US3666023A - Rotational impact tool - Google Patents
Rotational impact tool Download PDFInfo
- Publication number
- US3666023A US3666023A US57627A US3666023DA US3666023A US 3666023 A US3666023 A US 3666023A US 57627 A US57627 A US 57627A US 3666023D A US3666023D A US 3666023DA US 3666023 A US3666023 A US 3666023A
- Authority
- US
- United States
- Prior art keywords
- hammer
- hammer body
- axis
- impact tool
- anvil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B21/00—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
- B25B21/02—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
- B25B21/026—Impact clutches
Definitions
- This invention relates to a rotational impact tool, and a preferred embodiment thereof is a tool for driving and loosening a screw by means of impact forces.
- Screw drivers of such a kind usually comprise a tip to be engaged with a screw head, a driver shaft, anvils and hammers. A rotating hammer continuously hits one anvil fixed to the inner end of the screw driver shaft to provide rotational impact forces, thereby enabling a screw to be turned either clockwise or counterclockwise, depending on the direction of rotation.
- Automatic screw drivers of this kind desirably would have the following features:
- An object of this invention is to provide an improved rotational impact tool.
- this invention provides a rotational impact tool comprising a motor, a hammer body rotatable by said motor, through a driving connection, about a first axis and tiltable about a second axis transverse to the first axis, a hammer face on said hammer body facing in one angular direction about said first axis, an output member rotatable about said first axis and provided with an anvil face facing in the opposite angular direction to said hammer face, the driving connection between the motor and the hammer body being adapted to cause tilting of the hammer body about the second axis so as to hold the hammer face clear of the anvil face upon rotation of the hammer body in said one angular direction, and a cam surface on said output member arranged to tilt the rotating hammer body about the second axis so as to bring the hammer face axially to a position where it will hit the anvil face, against the action of said driving
- the hammer body has two hammer faces facing in opposite angular directions about said first axis
- the output member has two anvil faces each facing in the opposite angular direction relative to a corresponding hammer face
- the hammer body is drivable selectively in both angular directions by the motor
- the connection between the motor and the hammer body is adapted to cause tilting of the hammer body about the second axis so as to hold, upon rotation of the hammer body in a selected direction, the hammer face facing in said selected direction clear of the corresponding anvil face
- cam surfaces on said output member are arranged to tilt the hammer body about the second axis so as to bring the hammer face facing in said selected angular direction axially to a position where it will hit the corresponding anvil face, against the action of said driving connection and for a sufficient period for such hitting to occur, thereby delivering rotational impacts, selective
- FIG. 1 is a longitudinal cross-sectional view of a preferred rotational impact tool according to the present invention
- FIG. 2 is an exploded perspective view of internal parts of the tool shown in FIG. 1, and
- FIGS. 3A, B and C are explanatory diagrams of the angular positions of hammers and anvils during operation of the tool.
- FIG. 1 of the drawings I denotes a body enclosing therein a pneumatic motor (not shown in the drawings) operable selectively in both angular directions and having an output shaft provided at the end thereof with a splined coupling 2a.
- 3 is a control for a valve controlling the direction of rotation
- 4 is the hand grip
- 5 the air supply connector adaptor
- 6 the operation lever of an on/off and/or speed control valve (not shown) enclosed in said grip 4
- a bearing 9 mounted in the front cover 7 carries a rotatable screw driver output shaft 13 provided with an axial bore 12 (see FIG. 2) and provided with two projecting anvils 11 and 11' on the face 10a of the radially extended portion 10 thereof.
- a driving member 16 is mounted on the spline coupling 20 of the motor shaft 2 and has a recess 15 eccentrically thereof.
- An intermediate shaft 18 is joumalled at both ends 19 and 20 in bores 17 and 12 in said driving member 16 and said output shaft 13, respectively, on shaft 18 hammer body 22 is mounted by means of a bearing pin 21 (see FIG. 2) inserted through said shaft, the pin serving as a pivot axis about which the hammer body 22 can tilt.
- Said hammer body 22 is provided at the front end thereof with two hammers 23 and 23' with respective hammer surfaces 23a and 23a for hitting against the anvils 11 and 11 of said output shaft 13 and at the rear end thereof with projections 24 engaging with the recess 15 in said driving member 16.
- the anvil surfaces (i.e. those which are to be hit) 11a and 1 1a of the anvils are spaced apart by a relatively smaller angle (taken at the center of said shaft 13) than are the hammer surfaces 23a and 23a of the hammer body (taken at the shaft center of the hammer body 22) as shown in FIG. 3 A.
- the anvils l1 and 11 have inclined back cam surfaces 11b and 11b respectively, whereas the hammers 23 and 23' have inclined back surfaces 23b and 231) respectively.
- the motor rotates the rotor shaft 2 and the driving cam or element 16 and thus the hammer body 22 and the intermediate shaft 18 are rotated together because of the engagement between the recess 15 on the flange 14 of said element 16 and the projection 24 at the back end of the hammer body 22.
- This engagement also causes tilting of the hammer body 22 as it rotates (see FIG. I so as to hold the hammer 23 and its face 23a axially clear of the anvils and particularly of the anvil 11 which it is intended to hit.
- the other hammer 23' is, by this tilting, positioned so as to contact the back wall 10 of the output shaft 13 as the hammers rotate. This condition is shown in FIG. 3 A, where the eccentricity of hammers 23, 23' as shown is due to the tilting.
- FIG. 3 A shows the moment of the above impact. After said impact the hammer body 22 is again tilted by means of the driving element 16 back to the original position shown in FIG. 3 A and in FIG. 1.
- the tool described comprises an intermediate shaft joumalled between the driving element connected to the motor shaft and the screw drive output shaft, a hammer body capable of tilting about an axis transverse to its rotational axis, a driving member normally holding the advancing hammer face of the hammer body where it would not strike the corresponding anvil on the screw driver output shaft, whereas the other hammer is inclined in the specified direction taking the specified angle with the size of the hammers and the anvils taken into consideration to hit the anvil resisting against the action of the driving cam.
- One hammer rises over both the anvils and thus the advancing hammer face hits the corresponding anvil producing the impact force at the moment when the other hammer drops off the back surface of the other anvil.
- the hammer body provides high impact efficiency with one impact per one rotation, repeatedly giving an impact at the maximum rotational torque because there is time to restore rotational momentum after each rotation.
- the rotational impact tool which has been described is of a simple construction, and enables a screw to be turned either clockwise or counterclockwise by means of the high impact force obtained. It provides all the desirable features (a) to (d) noted earlier herein.
- a rotational impact tool comprising:
- a hammer body reversibly rotatable by said motor about a first axis and tiltable about a second axis transverse to the first axis, said hammer body having two hammer faces thereon, said hammer faces facing in opposite angular directions with respect to said first axis;
- an output member rotatable about said first axis, said output member having two anvil faces facing in opposite angular directions relative to a corresponding hammer face;
- cam surfaces on said output member engaging said hammer body to tilt said hammer body about said second axis and bringing the hammer face facing in said selected angular direction axially to a position where it will hit the corresponding anvil face, against the action of said dn'ving connection and for a sufficient period for such hitting to occur, thereby delivering rotational impacts, selectively in either rotational direction to said output member.
- a rotational impact tool according to claim 1 wherein said hammer face facing in said selected angular direction hits the corresponding anvil face just when the other hammer becomes disengaged from said cam sufaces.
- a rotational impact tool as claimed in claim 3, comprising a coupling between said hammer body and said driving member, said coupling being eccentric to the first axis to tilt said hammer body about said first axis when said driving member is driven.
- a rotational impact tool according to claim 4, wherein said coupling comprises a projection on said hammer body, and a recess in said driving member, said projection engaging in said recess in the driving member.
- a rotational impact tool comprising a shaft having two ends, said shaft being joumalled at one end in said rotatable driving member and at the other end in said output member, said hammer body being tiltably mounted on said shaft.
- each anvil comprising a respective one of said cam surfaces and a respective one of said anvil faces.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Percussive Tools And Related Accessories (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP44060168A JPS4831599B1 (enrdf_load_stackoverflow) | 1969-07-30 | 1969-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3666023A true US3666023A (en) | 1972-05-30 |
Family
ID=13134350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US57627A Expired - Lifetime US3666023A (en) | 1969-07-30 | 1970-07-23 | Rotational impact tool |
Country Status (5)
Country | Link |
---|---|
US (1) | US3666023A (enrdf_load_stackoverflow) |
JP (1) | JPS4831599B1 (enrdf_load_stackoverflow) |
DE (2) | DE2037244C3 (enrdf_load_stackoverflow) |
FR (1) | FR2053296B1 (enrdf_load_stackoverflow) |
GB (1) | GB1273095A (enrdf_load_stackoverflow) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4567240A (en) * | 1984-05-23 | 1986-01-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Ethynyl terminated ester oligomers and polymers therefrom |
US6491111B1 (en) | 2000-07-17 | 2002-12-10 | Ingersoll-Rand Company | Rotary impact tool having a twin hammer mechanism |
US20110209587A1 (en) * | 2010-03-01 | 2011-09-01 | Urick Sr Vincent J | Tool for freeing seized bolts |
US8607672B2 (en) | 2010-03-01 | 2013-12-17 | Lisle Corporation | Seized fastener removal tool and set |
CN103862416A (zh) * | 2012-12-12 | 2014-06-18 | 英古所连公司 | 扭矩受限冲击工具 |
US9737978B2 (en) | 2014-02-14 | 2017-08-22 | Ingersoll-Rand Company | Impact tools with torque-limited swinging weight impact mechanisms |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54137800U (enrdf_load_stackoverflow) * | 1978-03-11 | 1979-09-25 | ||
US4441276A (en) * | 1980-07-26 | 1984-04-10 | Nissan Motor Co., Ltd. | Window regulating device for a window glass of a vehicle door or the like |
DE3124444C2 (de) * | 1981-06-22 | 1984-03-08 | Rockwell Golde Gmbh, 6000 Frankfurt | In einem Führungsrohr längsverschiebbares Antriebskabel |
-
1969
- 1969-07-30 JP JP44060168A patent/JPS4831599B1/ja active Pending
-
1970
- 1970-07-22 GB GB35451/70A patent/GB1273095A/en not_active Expired
- 1970-07-23 US US57627A patent/US3666023A/en not_active Expired - Lifetime
- 1970-07-28 DE DE2037244A patent/DE2037244C3/de not_active Expired
- 1970-07-28 DE DE7028243U patent/DE7028243U/de not_active Expired
- 1970-07-30 FR FR7028166A patent/FR2053296B1/fr not_active Expired
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4567240A (en) * | 1984-05-23 | 1986-01-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Ethynyl terminated ester oligomers and polymers therefrom |
US6491111B1 (en) | 2000-07-17 | 2002-12-10 | Ingersoll-Rand Company | Rotary impact tool having a twin hammer mechanism |
US20110209587A1 (en) * | 2010-03-01 | 2011-09-01 | Urick Sr Vincent J | Tool for freeing seized bolts |
US8272299B2 (en) | 2010-03-01 | 2012-09-25 | Lisle Corporation | Tool for freeing seized bolts |
US8607672B2 (en) | 2010-03-01 | 2013-12-17 | Lisle Corporation | Seized fastener removal tool and set |
CN103862416A (zh) * | 2012-12-12 | 2014-06-18 | 英古所连公司 | 扭矩受限冲击工具 |
US9272400B2 (en) | 2012-12-12 | 2016-03-01 | Ingersoll-Rand Company | Torque-limited impact tool |
US9737978B2 (en) | 2014-02-14 | 2017-08-22 | Ingersoll-Rand Company | Impact tools with torque-limited swinging weight impact mechanisms |
Also Published As
Publication number | Publication date |
---|---|
DE2037244A1 (de) | 1971-04-15 |
DE2037244C3 (de) | 1975-01-16 |
FR2053296A1 (enrdf_load_stackoverflow) | 1971-04-16 |
DE2037244B2 (de) | 1974-05-30 |
JPS4831599B1 (enrdf_load_stackoverflow) | 1973-09-29 |
DE7028243U (de) | 1971-04-08 |
FR2053296B1 (enrdf_load_stackoverflow) | 1974-10-04 |
GB1273095A (en) | 1972-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5906244A (en) | Rotary impact tool with involute profile hammer | |
US3648784A (en) | Rotary impact motor | |
US3661217A (en) | Rotary impact tool and clutch therefor | |
US6889778B2 (en) | Rotary tool | |
US4287956A (en) | Impact wrench mechanism and pivot clutch | |
US3605914A (en) | Rotary impact wrench mechanism | |
US3533479A (en) | Impact mechanism with improved hammer and hammer frame assembly therefor | |
US3666023A (en) | Rotational impact tool | |
US2425793A (en) | Impact wrench | |
US3529498A (en) | Power wrench | |
CN103269832A (zh) | 驱动工具 | |
JP2001260050A (ja) | カム駆動機構 | |
US3606931A (en) | Rotary impact motor | |
US3557884A (en) | Impact wrench mechanism | |
US3129796A (en) | Impact clutches | |
US2285639A (en) | Impact clutch | |
US3179219A (en) | Impact clutches | |
US3789934A (en) | Rotary impact motor | |
US2842994A (en) | Rotary impact wrench | |
US3380539A (en) | Impact clutch | |
US20130047448A1 (en) | Power Saw Including an Impact Mechanism | |
JP3678965B2 (ja) | 回転打撃工具 | |
TW202335804A (zh) | 衝擊錘工具 | |
US3102621A (en) | Impact clutch | |
US3606932A (en) | Rotary impact motor |