0.000 description 28
- 230000003197 catalytic effect Effects 0.000 description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 25
- 239000007788 liquid Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 17
- 239000007789 gas Substances 0.000 description 15
- 239000010457 zeolite Substances 0.000 description 13
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 229910021536 Zeolite Inorganic materials 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910000323 aluminium silicate Inorganic materials 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000004231 fluid catalytic cracking Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000010763 heavy fuel oil Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
Definitions
- ABSTRACT Residue-containing petroleum oils are converted into lighter [52] U.S.Cl ..208/61,208/ 164 products y a combination of catalytic hydrocracking and [51 Int. Cl. ..Cl0g 13/00, ClOg 37/02 catalytic cracking [58] Field of Search ..208/59, 61, 164
- This invention relates to the catalytic treatment of heavy hydrocarbon materials and more particularly to a process which produces substantially complete conversion of said heavy hydrocarbon materials to lower boiling hydrocarbons and selectivity in such conversion to lower boiling hydrocarbons which boil within a particularly preferred boiling range.
- the still residue is a heavy hydrocarbon oil rich in tar and asphalt and having a relatively high concentration of metals.
- Attempts to convert still residues such as a vacuum residuum into lighter materials by means of catalytic processes have not been particularly successful as the tar and asphalt deposit on the catalyst producing a coke layer on the catalyst preventing contact of the catalyst and oil.
- the metals will deposit on the catalyst causing its deactivation.
- the most popular method for converting residua to lighter materials is coking, in which process the oil is heated and retained at elevated temperature until a substantial portion thereof is converted to coke and the balance to a lighter liquid.
- disposal of the coke so formed can present a problem.
- much of the still residue produced in petroleum refineries is sold as residual fuel" but even this is no longer a suitable use because of its high sulfur content.
- our invention provides a process for the conversion of a residuecontaining petroleum fraction into lighter products which comprises maintaining in a hydrocracking zone a first catalytic zone below and a second catalytic zone above a point of entry into said hydrocracking zone, introducing the residuecontaining petroleum fraction through said point of entry into said hydrocracking zone at a temperature between about 600 and 850 F.
- the process of our invention may be used for the treatment of residue-containing fractions such as atmospheric residua,
- vacuum residua vacuum residua, visbreaker bottoms, whole crude such as San Ardo Crude, shale oil, tar sand oil and the like.
- a split flow hydrocracking process which comprises introducing a heavy hydrocarbon charge stock in downward flow into a hydrocracking catalyst zone, said catalyst zone comprising a first catalyst zone below and a second catalyst zone above the point of entry of the heavy hydrocarbon charge stock, introducing hydrogen into said first catalyst zone in countercurrent relationship to the flow of said heavy hydrocarbon charge stock, maintaining a lower boiling liquid in the second catalyst zone, recovering a high boiling effluent from the first catalyst zone and recovering lower boiling hydrocarbons from the second catalyst zone.
- the heavy hydrocarbon charge stock is introduced into a hydrocracking catalyst zone herein defined to include a first catalyst zone in downflow relationship to the downward flow of the heavy hydrocarbon charge stock, a second catalyst zone above the point of entry of the heavy hydrocarbon charge stock and in upfiow relationship to the lower boiling hydrocarbons which proceed from the first catalyst zone into the second catalyst zone.
- a hydrocracking catalyst zone herein defined to include a first catalyst zone in downflow relationship to the downward flow of the heavy hydrocarbon charge stock, a second catalyst zone above the point of entry of the heavy hydrocarbon charge stock and in upfiow relationship to the lower boiling hydrocarbons which proceed from the first catalyst zone into the second catalyst zone.
- the second catalyst zone is in upfiow relationship to the flow of the hydrogen containing gas and in upfiow relationship to the volatile hydrocarbon and entrained liquid hydrocarbon which proceed from the first catalyst zone into a second catalyst zone.
- the word above is used to define a flow relationship with the first catalyst zone, which relationship provides for the flow of hydrogen, volatile hydrocarbons and entrained lower boiling liquid hydrocarbons from the first catalyst zone in countercurrent relationship with the downward flow of the heavy hydrocarbon charge stock into a second catalyst zone.
- the second catalyst zone can be located directly in a space dimension above the first catalyst zone such as when the first and second catalyst zone are present in a vertical reactor with an intermediate point of entry for the heavy hydrocarbon charge stock.
- the second catalyst zone can be present as a separate reactor which is connected to the first reactor by conduit means, although it is preferred in carrying out the process of this invention to use a vertical reactor wherein the first catalyst zone and second catalyst zone are present in the same reactor.
- a catalyst which has hydrocracking activity under process conditions of temperature, pressure and space velocity which are utilized during the process.
- the catalyst in the first catalyst zone can be either. the same or different than the catalyst-present in the second catalyst zone.
- the heavy hydrocarbon charge stock upon entry to the catalyst zone proceeds downwardly in downflow relationship tothe first catalyst zone.
- Hydrogen is introduced into the first catalyst zone at or near the lower extremity and/or at intermediate points in said first catalyst zone in countercurrent relationship to the hydrocarbon flow through the first catalyst zone and in upfiow relationship to the second catalyst zone, the volatile hydrocarbons and the lower boiling liquid hydrocarbons hereinafler referred to as liquid proceed into the second catalyst zone.
- the volatile hydrocarbons and the liquids which are present in the second catalyst zone proceed from the second catalyst zone and are recovered by conventional means such as by cooling of the hydrocarbon vapors and liquid.
- the hydrogen which proceeds from the second catalyst zone can then be recycled together with fresh hydrogen in the first catalyst zone.
- hydrogen optionally can be blended with the heavy hydrocarbon charge stock and introduced at ambient temperature or higher such as temperatures up to hydrocracking temperatures into the catalyst zone.
- liquid is maintained in the second catalyst zone.
- a liquid is maintained in the second catalyst zone by the rate of introduction of hydrogen into the first catalyst zone by any of the means set forth above for the introduction of hydrogen.
- hydrogen gas rates of at least 3,000 SCF per barrel of charge preferably from 3,000 SCF per barrel up to about 25,000 SCF per barrel are required in the first catalyst zone.
- the hydrogen need not be pure and gases containing more than about 65 volume percent hydrogen may be used.
- the term hydrogen is also intended to include dilute hydrogen, reformer by-product hydrogen, hydrogen produced by the partial oxidation of hydrocarbon materials followed by shift conversion and electrolytic hydrogen.
- the hold-up of the liquid hydrocarbon charge stock in the first catalyst zone can be varied somewhat by varying the upward flow of hydrogen. In general it is preferred to have high liquid hold-up, that is a hold-up of hydrocarbon charge stock which provides for maximum catalytic effectiveness for the conversion of the charge stock to lower boiling hydrocarbons.
- the lower boiling liquid which is maintained in the second catalyst zone in general is derived from the heavy hydrocarbon material, and in general is a lower boiling hydrocarbon which is present initially in the heavy hydrocarbon charge stock and/or which is formed during the process.
- the liquid material has a boiling point below 850 F. It is preferred that the liquid which is present in the second catalyst zone have at least 90 percent by weight of the liquid boiling below 850 F. more preferably at least about 97 percent by weight boiling below 850 F.
- the first stage of the process of this invention is utilized for the hydrocracking of heavy hydrocarbon charge stocks which term hydrocracking is herein defined to mean destructive hydrogenation in which a substantial portion of the product boils at a temperature below the initial boiling point of the charge heavy hydrocarbon material.
- hydrocracking is herein defined to mean destructive hydrogenation in which a substantial portion of the product boils at a temperature below the initial boiling point of the charge heavy hydrocarbon material.
- percent conversions by weight per single pass of the 850 F.+ material of the charge stock varies from about to 80 percent more preferably from about to 60 percent.
- the hydrocracking conditions as to pressure, temperature and space velocity can be varied over a wide range, the conditions utilized being those which in combination produce substantial conversion of the heavy hydrocarbon charge stock to lower boiling hydrocarbons.
- the first and second catalyst zone conditions that are utilized in the split flow process of this invention are in general temperatures of from about 600 F. to about 850 F., preferably 725 to 840 F.; pressure of from about 500 to about 5,000 psig, preferably 1,500 to 2,000 psig and liquid hourly space velocities of from about 0.05 to about 10, preferably 0.25 to 2.5, volumes of feed per volume of catalyst per hour.
- the gas rates in the first and second catalyst zones will differ depending upon the amount of hydrogen which is blended together with the heavy hydrocarbon charge stock prior to the introduction into the catalyst zone and/or hydrogen consumed in the process.
- hydrogen gas rates in the second catalyst zone may be different than the hydrogen rates in the first catalyst zone.
- liquid hourly space velocity in the second catalyst zone will be greater than that in the first catalyst zone.
- temperature and pressure can be different.
- the hydrocracking catalyst utilized for the conversion of the aforementioned hydrocarbon charge stocks can be crystalline metallic alumino-silicate zeolite, having a platinum group metal (e.g. platinum or palladium) or an iron group metal alone or in conjunction with a Group VI metal, their compounds and mixtures thereof eg cobalt oxide and molyb- 1 denum oxide or nickel sulfide and tungsten sulfide deposited thereon or composited therewith.
- platinum group metal e.g. platinum or palladium
- an iron group metal alone or in conjunction with a Group VI metal
- crystalline zeolites are characterized by their highly ordered crystalline structure and uniformly dimensioned pores, and have an alumino-silicate anionic cage structure wherein alumina and silica tetrahedra are intimately connected to each other so as to provide a large number of active sites, with the uniform pore openings facilitating entry of certain molecular structures. It has been found that crystalline alumino-silicate zeolites, having effective pore diameter of about 6 to 15, preferably 8 to 15 angstrom units, when composited with the platinum group metal, and particularly after base exchange to reduce the alkali metal oxide (e.g. Nat-,0) content of thezeolite to less than about 10 wt. preferably less than 2.0%, are effective hydrocracking catalysts.
- the support will also contain at least one amorphous inorganic oxide such as silica,
- Such composite supports preferably contain about 15-45 percent zeolite.
- the catalyst support may be totally amorphous inorganic oxide.
- Suitable such carriers or supports include acidic supports such as: silica-alumina, silica-magnesia, and other well-known cracking catalyst bases; the acidic clays; fluorided alumina; and mixtures of inorganic oxides, such as alumina, silica, zirconia, and titania, having sufficient acidic properties providing high cracking activity.
- each catalyst zone contains an amorphous support and the catalyst in the second zone contains a crystalline zeolite of low alkali metal content in the support.
- Hydrogen is separated from the effluent from the second catalytic zone and if desired may be recycled'to the first catalytic zone with or without purification for the removal of compounds such as hydrogen sulfide and/or ammonia.
- Lower boiling hydrocarbons eg those boiling up to about 525-550 F. are also removed from the second catalytic zone effluent and the balance is subjected to catalytic cracking as is the effluent from the first catalytic stage. Since the effluent from the second catalytic zone or overhead is high in saturates and the effluent from the first catalytic zone or bottoms is high in aromatics, they are subjected to different conditions of catalytic cracking.
- a zeolite cracking catalyst in a fluid catalytic cracking unit comprising a reactor, a regenerator and at least two elongated reaction zones or risers where the reactor contains a dense phase and a dilute phase of the catalyst.
- an FCCU with two risers is employed with the operating conditions in the risers including a temperature of 800-l,l50 F., conversion of 30-80 volume percent and space velocities in the overhead riser and the bottoms riser being 10-100 w/hr/w and 50-200 w/hr/w, respectively.
- the cracking of the overhead and the bottoms is restricted to the risers by discharging the efiluent from both risers into the dilute phase of catalyst in the reactor vessel.
- the reactor vessel in this case is utilized as a disengaging space with substantially no cracking taking place therein.
- the overhead is subjected to both riser and dense phase cracking while the cracking of the bottoms is limited to its riser.
- the effluent from the bottoms riser is discharged into the dilute phase of catalyst, the effluent from the overhead riser is discharged into the dense phase of catalyst and the vaporous reaction mixture from the overhead riser is passed through the dense phase of catalyst under catalytic cracking conditions effecting an additional conversion of 5-30 volume percent with the total per pass conversion of the overhead not exceeding volume percent.
- the conversion in the overhead riser may be lower, equal to or higher than that in the bottoms riser.
- the overhead is subjected only to riser cracking while the bottoms is cracked in both the riser and the dense phase of catalyst.
- the effluent from the overhead riser is discharged directly into the dilute phase of catalyst in the reactor vessel, while the effluent from the bottoms riser is discharged into the dense phase of catalyst and passed through this dense phase under catalytic cracking conditions effecting an additional conversion of 5-30 volume percent.
- the per pass conversion of the bottoms does not exceed 80 volume percent.
- both the overhead and the bottoms are subjected to both riser cracking and dense phase bed cracking by discharging the effluent from both risers into the dense phase of catalyst and passing them therethrough under catalytic cracking conditions to effect an additional conversion of 5-30 percent.
- the total conversion of all oils passing through the catalytic cracking unit does not exceed 80 volume percent.
- the overhead is subjected only to riser cracking and the bottoms is subjected to both riser and dense phase cracking.
- a virgin gas oil may be introduced into the riser with the overhead and the unconverted oil which ordinarily is recycled to the cracking unit is introduced into a separate riser with the bottoms.
- a crude oil is fractionated at atmospheric pressure to produce naphtha, kerosene, atmospheric gas oils and an atmospheric residuum
- the atmospheric residuum is subjected to split flow hydrocracking
- the atmospheric gas oil is subjected to catalytic cracking
- the overhead from the split flow hydrocracking is combined with the atmospheric gas oil as fresh feed to the catalytic cracking zone
- the unconverted feed is combined with the bottoms from the split flow hydrocracking and catalytically cracked under conditions such that the conversion of the lighter material is at least as great as that of the heavier material and may be as much as 30 percent more.
- the catalyst employed in the instant invention comprises a large pore crystalline aluminosilicate customarily referred to as a zeolite and an active metal oxide, as exemplified by silicaalumina gel or clay.
- the zeolites employed as cracking catalysts herein possess ordered rigid three-dimensional structures having uniform pore diameters within the range of from about 5 to about 15 A.
- the crystalline zeolitic catalysts employed herein comprise about 1 to 25 wt. zeolite, about to 50 wt. alumina and the remainder silica.
- zeolites are those known as zeolite X and zeolite Y wherein at least a substantial portion of the original alkali metal ions have been replaced with such cations as hydrogen and/or metal or combination of metals such as barium, calcium, magnesium, manganese or such rare earth metals, for example. cerium, lanthanum, neodymium, praseodymium, samarium and yttrium.
- the overhead and bottoms are introduced into elongated reaction zones which are operated to effect a lower conversion of the bottoms stream.
- a two riser FCCU is employed.
- the operating conditions for both the overhead riser and the bottoms riser include an operating temperature of 800-l,150 F., preferably 840l, 000 F. and a conversion per pass of 30-80 percent, preferably 40-75 percent.
- Other operating conditions within the risers include a residence time of 2-20 seconds, preferably 3-10 seconds and a vapor velocity of -50 ft/sec, preferably -40 ft/sec.
- the space velocity in the overhead riser is 10-100 w/hr/w, preferably 40-90 w/hr/w and the space velocity in the bottoms riser is 50-200 w/hr/w, preferably 75-150 w/hr/w.
- the conversion per pass in the bottoms riser is 0-30 percent lower than the conversion in the overhead riser with the overall conversion in the overhead riser not exceeding 80 volume percent.
- the operating conditions within the dense phase include a temperature of 800-l,150 F., a vapor velocity of 0.5-4 ft/sec. preferably 1.3-2.2 ft/sec and a space velocity of l-40 w/hr/w, preferably 3-25 w/hr/w.
- the vaporout reaction products from a riser which passes through the dense phase of catalyst obtains a further conversion of 5-30 volume percent.
- Another feature of our invention is that by introducing the bottoms product into the catalytic cracking unit, considerably more carbon than usual is introduced into the catalyst bed thereby permitting greater deposition of carbon on the catalyst which in turn permits operation with a regenerated catalyst having a carbon level up to about 4.0 weight percent.
- a regenerated catalyst having a carbon level up to about 4.0 weight percent.
- Another feature of our process is that the more easily cracked feed to the cracking stage can be introduced and reacted separately from the more difficultly cracked material under less severe conditions thereby avoiding overcracking with the undesirable production ofgases obtained in conventional processes where the feed is a single mixture of several streams or where the only difference between two or more feeds lies in the boiling range and not in the type of hydrocarbons in the feeds.
- EXAMPLE I In this example, a South Louisiana reduced crude having an API Gravity of 2 l 1, a sulfur content of 0.48 wt. and a Conradson Carbon Residue of4. 14 wt.% is hydrocracked by being passed downwardly with hydrogen through a bed of pelleted catalyst containing 3.4 wt. N10 and 15.9 wt. Mo 0;, supported on alumina. Reaction conditions and yield data for three runs are tabulated below:
- EXAMPLE 11 In this example the countercurrent split flow technique of the first stage of the process of our invention is employed using the same charge and catalyst as in Example 1. Reaction conditions and yield data for three runs are tabulated below:
- SCFB 234 314 552 Overhead Product Gravity. AP1 34.0 35.2 36.3 Sulfur. Wt. 0.040 0.004 0.003 Overhead Product Dist. F. Vol.
- Example 11 shows the superiority of counter-current split flow hydrocracking over conventional downfiow hydrocracking.
- EXAMPLE III In this example the products from Runs 3 and 6 are catalytically cracked under substantially identical conditions using a cracking catalyst containing 2.0 wt. cerium, 0.93 wt. lanthanum. 18.0 wt. 7: decationized zeolite Y, 0.94 wt. sodium. 34.1 wt. alumina and the balance silica and having a surface area of 329 m /g and a pore volume of 0.72 cc/g. ln Runs 7. 8 and 9 the feeds are the product from Run 3, the overhead from Run 6. and the bottoms from Run 6 respectively. The extent of cracking is shown by the gas chromatographic analysis of the charges and the products appearing in Table 3.
- EXAMPLE IV In this example the overhead and bottoms from Run 6 are introduced separately into a dual riser fluid catalytic cracking unit in which the fresh feed is a gas oil blend and in which 430 F.+ product is recycled.
- the cracking catalyst is the same as that used in Example 111.
- the proportion of feed to the risers is given below as percent of total feed to the unit.
- Riser No. 1 is operated at a temperature of 860 F. and Riser No. 2 at a temperature of 940 F. with substantially all of the cracking taking place in the risers.
- the conversion of 430 F material into 430 F. material in Riser l is 67.0 volume percent and in Riser 2 49.0 percent giving an overall conversion of of 58.0 percent.
- the total yield of debutanized naphtha is 49.2 volume percent basis feed having a Research Octane No. (with 3 cc TEL/gal) of96.5.
- a process for the conversion of a residue-containing petroleum fraction into lighter products which comprises maintaining in a hydrocracking zone a first catalytic zone below and a second catalytic zone above a point of entry into said hydrocracking zone, introducing the residue-containing petroleum fraction through said point of entry into said hydrocracking zone at a temperature between about 600 and 850 F.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10144470A | 1970-12-24 | 1970-12-24 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3671420A true US3671420A (en) | 1972-06-20 |
Family
ID=22284664
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US101444A Expired - Lifetime US3671420A (en) | 1970-12-24 | 1970-12-24 | Conversion of heavy petroleum oils |
Country Status (12)
| Country | Link |
|---|---|
| US (1) | US3671420A (enExample) |
| BE (1) | BE776823A (enExample) |
| BR (1) | BR7108434D0 (enExample) |
| CA (1) | CA960982A (enExample) |
| DE (1) | DE2149370C3 (enExample) |
| ES (1) | ES397401A1 (enExample) |
| FR (1) | FR2118919B1 (enExample) |
| GB (1) | GB1346336A (enExample) |
| IT (1) | IT944220B (enExample) |
| NL (1) | NL7117718A (enExample) |
| SE (1) | SE372035B (enExample) |
| ZA (1) | ZA717670B (enExample) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3869378A (en) * | 1971-11-16 | 1975-03-04 | Sun Oil Co Pennsylvania | Combination cracking process |
| US4859309A (en) * | 1987-11-17 | 1989-08-22 | Shell Oil Company | Process for the preparation of light hydrocarbon distillates by hydrocracking and catalytic cracking |
| US4990242A (en) * | 1989-06-14 | 1991-02-05 | Exxon Research And Engineering Company | Enhanced sulfur removal from fuels |
| US5961815A (en) * | 1995-08-28 | 1999-10-05 | Catalytic Distillation Technologies | Hydroconversion process |
| US6241952B1 (en) | 1997-09-26 | 2001-06-05 | Exxon Research And Engineering Company | Countercurrent reactor with interstage stripping of NH3 and H2S in gas/liquid contacting zones |
| US6495029B1 (en) | 1997-08-22 | 2002-12-17 | Exxon Research And Engineering Company | Countercurrent desulfurization process for refractory organosulfur heterocycles |
| US6497810B1 (en) | 1998-12-07 | 2002-12-24 | Larry L. Laccino | Countercurrent hydroprocessing with feedstream quench to control temperature |
| US6569314B1 (en) | 1998-12-07 | 2003-05-27 | Exxonmobil Research And Engineering Company | Countercurrent hydroprocessing with trickle bed processing of vapor product stream |
| US6579443B1 (en) | 1998-12-07 | 2003-06-17 | Exxonmobil Research And Engineering Company | Countercurrent hydroprocessing with treatment of feedstream to remove particulates and foulant precursors |
| US6623621B1 (en) | 1998-12-07 | 2003-09-23 | Exxonmobil Research And Engineering Company | Control of flooding in a countercurrent flow reactor by use of temperature of liquid product stream |
| US20040085154A1 (en) * | 2001-07-09 | 2004-05-06 | Stark Donald C. | Methods for bi-directional signaling |
| US6835301B1 (en) | 1998-12-08 | 2004-12-28 | Exxon Research And Engineering Company | Production of low sulfur/low aromatics distillates |
| US20050077635A1 (en) * | 2003-08-18 | 2005-04-14 | Van Hasselt Bastiaan Willem | Distribution device |
| EP1631384A1 (en) * | 2003-06-05 | 2006-03-08 | Innovene Europe Limited | Catalyst and process for the production of olefins |
| US20100314290A1 (en) * | 2009-06-10 | 2010-12-16 | Co2 Solutions Llc | Fluid catalytic cracking process including flue gas conversion process |
| US20220062845A1 (en) * | 2018-12-19 | 2022-03-03 | IFP Energies Nouvelles | Conversion of a crude oil in a fluidised bed comprising zones with different contact times |
| US12012556B2 (en) | 2019-08-05 | 2024-06-18 | Sabic Global Technologies B.V. | Dense phase riser to maximize light olefins yields for naphtha catalytic cracking |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4040979A (en) * | 1976-02-23 | 1977-08-09 | Uop Inc. | Hydrocarbon conversion catalytic composite |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3098029A (en) * | 1959-07-22 | 1963-07-16 | Socony Mobil Oil Co Inc | Combination catalytic crackinghydroprocessing operation |
| US3186935A (en) * | 1962-01-30 | 1965-06-01 | Union Oil Co | Hydrogenation process and apparatus |
| US3211641A (en) * | 1962-04-11 | 1965-10-12 | Socony Mobil Oil Co Inc | Gas-liquid reactions and apparatus therefor, for the hydrogenation and hydrocrackingof hydrocarbons |
| US3448037A (en) * | 1968-06-18 | 1969-06-03 | Dorrance P Bunn Jr | Cracking with crystalline zeolite catalyst |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3607723A (en) * | 1969-03-28 | 1971-09-21 | Texaco Inc | Split flow hydrocracking process |
-
1970
- 1970-12-24 US US101444A patent/US3671420A/en not_active Expired - Lifetime
-
1971
- 1971-07-08 CA CA117,778A patent/CA960982A/en not_active Expired
- 1971-10-02 DE DE2149370A patent/DE2149370C3/de not_active Expired
- 1971-11-15 ZA ZA717670A patent/ZA717670B/xx unknown
- 1971-11-16 GB GB5307171A patent/GB1346336A/en not_active Expired
- 1971-11-26 ES ES397401A patent/ES397401A1/es not_active Expired
- 1971-12-15 FR FR7145004A patent/FR2118919B1/fr not_active Expired
- 1971-12-16 BE BE776823A patent/BE776823A/xx unknown
- 1971-12-20 SE SE7116358A patent/SE372035B/xx unknown
- 1971-12-20 BR BR8434/71A patent/BR7108434D0/pt unknown
- 1971-12-22 IT IT32736/71A patent/IT944220B/it active
- 1971-12-23 NL NL7117718A patent/NL7117718A/xx unknown
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3098029A (en) * | 1959-07-22 | 1963-07-16 | Socony Mobil Oil Co Inc | Combination catalytic crackinghydroprocessing operation |
| US3186935A (en) * | 1962-01-30 | 1965-06-01 | Union Oil Co | Hydrogenation process and apparatus |
| US3211641A (en) * | 1962-04-11 | 1965-10-12 | Socony Mobil Oil Co Inc | Gas-liquid reactions and apparatus therefor, for the hydrogenation and hydrocrackingof hydrocarbons |
| US3448037A (en) * | 1968-06-18 | 1969-06-03 | Dorrance P Bunn Jr | Cracking with crystalline zeolite catalyst |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3869378A (en) * | 1971-11-16 | 1975-03-04 | Sun Oil Co Pennsylvania | Combination cracking process |
| US4859309A (en) * | 1987-11-17 | 1989-08-22 | Shell Oil Company | Process for the preparation of light hydrocarbon distillates by hydrocracking and catalytic cracking |
| US4990242A (en) * | 1989-06-14 | 1991-02-05 | Exxon Research And Engineering Company | Enhanced sulfur removal from fuels |
| US5961815A (en) * | 1995-08-28 | 1999-10-05 | Catalytic Distillation Technologies | Hydroconversion process |
| US6495029B1 (en) | 1997-08-22 | 2002-12-17 | Exxon Research And Engineering Company | Countercurrent desulfurization process for refractory organosulfur heterocycles |
| US6241952B1 (en) | 1997-09-26 | 2001-06-05 | Exxon Research And Engineering Company | Countercurrent reactor with interstage stripping of NH3 and H2S in gas/liquid contacting zones |
| US6497810B1 (en) | 1998-12-07 | 2002-12-24 | Larry L. Laccino | Countercurrent hydroprocessing with feedstream quench to control temperature |
| US6569314B1 (en) | 1998-12-07 | 2003-05-27 | Exxonmobil Research And Engineering Company | Countercurrent hydroprocessing with trickle bed processing of vapor product stream |
| US6579443B1 (en) | 1998-12-07 | 2003-06-17 | Exxonmobil Research And Engineering Company | Countercurrent hydroprocessing with treatment of feedstream to remove particulates and foulant precursors |
| US6623621B1 (en) | 1998-12-07 | 2003-09-23 | Exxonmobil Research And Engineering Company | Control of flooding in a countercurrent flow reactor by use of temperature of liquid product stream |
| US6835301B1 (en) | 1998-12-08 | 2004-12-28 | Exxon Research And Engineering Company | Production of low sulfur/low aromatics distillates |
| US20040085154A1 (en) * | 2001-07-09 | 2004-05-06 | Stark Donald C. | Methods for bi-directional signaling |
| EP1631384A1 (en) * | 2003-06-05 | 2006-03-08 | Innovene Europe Limited | Catalyst and process for the production of olefins |
| US20050077635A1 (en) * | 2003-08-18 | 2005-04-14 | Van Hasselt Bastiaan Willem | Distribution device |
| US7452516B2 (en) | 2003-08-18 | 2008-11-18 | Shell Oil Company | Distribution device |
| US20100314290A1 (en) * | 2009-06-10 | 2010-12-16 | Co2 Solutions Llc | Fluid catalytic cracking process including flue gas conversion process |
| WO2010144191A3 (en) * | 2009-06-10 | 2014-03-20 | Co2 Solutions Llc | Fluid catalytic cracking process including flue gas conversion process |
| US20220062845A1 (en) * | 2018-12-19 | 2022-03-03 | IFP Energies Nouvelles | Conversion of a crude oil in a fluidised bed comprising zones with different contact times |
| US11839872B2 (en) * | 2018-12-19 | 2023-12-12 | IFP Energies Nouvelles | Conversion of a crude oil in a fluidized bed comprising zones with different contact times |
| US12012556B2 (en) | 2019-08-05 | 2024-06-18 | Sabic Global Technologies B.V. | Dense phase riser to maximize light olefins yields for naphtha catalytic cracking |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1346336A (en) | 1974-02-06 |
| FR2118919A1 (enExample) | 1972-08-04 |
| FR2118919B1 (enExample) | 1975-08-29 |
| SE372035B (sv) | 1974-12-09 |
| BR7108434D0 (pt) | 1973-05-03 |
| IT944220B (it) | 1973-04-20 |
| NL7117718A (enExample) | 1972-06-27 |
| ES397401A1 (es) | 1974-06-01 |
| CA960982A (en) | 1975-01-14 |
| DE2149370A1 (de) | 1972-07-13 |
| DE2149370B2 (de) | 1977-09-22 |
| AU3634671A (en) | 1973-06-07 |
| DE2149370C3 (de) | 1978-05-24 |
| BE776823A (fr) | 1972-06-16 |
| ZA717670B (en) | 1973-03-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3671420A (en) | Conversion of heavy petroleum oils | |
| US3297563A (en) | Treatment of heavy oils in two stages of hydrotreating | |
| US4585545A (en) | Process for the production of aromatic fuel | |
| US3159568A (en) | Low pressure hydrocracking process with hydrofining of feed | |
| US5980730A (en) | Process for converting a heavy hydrocarbon fraction using an ebullated bed hydrodemetallization catalyst | |
| US3779897A (en) | Hydrotreating-hydrocracking process for manufacturing gasoline range hydrocarbons | |
| JP2002534559A (ja) | 統合された段階的接触分解方法と段階的水素処理方法 | |
| US3072560A (en) | Conversion of residual oil to gasoline | |
| JPH11189777A (ja) | 移動床式水素化変換工程と水素化処理工程とを含む石油重留分変換法 | |
| US3993556A (en) | Method of catalytic cracking of hydrocarbons | |
| US5770043A (en) | Integrated staged catalytic cracking and hydroprocessing process | |
| US4218306A (en) | Method for catalytic cracking heavy oils | |
| EP4219664A1 (en) | Method and device for producing low-carbon olefins and btx by catalytically cracking hydrocarbon-containing raw oil | |
| US3728251A (en) | Gasoline manufacture by hydrorefining,hydrocracking and catalytic cracking of heavy feedstock | |
| US5770044A (en) | Integrated staged catalytic cracking and hydroprocessing process (JHT-9614) | |
| US3238118A (en) | Conversion of hydrocarbons in the presence of a hydrogenated donor diluent | |
| RU2547152C2 (ru) | Способ каталитической конверсии с увеличенным выходом дизельного топлива с высоким цетановым числом | |
| US3843508A (en) | Split flow hydrodesulfurization and catalytic cracking of residue-containing petroleum fraction | |
| US2467920A (en) | Production of gasoline | |
| US3801495A (en) | Integrated process combining catalytic cracking with hydrotreating | |
| US3799864A (en) | Fluid catalytic cracking process | |
| JP2003027071A (ja) | 2原料油の同時水素処理方法 | |
| US3506568A (en) | Process of hydrofining high nitrogen hydrocarbons followed by catalytic cracking with zeolitic aluminosilicates | |
| US3536609A (en) | Gasoline producing process | |
| US3420768A (en) | Middle distillate hydrogen treating processes |