US3664115A - Method of making a semi-continuous filament combination yarn - Google Patents

Method of making a semi-continuous filament combination yarn Download PDF

Info

Publication number
US3664115A
US3664115A US25675A US3664115DA US3664115A US 3664115 A US3664115 A US 3664115A US 25675 A US25675 A US 25675A US 3664115D A US3664115D A US 3664115DA US 3664115 A US3664115 A US 3664115A
Authority
US
United States
Prior art keywords
tow
tows
yarn
strips
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US25675A
Inventor
George A Watson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Corp
Original Assignee
Celanese Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Corp filed Critical Celanese Corp
Application granted granted Critical
Publication of US3664115A publication Critical patent/US3664115A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/18Separating or spreading

Definitions

  • ABSTRACT A method, apparatus and product comprising producing a semi-continuous filament yarn having staple yarn characteristics from crimped tow comprising longitudinally slitting a deregistered tow comprising different fibers into strips of filamerits either with or without a tow spreading stage and subsequently twisting the strips into yarn.
  • the tows differ from each other in the fibers they contain, but each individual tow may contain a relatively uniform blend of different fibers.
  • FIG 4 INVENTOR GEORGE A.WATSON I ZW METHOD OF MAKING A SEMI-CONTINUOUS FILAMENT COMBINATION YARN
  • This invention relates to the production of continuous filament yarn from continuous filament fibers and more particularly to the production of a combination yarn from a tow of deregistered crimped filaments, wherein the tow contains different fibers.
  • a method for producing yarn from continuous filaments comprising passing two or more continuously moving tows of crimped continuous filaments made up of different fibers through a common or separate tow opening and deregistering zone, deregistering said tows, combining the tows, if opened separately, slitting the resulting deregistered combined tow longitudinally into a plurality of fibrous strips and collecting said strips as a combination yarn.
  • the slitting is effected after at least one spreading stage.
  • the reference herein to different fibers is intended to include fibers differing in any attribute.
  • the fibers may differ in dyeability, or in cross-section, or in degree of crimp, or in color, or in the material of which they are made.
  • the fibers may differ in stiffness; for example, one tow may be composed predominantly of fibers of greater stiffness than those of the tow or tows.
  • Such increased stiffness may be attained, for example, by using fibers of heavier denier or fibers of non-circular cross-section (e.g. or cruciform, triangular, trilobal, H or other cross-section while fibers of circular cross-section may predominate at the other face), or fibers of inherently stiffer material (e.g.
  • the different fibers may be blends of fibers; for example, one fiber blend 'may differ from the other only in the proportions of its components; thus, one tow band may contain an 80:20 blend of two fibers and the other band of different fibers may be composed of a 50:50 blend of the same two fibers.
  • each band of fibers may be composed of a blend of fibers.
  • a shrinkable fiber with a fiber stable under the conditions of treatment.
  • fibers which shrink when heat is subsequently applied to the yarn e.g. fibers of polypropylene or polyvinyl chloride, or cold drawn polyester fibers
  • fibers which shrink when heat is subsequently applied to the yarn may be intimately blended with fibers (such as heat-set polyester fibers which are stable) under the same heat-treatment.
  • two or more lightweight webs are produced by passing each opened tow of crimped continuous filaments through an air spreader in which the moving tow, in flattened condition, is confined between parallel walls while streams of air or other suitable gas are directed at the tow across its full width. It has been discovered that it is possible in this manner to spread the tow readily, and very evenly, to great widths to produce webs of extreme fineness, such as webs containing less than about 600, e.g. 500 filaments per inch of width, and in which the average air space per fil is appreciably greater than the diameter of the filaments, thus providing ready means for slitting the web longitudinally into yarn of as few as about filaments up to about 10,000 filaments or more as may be desired.
  • the average air space per fil is the average space between the filaments of the web measured on a line in the plane of the web, perpendicular to the longitudinal direction of the filaments of the web, said space being calculated on the assumption that all the filaments are arranged in a single plane, with no filaments crossing other filaments. It may be calculated simplyfrom a knowledge of the average diameter of the filaments (D,-), the width (w) of the substantially uniform web and the number of filaments (n) in said width, according to the formula: Average Air Space Per Fil (w -nD n.
  • the average air space per fil is plurality of times (e.g. five, 10 or more times) as great as the average filament diameter.
  • Such webs may have densities well below one ounce per square yard, e.g. one-tenth to one-fourth or one-half ounce per square yard.
  • FIG. 1 is a schematic view of a process in accordance with the present invention illustrating tow-opening, tow spreading and the subsequent splitting of a lightweight web to form a plurality of yarns;
  • FIG. 2 is an enlarged partial plan view of the slitting apparatus of FIG. 1;
  • FIG. 3 is a sectional view of an air spreader particularly useful in the present invention.
  • FIG. 4 is an plan view along line 44 of the arrangement of the air openings of the air spreader.
  • FIG. 5 is another plan view along line 4-4 of an alternate arrangement of the air openings of the air spreader.
  • a band of crimped continuous filament tow 10 is drawn from bale 12 through a banding jet 13 comprising a stationary cylinder 14, having a slit running lengthwise of the cylinder at its highest point, and a curved baffle member 16 parallel to, and spaced about the thickness of the tow 10, from the adjacent surface of said cylinder, so that the tow band 10 passes between said baffle member 16 and cylinder 14.
  • Air under pressure is supplied to the interior of the cylinder 14 and emerges as a stream from the slit of said cylinder, the slit being cut at an angle such that the air stream has a component in a direction opposing the forward motion of the stream.
  • Tow band 10 is hence passed around stationary tensioning bars 17 and 18 to help smooth and uniformly pretension said band, said bars being adjustably mounted, so that their angle to the horizontal may be varied, to adjust the position of the band on subsequent processing equipment with which the band comes into contact downstream of said bars.
  • the tow may be conveniently opened or deregistered, to prepare it for the air spreading steps by subjecting it while moving in a predetermined path, to a differential gripping action between a plurality of points spaced from one another both longitudinally and traversely in the path so that certain laterally spaced sections of the tow are positively gripped relative to other lateral spaced sections of the tow, alternating with the grip sections, which are not gripped at all or are gripped at different relative points.
  • the shifting action is a function of the differential positive gripping of the tow.
  • the differential gripping action is such that a relative lateral displacement between adjacent filaments of the tow is also effected, so that the combination of two transverse filament movements brings about the complete opening of the tow.
  • the differential gripping action is achieved by using at least one pair of rollers, one of which is smooth surfaced and the other of which is patterned over its entire periphery.
  • the most preferred apparatus comprises a plurality of such pair of rollers arranged in tandem wherein one of each pair of rollers comprises a smooth surfaced roller coated with a resilient material such as rubber and the other roller has alternating lands and grooves.
  • the lands and grooves form helical threads of about 8 to per inch.
  • rolls 19 and 23 are the patterned rollers, such as threaded steel rolls and rolls 21 and 22 are resilient surfaced rolls.
  • Each pair of rolls is individually driven at a predetermined controlled speed. Generally, only one roll of each pair is positively driven while the other is in yieldable compressive contact with the driven roll and rotates due to the passing of the tow between the rollers.
  • the differential gripping action and deregistering is produced by driving the second pair of rollers at a faster rate of speed than the first pair.
  • the second pair of rollers is typically driven at a rate of about 1.1 to about 8 times and more preferably at a rate of about 1.2 to about 3.0 times that of the first pair.
  • the crimp in the tow is out of registry with adjacent filaments. While the tow at this point can be combined with one or more similarly deregistered tows of different fibers and slit into a plurality of sections to produce yarn, it is highly preferred to pass the tow through at least one spreading stage and more preferably two or more spreading stages to thereby spread the tow into a thin web prior to combining one or more similarly processed tows and slitting into yarn. By spreading the tow to several times its original width, much greater uniformity and control of filament content are obtained.
  • Various spreading means can be used to spread the deregistered tow into a uniform web.
  • Such means include mechanical spreading bars, diverging belts, air jets and the like.
  • the most preferred means is the air jet, also known as a banding jet.
  • the tow is spread as shown in FIG. 1 by means of a first spreader 24.
  • the tow is pulled through spreader 24 by the action of driven rollers 36 and 37 about which tow 10 is S wrapped.
  • the tow is spread about two to four times the width of the tow exiting from the deregistration zone.
  • the tow is preferably again spread, such as in second spreader 38 wherein the spread band is again spread two to about four times the width of the web drawn through rollers 36 and 37.
  • the web is drawn through spreader 38 by means of another set of driven rollers 39 and 41.
  • the spreading action preferably spreads the tow into a web at least twice the original width of the tow and more preferably two to about 10 times the original tow width.
  • the tow is spread four to about eight times the width of the tow exiting from the deregistration zone.
  • the spread web is combined with one or more spread webs of different fibers, which may have been opened, deregistered and spread in the same manner, as shown in FIG. 1.
  • the second tow 10' is drawn from bale 12 through banding jet 13' comprising cylinder 14', and baffle 16' and then around tensioning bars 17' and 18 through nip rolls 19' and 21' then through a second pair of rolls 22 and 23' to spreader 24 while being pulled through the spreader by rollers 36 and 37' and then drawn through second spreader 38' by rolls 39' and 41'.
  • the spread web is combined with one or more spread webs of different fibers by any suitable means such as passing the webs between the two rotating rolls 39 and 41.
  • the webs may be combined by being passed between 2 rotating rolls (e.g. 39 and 41), then passed to a slitting zone wherein the composite web is slit into a plurality of web sections.
  • Numerous means of slitting can be utilized such as roller 62 having circumferential parallel circular V shaped grooves 63 separated by circular sharp parallel ridges 64 operating in conjunction with a hot wire apparatus 66 comprising a series of spaced electrically heated wires 67 having operative portions penetrating said web in alignment with each ridge 64.
  • roller 62 having circumferential parallel circular V shaped grooves 63 separated by circular sharp parallel ridges 64 operating in conjunction with a hot wire apparatus 66 comprising a series of spaced electrically heated wires 67 having operative portions penetrating said web in alignment with each ridge 64.
  • Heated wires 67 complete the slitting by severing cross lying filaments tying the slit webs together.
  • tension is exerted on the web being slit by driving rollers 68 and 69 at a peripheral speed in excess of the feed rate, such as about 5 percent greater than the peripheral speed of rollers 39 and 41.
  • the slitting action can be accomplished by a knifing action which accomplishes longitudinal cutting in a manner similar to the coaction of the heated wire and ridge and groove apparatus illustrated.
  • the narrow web bands produced by the cutting action are diverged to eye guides 71 in spaced relationship to each other, from which they are taken up with a twist on bobbin 72 mounted in ring spinner 73 of the conventional type or other yarn take up means.
  • ring spinners as is well known, the bundle of filaments passes through driven feed rolls 74 and 76, stationary balloon guide 77 and moving traveler 78 mounted on reciprocating ring rails 79 before passing onto bobbin 72.
  • the resulting yarn is very bulky. Its strength is substantially that of continuous filament yarn but it has the appearance of a staple fiber yarn because of the presence of projecting ends, on the order of about 10 projecting filament ends per inch and loose loops or arches, each made up of a small number of crimped filaments, that is about one or two filaments, lying along the main body of the yarn. Of course, the number of projecting filament ends will vary between about three to 30 or more per inch, depending on the filament count, the degree of spreading, the deregistering means used, the type of filament and the like. Knitted fabrics of this yarn have an extremely soft pleasant feel, very suitable for baby sweaters, bulky sweaters and the like.
  • the yarn produced can be further drawn into yarns of a lower filament count by drafting the yarn to the breaking point of individual filaments, thereby forming a modified staple yarn of long variable filament length.
  • Various apparatuses are known which will accomplish this type of drafting and these apparatuses can be used in conjunction with the present invention to thus pass the web band through a drafting zone prior to twisting and winding on bobbins.
  • tow 10 is passed through space 26 which separates air chamber 28 of plenum box 30 from back plate 27. Air pressure is exhausted through slit 31 thereby impinging upon the fibrous web as it is passed through space 26.
  • the spreading operation is effected on the tow as it is passed through the air spreader in a flattened condition between parallel walls while a stream of suitable gas is directed onto the tow at a right angle across its full width.
  • the air spreading is effected in a plurality of stages as described above, each of which spread the tow to a greater width than in the preceding stage. For best results, the tow in any one stage is isolated from the efiect of the following stage by passing the tow through drawing rollers such as 36 and 37, and 39 and 41 between each spreading stage.
  • the air spreaders themselves advantageously have air delivery slits or other suitable openings in one or both of the parallel walls between which the tow passes.
  • the slits lead from a plenum box or air chamber supplied with air at a constant pressure.
  • a series of slits is provided, each running in a direction traverse to the direction of movement of the tow and so arranged that all portions of the tow are subjected to the air stream from said slits.
  • the pressure in the plenum chamber may vary considerably.
  • One suitable range is about 1 to 5 pounds per square inch gauge pressure.
  • Higher pressures such as about 100 pounds per square inch gauge can be used, but these are generally not necessary and are economically wasteful.
  • little air is needed to expand the tow.
  • the walls of the tow-confining zones of the air spreaders need not be correspondingly close together. Thus, very good results have been obtained with tow confining slots one-tenth inch in width.
  • the webs are spread to such an extent that when further air spreading is attempted, while the length of the web is kept constant, the web strongly resists such spreading and returns to its previous width. That is, if a graph is plotted relating the air pressure in the spreader to the degree of lateral spreading of the moving web, it is found that there is substantially no additional pressure needed to effect spreading up to a certain width, after which the air pressure required rises sharply.
  • the web density at which the sharp change occurs is termed herein the potential web density. This potential web density will vary, depending on the type of tow which is employed and particularly on the degree of intermingling and crossing over of the tow filaments.
  • optimum tows have potential web densities below about one ounce per square yard and preferably less than about one-half ounce per square yard. Surprisingly, webs of such densities are easily handled and maintain their unity without disintegration during ordinary handling.
  • the filament count in the yarn can be varied to within precise limits by varying the distances between the plurality of slitting means.
  • the slitting can be effected to produce a slit web of about 0.l to about 6 inches or more in width and more preferably in the range of about 0.2 to about 1.5 inches.
  • the resulting yarn can be varied from a filament count of about five filaments or less up to about 10,000 filaments or more by adjusting the width of the slit web and the density of the web being split.
  • yarns having a filament count ofless than 10,000 are preferred and more preferably, yarns having a total denier of about 500 to 7,000.
  • a tow having a denier of 42,000 made up of 3 denier per filament fibers is commonly spread from a crimped tow in registry of about 4 or 5 inches to a deregistered spread tow of about 50 inches.
  • a yarn having a filament count of 560 fils is produced. This count can, of course, be readily reduced by drafting as hereinbefore described.
  • the hot wires or other cutting means will cut through these filaments so that the resulting yarn will have some filament ends giving some of the effect of a staple fiber yarn. Because of the deregistration of the crimped filaments in the web, the yarns produced in this manner are very bulky.
  • the webs are made of filaments of high tenacity such as a tenacity above about 2 grams per denier, as is the case with filaments of terephthalate polyesters, it is advantageous to use devices other than hot wires for cutting.
  • anvil rollers comprising rotating, shearing discs mounted alternately on parallel axes at the sides of the discs in close contact having a scissors-like effect on the filaments which pass between the rollers may be employed.
  • Anvil roller arrangement is that in addition to being used for slitting webs of stronger fibers, it gives a product free from occasional fused zones which may be formed when hot wires are used on thermoplastic filaments such as cellulose acetate.
  • the present invention is useful with any combination of continuous filament materials which have been crimped prior to deregistration.
  • the process is particularly useful with filaments of polyethylene terephthalate polyester and cellulose acetate of the usual acetyl content of about 54 to 55 percent calculated as acetic acid.
  • the invention is also equally applicable to other tows such as those made of other polyesters such as polyesters of /30 isophthalic and terephthalic acids and other glycols such as dimethylolcyclohexane; linear super polyamides such as nylon-6 and nylon-66; polyacrylonitrile and copolymers of acrylonitrile; olefinic polymers and copolymers such as isotatic polypropylene; other organic derivatives of cellulose such as esters and/or ethers of cellulose, for example cellulose propionate and cellulose acetate propionate and the like; highly esterified cellulose containing less than 0.29 free hydroxyl groups per anhydroglucose units such as cellulose triacetate; rayon and the like.
  • polyesters such as polyesters of /30 isophthalic and terephthalic acids and other glycols such as dimethylolcyclohexane
  • linear super polyamides such as nylon-6 and nylon-66
  • the number of filaments in the starting tow can vary within wide limits and may range up to as high as about one million with a denier per filament as high as about 25, that is in the range of about 0.5 to about 25 and more preferably in the range of l to 20 denier per filament.
  • the number of crimps per inch of tow may range up to as high as about 80, but for most end products a crimp of about three to 50 crimps per inch, preferably about three to 20 crimps per inch of starting tow are found to be exceptionally satisfactory.
  • EXAMPLE 1 In accordance with FIG. 1, a plurality of yarns were produced from two lightweight webs using a band of crimped polyethylene terephthalate tow having about 50,000 five-denier filaments and a band of crimped cellulose acetate tow having about twenty-four thousand 3.3-denier filaments, each crimped at a frequency of about 9.5 crimps per inch.
  • the tows were deregistered and air spread in two stages to a web 30 inches wide, and combined to produce a composite web having a density of about 4 ounces per square yard.
  • the spread web was fed at a rate of about 45 feet per minute to a slitting zone comprising a roll 62 having circumferential parallel circular V-shaped grooves 63 (FIG. 2) separated by circular sharp parallel ridges 64, and a hot wire arrangement 66 having a series of spaced electrically heated wires 67 having operative portions penetrating said web, there being one such wire 67 for each groove 63 engaged by the web, said wires being aligned with said ridges.
  • the web was drawn through the slitting zone 62 by the action of a pair of rolls 68 and 69 about which the slit narrow portions of the web made S wraps. The rolls were driven at a peripheral speed 5 percent greater than the peripheral speed of rolls 39 and 41.
  • Ridges 64 (and wires 67) were spaced one inch apart so that the web was slit into portions each of 864 denier and the number of filaments was about 288. From roll 69 these portions diverged to eye guides 71, spaced further apart, from which they were taken up with a twist of 1% turns per inch on rotating driven bobbins 72 mounted in ring spinner 73 of conventional type. In such ring spinners, as is well known, the bundle of filaments passed through driven feed rolls 74 and 76, stationary balloon guides 77, and moving travelers 78, mounted on reciprocating ring rails 79, before passing onto the bobbin 72.
  • the resulting yarn was very bulky. its strength was substantially that of a continuous filament yarn, but it had the appearance of a staple fiber yarn because of the presence of projecting ends (on the order of about 10 projecting filaments ends per inch) and loose loops or arches each made up of a small number of crimped filaments (e.g. of one or two filaments) lying along the main body of the yarn. Knitted fabrics of this yarn have an extremely soft, pleasant feel, very suitable for baby sweaters, for example.
  • the combination yarns of this invention contain at least 10 to percent of every different fiber component. This insures a combination yarn having a substantially uniform blend of each different fiber component.
  • a method for producing yarn from continuous filaments comprising passing at least two continuously moving tows through a tow opening and deregistering zone, said tows each comprising crimped continuous filaments differing from at least one other tow, deregistering said tows, slitting the resulting composite deregistered tow longitudinally into a plurality of fibrous strips and collecting said strips as combination yarns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Abstract

A method, apparatus and product comprising producing a semicontinuous filament yarn having staple yarn characteristics from crimped tow comprising longitudinally slitting a deregistered tow comprising different fibers into strips of filaments either with or without a tow spreading stage and subsequently twisting the strips into yarn. The tows differ from each other in the fibers they contain, but each individual tow may contain a relatively uniform blend of different fibers.

Description

United- States Patent Watson [54] METHOD OF MAKING A SEMI- CONTINUOUS FILAIVIENT COMBINATION YARN [72] Inventor: George A. Watson, Davidson, NC.
[73] Assignee: Celanese Corporation, New York, NY,
[ Notice: The portion of the term of this patent subsequent to Dec. 24, 1985, has been disclaimed.
[22] Filed: Apr. 6, 1970 [21] Appl. No.: 25,675
Related US. Application Data [60] Continuation-in-part of Ser. No. 606,982, Jan. 3, 1967, abandoned, and a continuation-in-part of Ser. No. 763,468, Aug. 5, 1968, Pat. No. 3,504,489, which is a division of Ser. No. 650,795, July 3, 1967, Pat. No. 3,417,560, which is a continuation-in-part of Ser. No. 382,263, July 13, 1964, abandoned.
52 us. 01 ..57/156, 57/167 511 rm. c1 ..D02g 1/00 581 Field otSearch ..57 2, 31, 34, 139, 140 BY,
1151 3,664,115 45 *May 23, 1972 [56] References Clted UNITED STATES PATENTS 3,175,348 3/1965 Bloch ..57/34 3,251,097 5/1966 Faw et al 57/140 X 3,325,876 6/1967 Ibrahim 57/157 X 3,367,101 2/1968 Garner et al... .57/140 3,398,220 8/1968 Port et a1. 57/157 X 3,417,560 12/1968 Watson ..57/34 3,420,049 l/1969 Heberlein ..57/ l 40 Primary ExaminerStanley N. Gilreath Assistant Examiner-Wemcr H. Schroeder Attorney-Thomas J. Morgan, Stephen D. Murphy and Andrew F. Sayko, Jr.
[57] ABSTRACT A method, apparatus and product comprising producing a semi-continuous filament yarn having staple yarn characteristics from crimped tow comprising longitudinally slitting a deregistered tow comprising different fibers into strips of filamerits either with or without a tow spreading stage and subsequently twisting the strips into yarn. The tows differ from each other in the fibers they contain, but each individual tow may contain a relatively uniform blend of different fibers.
10 Claims, 5 Drawing Figures PATENTEDMAY 23 I972 FIG 2- l lllllll @IIHHHII I...
| II I 7 ml.
FIG 4 INVENTOR GEORGE A.WATSON I ZW METHOD OF MAKING A SEMI-CONTINUOUS FILAMENT COMBINATION YARN This is a continuation-in-part of Ser. No. 606,982, filed Jan. 3, 1967 now abandoned, and Ser. No. 763,468, filed Aug. 5, 1968, now US. Pat. No. 3,504,489, which is a division of Ser. No. 650,795, filed July 3, 1967, now U.S. Pat. No. 3,417,560, which patent is a continuation-in-part of Ser. No, 382,263, filed July 13, 1964, now abandoned.
BACKGROUND OF THE INVENTION This invention relates to the production of continuous filament yarn from continuous filament fibers and more particularly to the production of a combination yarn from a tow of deregistered crimped filaments, wherein the tow contains different fibers.
The deregistration or opening of a tow of continuous crimped filaments is known in the art. Previously, such deregistration was effected in the production of cigarette tow in a manner described by Dunlap et al. in US. Pat. No. 3,156,016.
It is an object of the present invention to provide a method for the production of a novel, substantially continuous filament combination yarn. It is another object of this invention to provide a bulky yarn of substantially continuous filaments wherein the fiber length averages about 6 inches or more. These and other objects will become apparent to those skilled in the art from a description of the invention which follows.
SUMMARY OF THE INVENTION In accordance with the invention, a method for producing yarn from continuous filaments is provided, comprising passing two or more continuously moving tows of crimped continuous filaments made up of different fibers through a common or separate tow opening and deregistering zone, deregistering said tows, combining the tows, if opened separately, slitting the resulting deregistered combined tow longitudinally into a plurality of fibrous strips and collecting said strips as a combination yarn. Preferably, the slitting is effected after at least one spreading stage.
The reference herein to different fibers is intended to include fibers differing in any attribute. Thus, the fibers may differ in dyeability, or in cross-section, or in degree of crimp, or in color, or in the material of which they are made. For certain purposes, the fibers may differ in stiffness; for example, one tow may be composed predominantly of fibers of greater stiffness than those of the tow or tows. Such increased stiffness may be attained, for example, by using fibers of heavier denier or fibers of non-circular cross-section (e.g. or cruciform, triangular, trilobal, H or other cross-section while fibers of circular cross-section may predominate at the other face), or fibers of inherently stiffer material (e.g. of polyethylene terephthalate which is stiffer than nylon-6 or nylon-66). The different fibers may be blends of fibers; for example, one fiber blend 'may differ from the other only in the proportions of its components; thus, one tow band may contain an 80:20 blend of two fibers and the other band of different fibers may be composed of a 50:50 blend of the same two fibers.
As indicated, for some purposes each band of fibers may be composed of a blend of fibers. Thus, in producing a differential shrinkage combination yarn, it is desirable to blend a shrinkable fiber with a fiber stable under the conditions of treatment. For example, fibers which shrink when heat is subsequently applied to the yarn (e.g. fibers of polypropylene or polyvinyl chloride, or cold drawn polyester fibers) may be intimately blended with fibers (such as heat-set polyester fibers which are stable) under the same heat-treatment.
More specifically, in a preferred embodiment, two or more lightweight webs are produced by passing each opened tow of crimped continuous filaments through an air spreader in which the moving tow, in flattened condition, is confined between parallel walls while streams of air or other suitable gas are directed at the tow across its full width. It has been discovered that it is possible in this manner to spread the tow readily, and very evenly, to great widths to produce webs of extreme fineness, such as webs containing less than about 600, e.g. 500 filaments per inch of width, and in which the average air space per fil is appreciably greater than the diameter of the filaments, thus providing ready means for slitting the web longitudinally into yarn of as few as about filaments up to about 10,000 filaments or more as may be desired.
The average air space per fil is the average space between the filaments of the web measured on a line in the plane of the web, perpendicular to the longitudinal direction of the filaments of the web, said space being calculated on the assumption that all the filaments are arranged in a single plane, with no filaments crossing other filaments. It may be calculated simplyfrom a knowledge of the average diameter of the filaments (D,-), the width (w) of the substantially uniform web and the number of filaments (n) in said width, according to the formula: Average Air Space Per Fil (w -nD n.
In the preferred forms of the invention, the average air space per fil is plurality of times (e.g. five, 10 or more times) as great as the average filament diameter. Such webs may have densities well below one ounce per square yard, e.g. one-tenth to one-fourth or one-half ounce per square yard.
The invention will be described more fully by reference to the drawings in which:
FIG. 1 is a schematic view of a process in accordance with the present invention illustrating tow-opening, tow spreading and the subsequent splitting of a lightweight web to form a plurality of yarns;
FIG. 2 is an enlarged partial plan view of the slitting apparatus of FIG. 1;
FIG. 3 is a sectional view of an air spreader particularly useful in the present invention;
FIG. 4 is an plan view along line 44 of the arrangement of the air openings of the air spreader; and
FIG. 5 is another plan view along line 4-4 of an alternate arrangement of the air openings of the air spreader.
Referring to FIG. 1, a band of crimped continuous filament tow 10 is drawn from bale 12 through a banding jet 13 comprising a stationary cylinder 14, having a slit running lengthwise of the cylinder at its highest point, and a curved baffle member 16 parallel to, and spaced about the thickness of the tow 10, from the adjacent surface of said cylinder, so that the tow band 10 passes between said baffle member 16 and cylinder 14. Air under pressure is supplied to the interior of the cylinder 14 and emerges as a stream from the slit of said cylinder, the slit being cut at an angle such that the air stream has a component in a direction opposing the forward motion of the stream. The air jet preconditions the tow for further processing by removing snags, false twists, straightens and flattens the tow and, if desired, spreads the tow somewhat to pro- 'vide a uniform thickness. Tow band 10 is hence passed around stationary tensioning bars 17 and 18 to help smooth and uniformly pretension said band, said bars being adjustably mounted, so that their angle to the horizontal may be varied, to adjust the position of the band on subsequent processing equipment with which the band comes into contact downstream of said bars.
After leaving bar 17 and 18 the band passes into the tow opening zone. The tow may be conveniently opened or deregistered, to prepare it for the air spreading steps by subjecting it while moving in a predetermined path, to a differential gripping action between a plurality of points spaced from one another both longitudinally and traversely in the path so that certain laterally spaced sections of the tow are positively gripped relative to other lateral spaced sections of the tow, alternating with the grip sections, which are not gripped at all or are gripped at different relative points. In this manner there is produced a relative shifting of the adjacent filaments longitudinally along the tow whereby the crimps are moved out of registry with one another. The shifting action is a function of the differential positive gripping of the tow. Preferably, although not necessarily, the differential gripping action is such that a relative lateral displacement between adjacent filaments of the tow is also effected, so that the combination of two transverse filament movements brings about the complete opening of the tow.
Several methods for effecting the differential gripping action are known in the art as well as several different apparatuses for effecting the differential gripping, which apparatuses deregister the tow with varying degrees of success.
A preferred apparatus is disclosed in the aforementioned Dunlap et 211 patent.
Typically, the differential gripping action is achieved by using at least one pair of rollers, one of which is smooth surfaced and the other of which is patterned over its entire periphery. The most preferred apparatus comprises a plurality of such pair of rollers arranged in tandem wherein one of each pair of rollers comprises a smooth surfaced roller coated with a resilient material such as rubber and the other roller has alternating lands and grooves. Preferably, the lands and grooves form helical threads of about 8 to per inch.
Thus, the tow is passed through the nip of a pair of rolls l9 and 21 prior to being passed through a second pair of rolls 22 and 23. In the most preferred embodiment, rolls 19 and 23 are the patterned rollers, such as threaded steel rolls and rolls 21 and 22 are resilient surfaced rolls.
Each pair of rolls is individually driven at a predetermined controlled speed. Generally, only one roll of each pair is positively driven while the other is in yieldable compressive contact with the driven roll and rotates due to the passing of the tow between the rollers. The differential gripping action and deregistering is produced by driving the second pair of rollers at a faster rate of speed than the first pair. Thus, the second pair of rollers is typically driven at a rate of about 1.1 to about 8 times and more preferably at a rate of about 1.2 to about 3.0 times that of the first pair.
On leaving the deregistration zone, the crimp in the tow is out of registry with adjacent filaments. While the tow at this point can be combined with one or more similarly deregistered tows of different fibers and slit into a plurality of sections to produce yarn, it is highly preferred to pass the tow through at least one spreading stage and more preferably two or more spreading stages to thereby spread the tow into a thin web prior to combining one or more similarly processed tows and slitting into yarn. By spreading the tow to several times its original width, much greater uniformity and control of filament content are obtained.
Various spreading means can be used to spread the deregistered tow into a uniform web. Such means include mechanical spreading bars, diverging belts, air jets and the like. The most preferred means is the air jet, also known as a banding jet.
The tow is spread as shown in FIG. 1 by means of a first spreader 24. The tow is pulled through spreader 24 by the action of driven rollers 36 and 37 about which tow 10 is S wrapped. In passing through spreader 24, the tow is spread about two to four times the width of the tow exiting from the deregistration zone. As is preferred in the present invention, the tow is preferably again spread, such as in second spreader 38 wherein the spread band is again spread two to about four times the width of the web drawn through rollers 36 and 37. Again, the web is drawn through spreader 38 by means of another set of driven rollers 39 and 41. Thus, the spreading action preferably spreads the tow into a web at least twice the original width of the tow and more preferably two to about 10 times the original tow width. In the most preferred embodiment, for the production of yarn of high filament uniformity, the tow is spread four to about eight times the width of the tow exiting from the deregistration zone.
From rollers 39 and 41 the spread web is combined with one or more spread webs of different fibers, which may have been opened, deregistered and spread in the same manner, as shown in FIG. 1. The second tow 10' is drawn from bale 12 through banding jet 13' comprising cylinder 14', and baffle 16' and then around tensioning bars 17' and 18 through nip rolls 19' and 21' then through a second pair of rolls 22 and 23' to spreader 24 while being pulled through the spreader by rollers 36 and 37' and then drawn through second spreader 38' by rolls 39' and 41'. From rollers 39' and 41' the spread web is combined with one or more spread webs of different fibers by any suitable means such as passing the webs between the two rotating rolls 39 and 41. The webs may be combined by being passed between 2 rotating rolls (e.g. 39 and 41), then passed to a slitting zone wherein the composite web is slit into a plurality of web sections. Numerous means of slitting can be utilized such as roller 62 having circumferential parallel circular V shaped grooves 63 separated by circular sharp parallel ridges 64 operating in conjunction with a hot wire apparatus 66 comprising a series of spaced electrically heated wires 67 having operative portions penetrating said web in alignment with each ridge 64. As the web is drawn through the slitting zone by the action of another pair of driven rollers 68 and 69, the web is slit into narrow portions by the groove 63 and ridge 64 portions of roller 62. Heated wires 67 complete the slitting by severing cross lying filaments tying the slit webs together. Preferably, tension is exerted on the web being slit by driving rollers 68 and 69 at a peripheral speed in excess of the feed rate, such as about 5 percent greater than the peripheral speed of rollers 39 and 41.
It will be readily recognized that numerous other means for slitting a web can be used to accomplish substantially the same slitting action with correspondingly good results. For instance, the slitting action can be accomplished by a knifing action which accomplishes longitudinal cutting in a manner similar to the coaction of the heated wire and ridge and groove apparatus illustrated.
The narrow web bands produced by the cutting action are diverged to eye guides 71 in spaced relationship to each other, from which they are taken up with a twist on bobbin 72 mounted in ring spinner 73 of the conventional type or other yarn take up means. In such ring spinners, as is well known, the bundle of filaments passes through driven feed rolls 74 and 76, stationary balloon guide 77 and moving traveler 78 mounted on reciprocating ring rails 79 before passing onto bobbin 72.
The resulting yarn is very bulky. Its strength is substantially that of continuous filament yarn but it has the appearance of a staple fiber yarn because of the presence of projecting ends, on the order of about 10 projecting filament ends per inch and loose loops or arches, each made up of a small number of crimped filaments, that is about one or two filaments, lying along the main body of the yarn. Of course, the number of projecting filament ends will vary between about three to 30 or more per inch, depending on the filament count, the degree of spreading, the deregistering means used, the type of filament and the like. Knitted fabrics of this yarn have an extremely soft pleasant feel, very suitable for baby sweaters, bulky sweaters and the like.
Alternatively, if desired, the yarn produced can be further drawn into yarns of a lower filament count by drafting the yarn to the breaking point of individual filaments, thereby forming a modified staple yarn of long variable filament length. Various apparatuses are known which will accomplish this type of drafting and these apparatuses can be used in conjunction with the present invention to thus pass the web band through a drafting zone prior to twisting and winding on bobbins.
Referring more specifically to the air spreaders used in the present invention as illustrated in FIG. 3, 4 and 5, tow 10 is passed through space 26 which separates air chamber 28 of plenum box 30 from back plate 27. Air pressure is exhausted through slit 31 thereby impinging upon the fibrous web as it is passed through space 26. Thus, the spreading operation is effected on the tow as it is passed through the air spreader in a flattened condition between parallel walls while a stream of suitable gas is directed onto the tow at a right angle across its full width. Advantageously, the air spreading is effected in a plurality of stages as described above, each of which spread the tow to a greater width than in the preceding stage. For best results, the tow in any one stage is isolated from the efiect of the following stage by passing the tow through drawing rollers such as 36 and 37, and 39 and 41 between each spreading stage.
The air spreaders themselves advantageously have air delivery slits or other suitable openings in one or both of the parallel walls between which the tow passes. The slits lead from a plenum box or air chamber supplied with air at a constant pressure. In one highly effective apparatus, a series of slits is provided, each running in a direction traverse to the direction of movement of the tow and so arranged that all portions of the tow are subjected to the air stream from said slits. Surprisingly, it has been found that even when the width of the air spreader is 8 feet or more, the tow spreads uniformly from the outer edges of the tow, where the resistance to air would be expected to be less, to attain substantially the same density as the central portions of the tow.
The pressure in the plenum chamber may vary considerably. One suitable range is about 1 to 5 pounds per square inch gauge pressure. Higher pressures such as about 100 pounds per square inch gauge can be used, but these are generally not necessary and are economically wasteful. Surprisingly, little air is needed to expand the tow. Despite the fineness of the webs, the walls of the tow-confining zones of the air spreaders need not be correspondingly close together. Thus, very good results have been obtained with tow confining slots one-tenth inch in width.
Advantageously, the webs are spread to such an extent that when further air spreading is attempted, while the length of the web is kept constant, the web strongly resists such spreading and returns to its previous width. That is, if a graph is plotted relating the air pressure in the spreader to the degree of lateral spreading of the moving web, it is found that there is substantially no additional pressure needed to effect spreading up to a certain width, after which the air pressure required rises sharply. The web density at which the sharp change occurs is termed herein the potential web density. This potential web density will vary, depending on the type of tow which is employed and particularly on the degree of intermingling and crossing over of the tow filaments. In general, optimum tows have potential web densities below about one ounce per square yard and preferably less than about one-half ounce per square yard. Surprisingly, webs of such densities are easily handled and maintain their unity without disintegration during ordinary handling.
By spreading the web to such low densities, the filament count in the yarn can be varied to within precise limits by varying the distances between the plurality of slitting means. Thus, the slitting can be effected to produce a slit web of about 0.l to about 6 inches or more in width and more preferably in the range of about 0.2 to about 1.5 inches. It will thus be readily recognized that the resulting yarn can be varied from a filament count of about five filaments or less up to about 10,000 filaments or more by adjusting the width of the slit web and the density of the web being split. Preferably, yarns having a filament count ofless than 10,000 are preferred and more preferably, yarns having a total denier of about 500 to 7,000.
As an example, a tow having a denier of 42,000 made up of 3 denier per filament fibers is commonly spread from a crimped tow in registry of about 4 or 5 inches to a deregistered spread tow of about 50 inches. By combining two such tows and slitting the spread webs to one inch webs, a yarn having a filament count of 560 fils is produced. This count can, of course, be readily reduced by drafting as hereinbefore described.
In the slitting of the Web, there will be portions of filaments which cross other filaments and which are ranged at small angles, both left and right, to the general direction of the filaments of the spread web. The hot wires or other cutting means will cut through these filaments so that the resulting yarn will have some filament ends giving some of the effect of a staple fiber yarn. Because of the deregistration of the crimped filaments in the web, the yarns produced in this manner are very bulky. When the webs are made of filaments of high tenacity such as a tenacity above about 2 grams per denier, as is the case with filaments of terephthalate polyesters, it is advantageous to use devices other than hot wires for cutting. Thus, a series of anvil rollers comprising rotating, shearing discs mounted alternately on parallel axes at the sides of the discs in close contact having a scissors-like effect on the filaments which pass between the rollers may be employed. One advantage of an anvil roller arrangement is that in addition to being used for slitting webs of stronger fibers, it gives a product free from occasional fused zones which may be formed when hot wires are used on thermoplastic filaments such as cellulose acetate.
The present invention is useful with any combination of continuous filament materials which have been crimped prior to deregistration. The process is particularly useful with filaments of polyethylene terephthalate polyester and cellulose acetate of the usual acetyl content of about 54 to 55 percent calculated as acetic acid. However, the invention is also equally applicable to other tows such as those made of other polyesters such as polyesters of /30 isophthalic and terephthalic acids and other glycols such as dimethylolcyclohexane; linear super polyamides such as nylon-6 and nylon-66; polyacrylonitrile and copolymers of acrylonitrile; olefinic polymers and copolymers such as isotatic polypropylene; other organic derivatives of cellulose such as esters and/or ethers of cellulose, for example cellulose propionate and cellulose acetate propionate and the like; highly esterified cellulose containing less than 0.29 free hydroxyl groups per anhydroglucose units such as cellulose triacetate; rayon and the like.
The number of filaments in the starting tow can vary within wide limits and may range up to as high as about one million with a denier per filament as high as about 25, that is in the range of about 0.5 to about 25 and more preferably in the range of l to 20 denier per filament. The number of crimps per inch of tow may range up to as high as about 80, but for most end products a crimp of about three to 50 crimps per inch, preferably about three to 20 crimps per inch of starting tow are found to be exceptionally satisfactory.
The invention will be described more fully by reference to the example which shows certain preferred embodiments of the present invention.
EXAMPLE 1 In accordance with FIG. 1, a plurality of yarns were produced from two lightweight webs using a band of crimped polyethylene terephthalate tow having about 50,000 five-denier filaments and a band of crimped cellulose acetate tow having about twenty-four thousand 3.3-denier filaments, each crimped at a frequency of about 9.5 crimps per inch. The tows were deregistered and air spread in two stages to a web 30 inches wide, and combined to produce a composite web having a density of about 4 ounces per square yard. The spread web was fed at a rate of about 45 feet per minute to a slitting zone comprising a roll 62 having circumferential parallel circular V-shaped grooves 63 (FIG. 2) separated by circular sharp parallel ridges 64, and a hot wire arrangement 66 having a series of spaced electrically heated wires 67 having operative portions penetrating said web, there being one such wire 67 for each groove 63 engaged by the web, said wires being aligned with said ridges. The web was drawn through the slitting zone 62 by the action of a pair of rolls 68 and 69 about which the slit narrow portions of the web made S wraps. The rolls were driven at a peripheral speed 5 percent greater than the peripheral speed of rolls 39 and 41. Ridges 64 (and wires 67) were spaced one inch apart so that the web was slit into portions each of 864 denier and the number of filaments was about 288. From roll 69 these portions diverged to eye guides 71, spaced further apart, from which they were taken up with a twist of 1% turns per inch on rotating driven bobbins 72 mounted in ring spinner 73 of conventional type. In such ring spinners, as is well known, the bundle of filaments passed through driven feed rolls 74 and 76, stationary balloon guides 77, and moving travelers 78, mounted on reciprocating ring rails 79, before passing onto the bobbin 72.
The resulting yarn was very bulky. its strength was substantially that of a continuous filament yarn, but it had the appearance of a staple fiber yarn because of the presence of projecting ends (on the order of about 10 projecting filaments ends per inch) and loose loops or arches each made up of a small number of crimped filaments (e.g. of one or two filaments) lying along the main body of the yarn. Knitted fabrics of this yarn have an extremely soft, pleasant feel, very suitable for baby sweaters, for example.
The combination yarns of this invention contain at least 10 to percent of every different fiber component. This insures a combination yarn having a substantially uniform blend of each different fiber component.
In the same manner, other continuous filament crimped fibers are deregistered, spread, combined and slit into yarns with correspondingly good results.
While there have been described various embodiments of the present invention, the method described is not intended to be understood as limiting the scope of the invention as it is realized that changes therein are possible. It is intended that each element cited in the following claims is to be understood as referring to all equivalent elements for accomplishing substantially the same results in substantially the same or equivalent manner. It is intended to cover the invention broadly in whatever form its principles may be utilized.
What is claimed is:
l. A method for producing yarn from continuous filaments comprising passing at least two continuously moving tows through a tow opening and deregistering zone, said tows each comprising crimped continuous filaments differing from at least one other tow, deregistering said tows, slitting the resulting composite deregistered tow longitudinally into a plurality of fibrous strips and collecting said strips as combination yarns.
2. The method of claim 1 wherein the continuously moving tows are each passed through separate tow opening and deregistering zones, spearately deregistered, and combined to form a composite tow prior to slitting.
3. The method of claim 2 wherein the tows are spread into webs prior to said combining and slitting.
4. The method of claim 3 wherein the tows are each spread in a plurality of stages.
5. The method of claim 3 wherein the tows are each spread into a web of less than 1 ounce per square yard.
6. The method of claim 4 wherein the composite tow is slit into strips ofabout 0.1 to about 6 inches in width.
77 The method of claim 1 wherein the slit strips are drafted prior to being twisted into yarn.
8. The method of claim I wherein the composite tow is slit into strips having a total denier of about 500 to 7,000.
9. The method of claim 1 wherein the continuous filament tows are polyester terephthalate and cellulose acetate fibers.
10. The method of claim 1 wherein the continuous filament tows are each spread in a plurality of separate spreading stages to form webs of less than about 1 ounce per square yard, combining the spread web, subsequently slitting the combined web into a plurality of strips of about 0.1 to about 6 inches in width and having a total denier ofless than 10,000 and subsequently twisting said strips into yarn.

Claims (10)

1. A method for producing yarn from continuous filaments comprising passing at least two continuously moving tows through a tow opening and deregistering zone, said tows each comprising crimped continuous filaments differing from at least one other tow, deregistering said tows, slitting the resulting composite deregistered tow longitudinally into a plurality of fibrous strips and collecting said strips as combination yarns.
2. The method of claim 1 wherein the continuously moving tows are each passed through separate tow opening and deregistering zones, spearately deregistered, and combined to form a composite tow prior to slitting.
3. The method of claim 2 wherein the tows are spread into webs prior to said combining and slitting.
4. The method of claim 3 wherein the tows are each spread in a plurality of stages.
5. The method of claim 3 wherein the tows are each spread into a web of less than 1 ounce per square yard.
6. The method of claim 4 wherein the composite tow is slit into strips of about 0.1 to about 6 inches in width.
7. The method of claim 1 wherein the slit strips are drafted prior to being twisted into yarn.
8. The method of claim 1 wherein the composite tow is slit into strips having a total denier of about 500 to 7,000.
9. The method of claim 1 wherein the continuous filament tows are polyester terephthalate and cellulose acetate fibers.
10. The method of claim 1 wherein the continuous filament tows are each spread in a plurality of separate spreading stages to form webs of less than about 1 ounce per square yard, combining the spread web, subsequently slitting the combined web into a plurality of strips of about 0.1 to about 6 inches in width and having a total denier of less than 10,000 and subsequently twisting said strips into yarn.
US25675A 1970-04-06 1970-04-06 Method of making a semi-continuous filament combination yarn Expired - Lifetime US3664115A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2567570A 1970-04-06 1970-04-06

Publications (1)

Publication Number Publication Date
US3664115A true US3664115A (en) 1972-05-23

Family

ID=21827438

Family Applications (1)

Application Number Title Priority Date Filing Date
US25675A Expired - Lifetime US3664115A (en) 1970-04-06 1970-04-06 Method of making a semi-continuous filament combination yarn

Country Status (5)

Country Link
US (1) US3664115A (en)
CA (2) CA947491A (en)
DE (1) DE2116508A1 (en)
FR (1) FR2085869B2 (en)
GB (1) GB1325259A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752295A (en) * 1995-07-18 1998-05-19 Nisshinbo Industries Inc. 1 F blended yarn spinning method and blended yarn spinning frame
EP1096047A1 (en) * 1999-10-25 2001-05-02 Celanese Acetate, LLC. Apparatus, method and system for air opening of textile tow and opened textile tow web produced thereby
US6543106B1 (en) 1999-10-25 2003-04-08 Celanese Acetate, Llc Apparatus, method and system for air opening of textile tow and opened textile tow web produced thereby
US20050066493A1 (en) * 2003-09-26 2005-03-31 Celanese Acetate, Llc Method and apparatus for making an absorbent composite
US6874396B2 (en) * 1998-10-14 2005-04-05 Fuji Photo Film Co., Ltd. Web processing system
US20110308051A1 (en) * 2009-09-23 2011-12-22 Jing-Jyr Lin Method for manufacturing weaving material from nonwoven
US20120024123A1 (en) * 2009-04-15 2012-02-02 Hiyama Industry Co., Ltd. Slitter
CN102704075A (en) * 2012-06-26 2012-10-03 东华大学 Filament beam splitting two-axis unfolding device and application
CN102704076A (en) * 2012-06-26 2012-10-03 东华大学 Composite filament spreading device and method for re-spreading upper and lower layers of spread and split filament and application thereof
CN102704127A (en) * 2012-06-26 2012-10-03 东华大学 Lower support type cored enhanced three-axis composite yarn, spinning method and application
CN102704073A (en) * 2012-06-26 2012-10-03 东华大学 Coaxial bidirectional filament spreading device of beam-splitting filament and application
US20140083267A1 (en) * 2010-09-01 2014-03-27 Ford Global Technologies, Llc Method and Apparatus for Making a Fiber Reinforced Article
US20170305583A1 (en) * 2016-04-22 2017-10-26 Encore Packaging Llc Stretch Wrap Dispenser With Cutting and Gathering Mechanisms
US20190233984A1 (en) * 2018-01-31 2019-08-01 Japan Matex Co. Ltd. Apparatus for manufacturing open carbon fiber superfine yarn
WO2020207767A1 (en) * 2019-04-10 2020-10-15 Lenzing Aktiengesellschaft Lyocell fiber tow, its manufacture and use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3175348A (en) * 1963-09-11 1965-03-30 Bloch Godfrey Process and apparatus for making bulked filament yarns
US3251097A (en) * 1963-10-07 1966-05-17 Eastman Kodak Co Methods for producing blended yarn
US3325876A (en) * 1964-08-05 1967-06-20 Du Pont Method for producing elastic yarns and fabrics
US3367101A (en) * 1959-05-22 1968-02-06 Spunize Co Of America Inc Crimped roving or sliver
US3398220A (en) * 1964-06-26 1968-08-20 Parker Pace Corp Process for converting a web of synthetic material into bulk yarns
US3417560A (en) * 1963-11-21 1968-12-24 Celanese Corp Method and apparatus for producing a semi-continuous filament yarn
US3420049A (en) * 1965-01-05 1969-01-07 Heberlein Patent Corp Process for making combination yarn and product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367101A (en) * 1959-05-22 1968-02-06 Spunize Co Of America Inc Crimped roving or sliver
US3175348A (en) * 1963-09-11 1965-03-30 Bloch Godfrey Process and apparatus for making bulked filament yarns
US3251097A (en) * 1963-10-07 1966-05-17 Eastman Kodak Co Methods for producing blended yarn
US3417560A (en) * 1963-11-21 1968-12-24 Celanese Corp Method and apparatus for producing a semi-continuous filament yarn
US3398220A (en) * 1964-06-26 1968-08-20 Parker Pace Corp Process for converting a web of synthetic material into bulk yarns
US3325876A (en) * 1964-08-05 1967-06-20 Du Pont Method for producing elastic yarns and fabrics
US3420049A (en) * 1965-01-05 1969-01-07 Heberlein Patent Corp Process for making combination yarn and product

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5752295A (en) * 1995-07-18 1998-05-19 Nisshinbo Industries Inc. 1 F blended yarn spinning method and blended yarn spinning frame
US6874396B2 (en) * 1998-10-14 2005-04-05 Fuji Photo Film Co., Ltd. Web processing system
EP1096047A1 (en) * 1999-10-25 2001-05-02 Celanese Acetate, LLC. Apparatus, method and system for air opening of textile tow and opened textile tow web produced thereby
US6543106B1 (en) 1999-10-25 2003-04-08 Celanese Acetate, Llc Apparatus, method and system for air opening of textile tow and opened textile tow web produced thereby
US20050066493A1 (en) * 2003-09-26 2005-03-31 Celanese Acetate, Llc Method and apparatus for making an absorbent composite
US6983520B2 (en) * 2003-09-26 2006-01-10 Celanese Acetate, Llc Method and apparatus for making an absorbent composite
US8516936B2 (en) * 2009-04-15 2013-08-27 Nishimura Mfg. Co., Ltd Slitter
US20120024123A1 (en) * 2009-04-15 2012-02-02 Hiyama Industry Co., Ltd. Slitter
US20110308051A1 (en) * 2009-09-23 2011-12-22 Jing-Jyr Lin Method for manufacturing weaving material from nonwoven
US8807175B2 (en) * 2009-09-23 2014-08-19 Jing-Jyr Lin Method for manufacturing weaving material from nonwoven
US20140083267A1 (en) * 2010-09-01 2014-03-27 Ford Global Technologies, Llc Method and Apparatus for Making a Fiber Reinforced Article
CN102704127B (en) * 2012-06-26 2015-02-25 东华大学 Lower support type cored enhanced three-axis composite yarn, spinning method and application
CN102704127A (en) * 2012-06-26 2012-10-03 东华大学 Lower support type cored enhanced three-axis composite yarn, spinning method and application
CN102704076A (en) * 2012-06-26 2012-10-03 东华大学 Composite filament spreading device and method for re-spreading upper and lower layers of spread and split filament and application thereof
CN102704076B (en) * 2012-06-26 2014-07-02 东华大学 Composite filament spreading device and method for re-spreading upper and lower layers of spread and split filament and application thereof
CN102704075B (en) * 2012-06-26 2014-07-02 东华大学 Filament beam splitting two-axis unfolding device and application
CN102704073A (en) * 2012-06-26 2012-10-03 东华大学 Coaxial bidirectional filament spreading device of beam-splitting filament and application
CN102704075A (en) * 2012-06-26 2012-10-03 东华大学 Filament beam splitting two-axis unfolding device and application
CN102704073B (en) * 2012-06-26 2014-08-13 东华大学 Coaxial bidirectional filament spreading device of beam-splitting filament and application
US10683124B2 (en) * 2016-04-22 2020-06-16 Encore Packaging Llc Stretch wrap dispenser with cutting and gathering mechanisms
US20170305583A1 (en) * 2016-04-22 2017-10-26 Encore Packaging Llc Stretch Wrap Dispenser With Cutting and Gathering Mechanisms
US20190233984A1 (en) * 2018-01-31 2019-08-01 Japan Matex Co. Ltd. Apparatus for manufacturing open carbon fiber superfine yarn
US11131041B2 (en) * 2018-01-31 2021-09-28 Japan Matex Co. Ltd. Apparatus for manufacturing open carbon fiber superfine yarn
US11555260B2 (en) * 2018-01-31 2023-01-17 Japan Matex Co. Ltd. Apparatus for manufacturing open carbon fiber superfine yarn
WO2020207767A1 (en) * 2019-04-10 2020-10-15 Lenzing Aktiengesellschaft Lyocell fiber tow, its manufacture and use

Also Published As

Publication number Publication date
CA947491A (en) 1974-05-21
CA964850A (en) 1975-03-25
DE2116508A1 (en) 1971-10-28
GB1325259A (en) 1973-08-01
FR2085869B2 (en) 1976-04-30
FR2085869A2 (en) 1971-12-31

Similar Documents

Publication Publication Date Title
US3664115A (en) Method of making a semi-continuous filament combination yarn
US3470685A (en) Synthetic textile yarn
US4218869A (en) Spun-like continuous multifilament yarn
US3796035A (en) Semi-continuous filament combination yarn
US2810281A (en) Textile articles and processes for making same
US3091913A (en) Variable denier composite yarn
US3251181A (en) Coherent bulky yarn and process for its production
US4219997A (en) Spun-like continuous multifilament yarn
CH518386A (en) Process for the production of core yarn
US3417560A (en) Method and apparatus for producing a semi-continuous filament yarn
US3104516A (en) Process for preparing a variable denier composite multifilament yarn
US3470594A (en) Method of making synthetic textile yarn
US3175351A (en) Method for making bulked continuous filament yarns
US3199284A (en) Process for making yarn from a thermoplastic strip
US4226076A (en) Apparatus and process for producing a covered elastic composite yarn
US3256134A (en) Yarn treating process and product
CA1055239A (en) Multipurpose intermingling jet and process
US3273329A (en) Textile yarns
US3444683A (en) Manufacture of endless threadlike products of thermoplastic materials
US4100727A (en) Method of making a core yarn
US3422616A (en) Manufacture of threads,cords,ropes and like articles
US3501811A (en) Continuous filament webs
US3175348A (en) Process and apparatus for making bulked filament yarns
US3864903A (en) Synthetic fibrous unit which is three-dimensionally crimped and twisted
US3611522A (en) Method of crimping continuous filament