US3668083A - Process of electroplating rhenium and bath for this process - Google Patents

Process of electroplating rhenium and bath for this process Download PDF

Info

Publication number
US3668083A
US3668083A US84505A US3668083DA US3668083A US 3668083 A US3668083 A US 3668083A US 84505 A US84505 A US 84505A US 3668083D A US3668083D A US 3668083DA US 3668083 A US3668083 A US 3668083A
Authority
US
United States
Prior art keywords
bath
rhenium
group
addition
sulfuric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US84505A
Inventor
Andre Meyer
Donald Gardner Foulke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMI International Corp
Sel Rex Corp
Original Assignee
Sel Rex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sel Rex Corp filed Critical Sel Rex Corp
Application granted granted Critical
Publication of US3668083A publication Critical patent/US3668083A/en
Assigned to HOOKER CHEMICALS & PLASTICS CORP. reassignment HOOKER CHEMICALS & PLASTICS CORP. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: OXY METAL INDUSTRIES CORPORATION
Assigned to OCCIDENTAL CHEMICAL CORPORATION reassignment OCCIDENTAL CHEMICAL CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE MARCH 30, 1982. Assignors: HOOKER CHEMICAS & PLASTICS CORP.
Assigned to OMI INTERNATIONAL CORPORATION reassignment OMI INTERNATIONAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: OCCIDENTAL CHEMICAL CORPORATION
Assigned to MANUFACTURERS HANOVER TRUST COMPANY, A CORP OF reassignment MANUFACTURERS HANOVER TRUST COMPANY, A CORP OF SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL CORPORATION, A CORP OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50

Definitions

  • ABSTRACT Primary Examiner-G. L. Kaplan Attorney-Greene & Durr [57] ABSTRACT
  • the invention relates to a bath for electrodepositing low-stress rhenium and its alloys of the perrhenate type and is characterized by the addition of ions which make up one or more of the following salts: magnesium sulfate, magnesium sulfamate, aluminum sulfate and aluminum sulfamate.
  • the invention also relates to the process of electroplating from said bath.
  • the present invention relates to a method for the electrodeposition of rhenium and to a bath for carrying out this method.
  • Rhenium has manyinteresting properties. Its melting point is 3,] 80 C., its oxide is conductive and this metal is very hard and has a high density as well as good'reflectivity. These properties suggest its use under suitable high temperature conditions, for switching devices, as a protecting material against radiations and as a thennal shield. Rhenium has been plated for more than thirty years. However, the baths described in the literature give in general brittle'deposits, many cannot be used for heavy deposits and have efficiencies of under percent.
  • the object of the present invention is to provide a method and an electrolytic bath for the deposition of rhenium to heavy thicknesses at a good efficiency.
  • A- second object of the invention is to permit the deposition of the rhenium in a lowstressed ductile condition.
  • The'method is characterized by the fact that one uses a bath containing rhenium as the perrhenate ion and a salt selected from the group comprising magnesium sulfate, magnesium sulfamate, aluminum sulfate and aluminum sulfamate.
  • the bath according to the invention is characterized by the fact that it contains rhenium as the perrhenate ion and a-salt selected from the group comprising magnesium sulfate, magnesium sulfamate, aluminum sulfate and aluminum sulfamate.
  • the deposits are adherent, smooth and fully bright. Satisfactory deposits have been obtained on many basis metals. Where the high acidity attacks the basis metal, it should be plated first with nickel. In order to prevent contamination of the bath, the use of a gold strike, prior to the rhenium plating step, has been found helpful.
  • a typical bath in grams per liter, is the following:
  • Potassium Pcrrhenate KReO. 10 g/l Sulfuric acid (H 800 30 ml/l Magnesium sulfate (MgSO -7H O) 25 gll CONDITIONS.
  • EXAMPLE 2 The substitution of 25 gll of magnesium sulfamate for the magnesium sulfate in the typical bath described above yielded deposits which appear to be even less stressed on the basis of a qualitative test, so it appears that the magnesium ion is the effective agent, but that the anion also has an effect. The deposits were bright and adherent to the nickel basis metal provided with a gold-strike.
  • the amount of rhenium added as the perrhenate ion is not limited to 10 gll as' 'given in the example. This may be varied from 2 g/l to 50 g/l. For cost reasons, the concentration of rhenium is usually from 10 to l5 gll.
  • the amount of magnesium salt required is not critical in that it can be varied over a wide range. However, it appears that the lower limit at which the salt is effective is about 5 g/l and that quantities above 50 g/l do not produce any improvement. However, the scope of the invention is not limited to the higher value mentioned, because amounts of magnesium salt up to saturation can be used.
  • Examples 1 and 2 indicate the simplest formulation, i.e., a solution containing the perrhenate ion and; magnesium sulfate with the pH lowered to l or 2 with sulfuric and sulfamic acids respectively. The amount of acid is conveniently 2 to 25 g/l,
  • nickel coating itself should be goldflashed .tominimize the contamination of the bath by nickel impurities. Of course, when plating rhenium-nickel alloys, this is not necessary.
  • Rhenium (as potassium perrhenate) Deposits obtainedfrom the above bath at 60 C. and at Amp/dm were bright and ductile.
  • the plating rate was 2.78 mg/Ampere-minute while the rate '-for the standard bath, containing neither the perchlorate nor the magnesium sulfate, is of the 1.2 mg/Ampere-minute.
  • Adding the magnesium sulfate only, but notthe perchlorate as in Example 3 increased the rate of 1.5 mg/Ampere-minute. The addition of the perchlorate improved this rate by more than 80 percent,
  • Example 7 To the bath described in Example 5 were added 20 g/l of nickel sulfate. The deposit was bright and rather ductile, differin'g in color from that of Example 5, indicating the formation of a rhenium-nickel alloy. The plating conditions were the same as for Example 5.
  • An aqueous electroplating bath for the electrodeposition of low-stress deposits of rheniumand its alloys comprising from 2 to grams of rhenium as the perrhenate ion per liter of bath, and the ions from at least one salt selected from the group consisting magnesium sulfamate, aluminum sulfate, and aluminum sulfamate, the concentration of said salt ranging from about 5 grams per liter of bath up to its saturation concentration, said bath being maintained at a pH of less than 10.
  • aqueous electroplating bath of claim 1 comprising in addition at least one conducting salt selected from the group consisting of alkali metal and ammonium salts of sulfuric, sulfamic and perchloric acids.
  • aqueous electroplating bath of claim 1 comprising in addition free acid selected from the group consisting of perchloric, sulfuric and sulfamic acids.
  • the aqueous electroplating bath of claim 1 comprising, in addition to the perrhenate ions, ions of an electrodepositable metal, added as a soluble salt of the metal. 5. The aqueous electroplating bath of claim 1 wherein the bath is maintained at a pH of l to 2. 1
  • a method of electrodepositing rhenium and its alloys which comprises electrolyzing, at a current density of 2 to 30 amp/dm measured at the cathode, an aqueous bath comprising from 2 to 50 grams of rhenium as the perrhenate ion per liter of bath and at least one salt selected from the group consisting of magnesium sulfate, magnesium sulfamate, aluminum sulfate and aluminum sulfamate, the concentration of said salt ranging from about 5 grams per liter of bath up to its saturation concentration, said bath being maintained at a pH of less than 10.
  • said bath contains at least one conducting salt selected from the group consisting of alkali metal and ammonium salts of sulfuric, sulfamic and perchloric acids.
  • said bath contains, in addition to the perrhenate ion, at least one ion of a metal which is codeposited with the rhenium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The invention relates to a bath for electrodepositing low-stress rhenium and its alloys of the perrhenate type and is characterized by the addition of ions which make up one or more of the following salts: magnesium sulfate, magnesium sulfamate, aluminum sulfate and aluminum sulfamate. The invention also relates to the process of electroplating from said bath.

Description

United States Patent Meyer et al.
PROCESS OF ELECTROPLATING RHENIUM AND BATH FOR THIS PROCESS Inventors:
Donald Gardner Foulke, Passaic, N .J
Assignee: Sel-Rex Corporation, Nutley, NJ. Filed; Oct. 27, 1970 Appl. No.1 84,505
Related U.S. Application Data Continuation of Ser. No; 739,165, June 24, 1926, abandoned.
Foreign Application Priority Data July 3, 1967 Switzerland ..9470/67 us. 01 .Q ..204/43, 204/47 Int. Cl. ..cz3b 5/32,C23b 5/24 Andre Meyer, Geneva, Switzerland;v
[ 'June 6, 1972 Eldridge K. Camp, Plating, pp. 413- 416, May 1965.
Primary Examiner-G. L. Kaplan Attorney-Greene & Durr [57] ABSTRACT The invention relates to a bath for electrodepositing low-stress rhenium and its alloys of the perrhenate type and is characterized by the addition of ions which make up one or more of the following salts: magnesium sulfate, magnesium sulfamate, aluminum sulfate and aluminum sulfamate. The invention also relates to the process of electroplating from said bath.
10 Claims, No Drawings PROCESS OF ELECTROPLATING RHENIUM AND BATH FOR THIS PROCESS;
This application is a continuation of our U.S. Pat. application, Ser. No. 739,165, filed June 24, 1968 and now abandoned.
The present invention relates to a method for the electrodeposition of rhenium and to a bath for carrying out this method. v
Rhenium has manyinteresting properties. Its melting point is 3,] 80 C., its oxide is conductive and this metal is very hard and has a high density as well as good'reflectivity. These properties suggest its use under suitable high temperature conditions, for switching devices, as a protecting material against radiations and as a thennal shield. Rhenium has been plated for more than thirty years. However, the baths described in the literature give in general brittle'deposits, many cannot be used for heavy deposits and have efficiencies of under percent.
Many formulations for rhenium plating baths have been disclosed in the literature, all of which comprise the use of solutions containing perrhenate ions, ReO...
The object of the present invention is to provide a method and an electrolytic bath for the deposition of rhenium to heavy thicknesses at a good efficiency. A- second object of the invention is to permit the deposition of the rhenium in a lowstressed ductile condition.
The'method, according to the invention, is characterized by the fact that one uses a bath containing rhenium as the perrhenate ion and a salt selected from the group comprising magnesium sulfate, magnesium sulfamate, aluminum sulfate and aluminum sulfamate.
The bath according to the invention is characterized by the fact that it contains rhenium as the perrhenate ion and a-salt selected from the group comprising magnesium sulfate, magnesium sulfamate, aluminum sulfate and aluminum sulfamate.
It has been ascertained that the addition of magnesium sulfate and magnesium sulfamate to a bath containing the perrhenate ion adjusted to a pH value of less than 10 will produce thick, low-stressed deposits. Furthermore, the bath efiiciency, although still rather low, is of the order of 12 to 13 percent of the theoretical. When the pH is raised above 2, the efiiciency beings to fall ofi', so that a pH range of l to 2 is preferable. The pH .may. be reduced with sulfuric or a phosphoric acid. Hydrochloric acid is' not advisable because chlorides are detrimental. It is the magnesium ion which is effective but, obviously, magnesium oxide and carbonate can be added because they will be converted to sulfate or sulfamate in the solution.
The deposits are adherent, smooth and fully bright. Satisfactory deposits have been obtained on many basis metals. Where the high acidity attacks the basis metal, it should be plated first with nickel. In order to prevent contamination of the bath, the use of a gold strike, prior to the rhenium plating step, has been found helpful.
A typical bath, in grams per liter, is the following:
Potassium Pcrrhenate KReO.) 10 g/l Sulfuric acid (H 800 30 ml/l Magnesium sulfate (MgSO -7H O) 25 gll CONDITIONS.
pH: l.0
Current density: 10 Amp/dm Temperature: 60 (20 to 95C) EXAMPLE I vcodeposited with rhenium.
in that the efficiency is good and the evaporation of the solution is not excessive. 7
EXAMPLE 2 The substitution of 25 gll of magnesium sulfamate for the magnesium sulfate in the typical bath described above yielded deposits which appear to be even less stressed on the basis of a qualitative test, so it appears that the magnesium ion is the effective agent, but that the anion also has an effect. The deposits were bright and adherent to the nickel basis metal provided with a gold-strike. The amount of rhenium added as the perrhenate ion is not limited to 10 gll as' 'given in the example. This may be varied from 2 g/l to 50 g/l. For cost reasons, the concentration of rhenium is usually from 10 to l5 gll.
The amount of magnesium salt required is not critical in that it can be varied over a wide range. However, it appears that the lower limit at which the salt is effective is about 5 g/l and that quantities above 50 g/l do not produce any improvement. However, the scope of the invention is not limited to the higher value mentioned, because amounts of magnesium salt up to saturation can be used.
ltis possible to add metallic ions to the magnesium-containing perrhenate solution and to obtain alloys which, likewise, exhibit low stress. Nickel, cobalt, indium and gold have been EXAMPLE 3 Examples 1 and 2 indicate the simplest formulation, i.e., a solution containing the perrhenate ion and; magnesium sulfate with the pH lowered to l or 2 with sulfuric and sulfamic acids respectively.The amount of acid is conveniently 2 to 25 g/l,
but these data are not critical. It is sometimes helpful to add to the simple solutions conducting salts such as ammonium sulfate or sulfamate. A typical formula is as follows:
Potassium perrhenate l0 gll Sulfuric acid 10 gll Ammonium sulfate 25 gll Magnesium sulfate 25 g/l CONDITIONS: I pl-I: .2
- Cur-rent densityz, l2 Amp/dm Temperature: 65C
Deposits obtained from this bath were bright and hard and the current density efficiency was 10 percent.
It has been moreover discovered that a bath containing the perrhenate ion along with magnesium sulfate and/or sulfamate along with the perchlorate ion will produce thick, low-stressed deposits at a plating rate of almost 3 mg/Ampere-minute. These baths are more efiicient at a pH of 1 to 2 but are operav previously obtained. Since the bath is normally quite acid, it is advisable to preplate acid-soluble basis metals'with-nickel, the
nickel coating itself should be goldflashed .tominimize the contamination of the bath by nickel impurities. Of course, when plating rhenium-nickel alloys, this is not necessary.
EXAMPLE 5 A bath was prepared containing:
Rhenium (as potassium perrhenate) Deposits obtainedfrom the above bath at 60 C. and at Amp/dm were bright and ductile. The plating rate was 2.78 mg/Ampere-minute while the rate '-for the standard bath, containing neither the perchlorate nor the magnesium sulfate, is of the 1.2 mg/Ampere-minute. Adding the magnesium sulfate only, but notthe perchlorate as in Example 3, increased the rate of 1.5 mg/Ampere-minute. The addition of the perchlorate improved this rate by more than 80 percent,
bringing it tothe above mentioned figure of 2.78 mg/Ampereminute, the depositing having moreover a brighter ap I At 10 Amp/dr'n and60 C. bright deposits were obtained from this bath, at the rate of 2.47 mg/Ampere-minute.
EXAMPLE 7 To the bath described in Example 5 were added 20 g/l of nickel sulfate. The deposit was bright and rather ductile, differin'g in color from that of Example 5, indicating the formation of a rhenium-nickel alloy. The plating conditions were the same as for Example 5.
EXAMPLE 8 To the bath of Example 6 were added 10 g/l of cobalt sulfate and, as in this example, a bright alloy deposit was obtained.
The. features and principles underlying the invention described above in connection with specific exemplifications will suggest to those skilled in the art many other modifications thereof. It is accordingly desired that the appended claims shall not be limited to any specific feature or details thereof.
We claim: 1
1. An aqueous electroplating bath for the electrodeposition of low-stress deposits of rheniumand its alloys comprising from 2 to grams of rhenium as the perrhenate ion per liter of bath, and the ions from at least one salt selected from the group consisting magnesium sulfamate, aluminum sulfate, and aluminum sulfamate, the concentration of said salt ranging from about 5 grams per liter of bath up to its saturation concentration, said bath being maintained at a pH of less than 10.
2. The aqueous electroplating bath of claim 1 comprising in addition at least one conducting salt selected from the group consisting of alkali metal and ammonium salts of sulfuric, sulfamic and perchloric acids. 1
3. The aqueous electroplating bath of claim 1 comprising in addition free acid selected from the group consisting of perchloric, sulfuric and sulfamic acids. v v
4. The aqueous electroplating bath of claim 1 comprising, in addition to the perrhenate ions, ions of an electrodepositable metal, added as a soluble salt of the metal. 5. The aqueous electroplating bath of claim 1 wherein the bath is maintained at a pH of l to 2. 1
6. A method of electrodepositing rhenium and its alloys which comprises electrolyzing, at a current density of 2 to 30 amp/dm measured at the cathode, an aqueous bath comprising from 2 to 50 grams of rhenium as the perrhenate ion per liter of bath and at least one salt selected from the group consisting of magnesium sulfate, magnesium sulfamate, aluminum sulfate and aluminum sulfamate, the concentration of said salt ranging from about 5 grams per liter of bath up to its saturation concentration, said bath being maintained at a pH of less than 10.
7. The method of claim 6 wherein said bath contains at least one conducting salt selected from the group consisting of alkali metal and ammonium salts of sulfuric, sulfamic and perchloric acids.
8. The method of claim 6 whereinsaid bath contains in addition free acid selected from the group consisting of perchloric, sulfuric and sulfamic acids.
9. The method as claimed in claim 6 wherein said bath contains, in addition to the perrhenate ion, at least one ion of a metal which is codeposited with the rhenium.
10. The method of claim 6 wherein the bath is maintained at a pH of l to 2.

Claims (9)

  1. 2. The aqueous electroplating bath of claim 1 comprising in addition at least one conducting salt selected from the group consisting of alkali metal and ammonium salts of sulfuric, sulfamic and perchloric acids.
  2. 3. The aqueous electroplating bath of claim 1 comprising in addition free acid selected from the group consisting of perchloric, sulfuric and sulfamic acids.
  3. 4. The aqueous electroplating bath of claim 1 comprising, in addition to the perrhenate ions, ions of an electrodepositable metal, added as a soluble salt of the metal.
  4. 5. The aqueous electroplating bath of claim 1 wherein the bath is maintained at a pH of 1 to 2.
  5. 6. A method of electrodepositing rhenium and its alloys which comprises electrolyzing, at a current density of 2 to 30 amp/dm2 measured at the cathode, an aqueous bath comprising from 2 to 50 grams of rhenium as the perrhenate ion per liter of bath and at least one salt selected from the group consisting of magnesium sulfate, magnesium sulfamate, aluminum sulfate and aluminum sulfamate, the concentration of said salt ranging from about 5 grams per liter of bath up to its saturation concentration, said bath being maintained at a pH of less than 10.
  6. 7. The method of claim 6 wherein said bath contains at least one conducting salt selected from the group consisting of alkali metal and ammonium salts of sulfuric, sulfamic and perchloric acids.
  7. 8. The method of claim 6 wherein said bath contains in addition free acid selected from the group consisting of perchloric, sulfuric and sulfamic acids.
  8. 9. The method as claimed in claim 6 wherein said bath contains, in addition to the perrhenate ion, at least one ion of a metal which is codeposited with the rhenium.
  9. 10. The method of claim 6 wherein the bath is maintained at a pH of 1 to 2.
US84505A 1967-07-03 1970-10-27 Process of electroplating rhenium and bath for this process Expired - Lifetime US3668083A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH947067A CH467340A (en) 1967-07-03 1967-07-03 Rhenium electrolytic plating process and bath for implementing this process

Publications (1)

Publication Number Publication Date
US3668083A true US3668083A (en) 1972-06-06

Family

ID=4352326

Family Applications (1)

Application Number Title Priority Date Filing Date
US84505A Expired - Lifetime US3668083A (en) 1967-07-03 1970-10-27 Process of electroplating rhenium and bath for this process

Country Status (5)

Country Link
US (1) US3668083A (en)
CH (1) CH467340A (en)
DE (2) DE1771734A1 (en)
FR (1) FR1573421A (en)
GB (1) GB1222562A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1132499A2 (en) * 2000-03-07 2001-09-12 Ebara Corporation Alloy coating, method for forming the same, and member for high temperature apparatuses
WO2003062501A1 (en) * 2002-01-18 2003-07-31 Japan Science And Technology Agency METHOD FOR FORMING Re ALLOY COATING FILM HAVING HIGH Re CONTENT THROUGH ELECTROPLATING
WO2003062502A1 (en) * 2002-01-18 2003-07-31 Japan Science And Technology Agency METHOD FOR FORMING Re-Cr ALLOY COATING FILM THROUGH ELECTROPLATING USING Cr(IV)-CONTAINING BATH
WO2003062500A1 (en) * 2002-01-18 2003-07-31 Japan Science And Technology Agency METHOD FOR FORMING Re COATING FILM OR Re-Cr ALLOY COATING FILM THROUGH ELECTROPLATING
CN101899693A (en) * 2010-07-30 2010-12-01 安徽华东光电技术研究所 Method for locally plating rhenium on oxygen-free copper matrix
EP2610371A1 (en) 2011-12-27 2013-07-03 Instytut Metali Niezelaznych Method of preparing rhenium - nickel alloys
US8863720B2 (en) 2011-10-31 2014-10-21 Federal-Mogul Corporation Coated piston and a method of making a coated piston

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942066B2 (en) * 1975-10-24 1984-10-12 日本電気株式会社 Rhenium-cobalt alloy contacts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260658A (en) * 1962-10-31 1966-07-12 Philip E Churchward Process for the recovery of rhenium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260658A (en) * 1962-10-31 1966-07-12 Philip E Churchward Process for the recovery of rhenium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Eldridge K. Camp, Plating, pp. 413 416, May 1965. *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1132499A3 (en) * 2000-03-07 2004-02-25 Ebara Corporation Alloy coating, method for forming the same, and member for high temperature apparatuses
US20010026877A1 (en) * 2000-03-07 2001-10-04 Ebara Corporation Alloy coating, method for forming the same, and member for high temperature apparatuses
EP1132499A2 (en) * 2000-03-07 2001-09-12 Ebara Corporation Alloy coating, method for forming the same, and member for high temperature apparatuses
US6899926B2 (en) 2000-03-07 2005-05-31 Ebara Corporation Alloy coating, method for forming the same, and member for high temperature apparatuses
US20050079089A1 (en) * 2000-03-07 2005-04-14 Ebara Corporation Alloy coating, method for forming the same, and member for high temperature apparatuses
US20050126922A1 (en) * 2002-01-18 2005-06-16 Toshio Narita Method for forming re coating film or re-cr alloy coating film through electroplating
WO2003062500A1 (en) * 2002-01-18 2003-07-31 Japan Science And Technology Agency METHOD FOR FORMING Re COATING FILM OR Re-Cr ALLOY COATING FILM THROUGH ELECTROPLATING
WO2003062502A1 (en) * 2002-01-18 2003-07-31 Japan Science And Technology Agency METHOD FOR FORMING Re-Cr ALLOY COATING FILM THROUGH ELECTROPLATING USING Cr(IV)-CONTAINING BATH
WO2003062501A1 (en) * 2002-01-18 2003-07-31 Japan Science And Technology Agency METHOD FOR FORMING Re ALLOY COATING FILM HAVING HIGH Re CONTENT THROUGH ELECTROPLATING
US20050167282A1 (en) * 2002-01-18 2005-08-04 Toshio Narita Method for forming Re-Cr alloy film through electroplating process using bath containing Cr(VI)
US20050189230A1 (en) * 2002-01-18 2005-09-01 Toshio Narita Method for forming re alloy coating film having high re content through electroplating
US6979392B2 (en) 2002-01-18 2005-12-27 Japan Science And Technology Agency Method for forming Re—Cr alloy film or Re-based film through electroplating process
US6998035B2 (en) 2002-01-18 2006-02-14 Japan Science And Technology Agency Method for forming Re-Cr alloy film through electroplating process using bath containing Cr(VI)
US7368048B2 (en) 2002-01-18 2008-05-06 Japan Science And Technology Agency Method for forming Re alloy coating film having high-Re-content through electroplating
CN101899693A (en) * 2010-07-30 2010-12-01 安徽华东光电技术研究所 Method for locally plating rhenium on oxygen-free copper matrix
US8863720B2 (en) 2011-10-31 2014-10-21 Federal-Mogul Corporation Coated piston and a method of making a coated piston
EP2610371A1 (en) 2011-12-27 2013-07-03 Instytut Metali Niezelaznych Method of preparing rhenium - nickel alloys

Also Published As

Publication number Publication date
FR1573421A (en) 1969-07-04
GB1222562A (en) 1971-02-17
DE1771763A1 (en)
CH467340A (en) 1969-01-15
DE1771734A1 (en) 1972-01-13

Similar Documents

Publication Publication Date Title
US3580820A (en) Palladium-nickel alloy plating bath
US3354059A (en) Electrodeposition of nickel-iron magnetic alloy films
US3668083A (en) Process of electroplating rhenium and bath for this process
US3764489A (en) Electrodeposition of gold alloys
US3544435A (en) Electrodeposition of palladium
US4617096A (en) Bath and process for the electrolytic deposition of gold-indium alloys
US3793162A (en) Electrodeposition of ruthenium
US1969553A (en) Electrolyte for the deposition of
US4069113A (en) Electroplating gold alloys and electrolytes therefor
US2146439A (en) Zinc plating
US4487665A (en) Electroplating bath and process for white palladium
US2435967A (en) Bright alloy plating
US4048023A (en) Electrodeposition of gold-palladium alloys
US4082625A (en) Electrodeposition of ruthenium
US3093556A (en) Electro-depositing stainless steel coatings on metal surfaces
US2497988A (en) Indium plating
US4155817A (en) Low free cyanide high purity silver electroplating bath and method
US2793990A (en) Electrodeposition of alloys containing copper and tin
US2577365A (en) Rhodium plating
US3206382A (en) Electrodeposition of platinum or palladium
US4297179A (en) Palladium electroplating bath and process
US2442628A (en) Recovery of nickel from idle nickel electroplating baths and the production of an iron-nickel master alloy
US2461933A (en) Rhodium alloy coatings and method of making same
US4411744A (en) Bath and process for high speed nickel electroplating
US3630856A (en) Electrodeposition of ruthenium

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOOKER CHEMICALS & PLASTICS CORP.

Free format text: MERGER;ASSIGNOR:OXY METAL INDUSTRIES CORPORATION;REEL/FRAME:004075/0885

Effective date: 19801222

AS Assignment

Owner name: OCCIDENTAL CHEMICAL CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:HOOKER CHEMICAS & PLASTICS CORP.;REEL/FRAME:004126/0054

Effective date: 19820330

AS Assignment

Owner name: OMI INTERNATIONAL CORPORATION, 21441 HOOVER ROAD,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OCCIDENTAL CHEMICAL CORPORATION;REEL/FRAME:004190/0827

Effective date: 19830915

AS Assignment

Owner name: MANUFACTURERS HANOVER TRUST COMPANY, A CORP OF NY

Free format text: SECURITY INTEREST;ASSIGNOR:INTERNATIONAL CORPORATION, A CORP OF DE;REEL/FRAME:004201/0733

Effective date: 19830930