US3662310A - Sand-filled electric fuses - Google Patents

Sand-filled electric fuses Download PDF

Info

Publication number
US3662310A
US3662310A US53348A US3662310DA US3662310A US 3662310 A US3662310 A US 3662310A US 53348 A US53348 A US 53348A US 3662310D A US3662310D A US 3662310DA US 3662310 A US3662310 A US 3662310A
Authority
US
United States
Prior art keywords
fuse element
arc
fuse
sand
filled electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US53348A
Inventor
Per Ostergaard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AS LAUR KNUDSEN
KNUDSEN NORDISK ELECT
NORDISK ELEKTRICITETS SELSKAB
Cooper Industries LLC
Original Assignee
KNUDSEN NORDISK ELECT
NORDISK ELEKTRICITETS SELSKAB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KNUDSEN NORDISK ELECT, NORDISK ELEKTRICITETS SELSKAB filed Critical KNUDSEN NORDISK ELECT
Application granted granted Critical
Publication of US3662310A publication Critical patent/US3662310A/en
Assigned to MCGRAW-EDISON COMPANY, A DE CORP. reassignment MCGRAW-EDISON COMPANY, A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: A/S LAUR. KNUDSEN NORDISK ELEKRICITETS SELSKAB
Assigned to COOPER INDUSTRIES, INC., A CORP. OF OH. reassignment COOPER INDUSTRIES, INC., A CORP. OF OH. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MCGRAW-EDISON COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/06Fusible members characterised by the fusible material

Abstract

In a sand-filled electric fuse, the fuse element and the surrounding sand consist of or contain such materials that mutually react chemically in an exothermic process at temperatures above the melting point of the fuse element. The fuse element may predominantly consist of aluminum or magnesium and the filler material may be quartz sand.

Description

United States Patent Nielsen 51 May 9, 1972 [54] SAND-FILLED ELECTRIC FUSES [72] Inventor: Per Qstergaard, Nielsen, Copenhagen,
Denmark [73} Assignee: Aktieselskabet Laur. Knudsen, Nordisk Elektricitets Selskab, Copenhagen, Denmark [22] Filed: July 9, 1970 [21] Appl. No.: 53,348
[30] Foreign Application Priority Data May 4, 1970 Denmark ..2250/70 [52] U.S. Cl ..337/290 [51] Int. Cl. ..H01h 85/38 [58] Field ofSearch ..337/l58,273, 276, 290, 296
[56] References Cited UNITED STATES PATENTS 1,856,701 5/1932 Gerdien ..337/29O Primary ExaminerGeorge Harris Assistant E.\'aminerF. E. Bell Attorney-Watson, Cole, Grindle & Watson [57] ABSTRACT In a sand-filled electric fuse, the fuse element and the surrounding sand consist of or contain such materials that mutually react chemically in an exothermic process at temperatures above the melting point of the fuse element. The fuse element may predominantly consist of aluminum or magnesium and the filler material may be quartz sand.
3 Claims, 2 Drawing Figures PATENTEUMAY 9 I972 3, 662 31 0 Fig- 1 ATTORNEY SAND-FILLED ELECTRIC FUSES BACKGROUND OF THE INVENTION This invention relates to a sand-filled electric fuse, that is a fuse of the kind where the breaking of the current takes place by means of an electric arc burning in a closely packed granular insulating material of uniform or varying grain size. Within the art, such material is usually referred to as sand irrespective of its exact chemical composition.
The operation of electric fuses can be divided into two periods, the melting period or pre-arcing period which runs from the moment when the current, e.g. a short-circuit current, begins to flow, up to the moment when the fuse element melts and opens the metallic circuit, and the arcing period which runs from then on until the current is ultimately broken.
When the fuse element melts and the arc is established it is important for the achievement of a satisfactory operation of the fuse that the voltage established across the arc has and retains a suitable magnitude in relation to the voltage of the circuit in which the fuse is inserted.
In order to ensure a suitable arc voltage magnitude two different approaches may be distinguished. The fuse can be designed in such a manner that a multitude of serially connected arcs are formed, or in such a manner that a long arc is formed, but these two approaches are not mutually exclusive. There are other conditions too, that contribute to the increase of the arc voltage, such as the cooling from the filler material surrounding the arc and the increase of pressure in the limited space in which the fuse element and the filler material is enclosed.
A long arc can be achieved by causing a long cylindrical wire to melt, but this method has certain disadvantages, e.g. that it leads to a rather slowly melting fuse. It is known to avoid these disadvantages by the use of a fuse element having a reduced cross section at one or more locations. In the case of an overcurrent, such a reduced cross section will melt first, and thereafter the arc will be elongated by the progressive melting of more and more of the fuse element.
SUMMARY OF THE INVENTION It is the aim of this invention to devise methods for promoting the elongation of the arc during the arcing period, thereby to increase the arc-voltage and thus to shorten the arcing period of an electric fuse of the kind mentioned.
According to this invention this is achieved by surrounding the fuse element by a filling consisting of materials that will cause a chemical reaction of an exothermic character at temperatures above the melting temperature of the fuse element.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 shows a fuse element of known design, and FIG. 2 shows a diagrammatic presentation of the voltage across the arc.
DESCRIPTION OF THE PREFERRED EMBODIMENT The fuse element, of which a part is shown in figure 1, consists of a strip or ribbon of metal 11 which at a suitable location is pierced by a hole 12, by which the cross section is reduced. Such a reduction constitutes a weakening of the fuse element at the location considered with the effect that the fuse element is more prone to melt at such a location. A weakening of the fuse element may as well be obtained by any other known method, e.g. byv locally increasing the electric resistance by alloying, by a reduced cooling, or by purely random variations of the environment. On the occurrence of an overcurrent the fuse element will melt first at a weakened location, whereby a short are will be formed.
However, the short are formed represents a certain voltage, and with the current flowing it represents a release of energy. The arc voltage can be considered to be composed of three parts as illustrated in FIG. 2.
In the immediate proximity of the end points of the are I there are two practically constant voltage drops, the so-called cathode drop 1 and anode drop 2, and in the arc in between, in the plasma, there is a plasma drop 3, which is approximately proportional to the length of the arc.
The characteristic property of the two voltage drops 1 and 2, the cathode drop and the anode drop, is the fact that they appear in the immediate neighborhood of the surface of the fuse element. Thus the energy associated with these voltage drops is released at and absorbed by the fuse element itself, in the form of heat conducted to the portion of the fuse element immediately behind the surface. The result is that this portion of the fuse element is heated to melting. Since cathode drop and anode drop are essentially constant values, the energy released will be proportional to the current multiplied by the time elapsed, or in other words proportional to the integral of the current over the interval of time considered.
If the heating is taken to be adiabatic, and the heat contributed from the metallic resistance of the fuse element is neglected, the elongation of the arc will be proportional to the integral of the current over the time elapsed. As this is in fact a law of nature it is not possible by conventional means to promote the elongation, and it is found that any variation introduced with the object of increasing the speed, by which the arc is elongated, is accompanied by other variations with the opposite tendency.
In the case where only a single arc is involved it is known to cause a further elongation of the are by mechanical means, viz. by pulling the two parts of the fuse element apart. This is a practical solution for fuse elements surrounded by air, but not so practical when the fuse element is surrounded by a closely packed granular material.
However, by introducing an exothermic chemical process of the metal of the fuse element and the surrounding filler, which process takes place at temperatures above the melting point of the fuse element, as proposed according to the invention, there will be an extra contribution of energy available for the melting of the fuse element, and consequently the elongation of the arc will proceed faster. After the melting of the weakened part of the fuse element the electric and the chemical energy will cause a progressive destruction of the remaining part of the fuse element, and the electrically conducting metal of the fuse element will be transformed into an electrically insulating chemical compound.
It is a condition for the success of the invention that the chemical reaction does not take place at any of the values of temperature that may prevail in the fuse during normal service, but only at temperatures existing under the influence of the arc at the end points of the arc, i.e. temperatures above the melting point of the base metal of the fuse element.
It is not a necessary condition for the invention that the fuse element has one or more weakened locations, but such have the practical advantage of providing well defined starting points for the arc. For this purpose the weakening need only be slight, e.g. corresponding to a reduction of cross section of 10-20 percent. Preferably, the weakening should not exceed percent.
The invention is further explained by the following examples.
In one embodiment of the invention a fuse element of the type shown in FIG. 1 may be used. The fuse element consists essentially of aluminum and it is packed in quartz sand, which is an oxide of silicon. After the formation of an arc at the weakened spot on the fuse element, the chemically very active aluminum will react with the quartz sand. Practical experiments have shown cases in which the energy available for the destruction of the fuse element is more than doubled, i.e. the same elongation of the arc can be achieved in less than half the time.
Another embodiment of the invention utilizes a fuse element consisting essentially of magnesium, which in the same manner is caused to react with a filler of quartz sand.
exothermic reaction at a temperature greater than the melting point of said fusible element only with the striking of an arc in the region of said at least one weakened area. whereby the heat from said exothermic reaction elongates said are to extinguish it.
2. An electric fuse as in claim 1, in which the fuse element predominantly consists of aluminum.
3. An electric fuse as in claim 1, in which the fuse element predominantly consists of magnesium.
ta n a

Claims (2)

  1. 2. An electric fuse as in claim 1, in which the fuse element predominantly consists of aluminum.
  2. 3. An electric fuse as in claim 1, in which the fuse element predominantly consists of magnesium.
US53348A 1970-05-04 1970-07-09 Sand-filled electric fuses Expired - Lifetime US3662310A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK225070 1970-05-04

Publications (1)

Publication Number Publication Date
US3662310A true US3662310A (en) 1972-05-09

Family

ID=8111075

Family Applications (1)

Application Number Title Priority Date Filing Date
US53348A Expired - Lifetime US3662310A (en) 1970-05-04 1970-07-09 Sand-filled electric fuses

Country Status (6)

Country Link
US (1) US3662310A (en)
CA (1) CA942803A (en)
DE (1) DE2121303B2 (en)
FR (1) FR2088316B1 (en)
GB (1) GB1345789A (en)
SE (1) SE380671B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940728A (en) * 1972-08-08 1976-02-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Alloy for a high temperature fuse
WO1982002795A1 (en) * 1981-02-05 1982-08-19 Norholm Olav Electric fuses
GB2166010A (en) * 1984-10-16 1986-04-23 Brush Fusegear Ltd Electrical fuse

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010467A1 (en) 2010-03-06 2010-12-02 Daimler Ag Electrical fuse i.e. high voltage fuse, has fusion conductor arranged in housing that is formed from anodized aluminum, where housing is filled with granular filling material around fusion conductor and formed in cylindrical shape

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1856701A (en) * 1925-10-16 1932-05-03 Westinghouse Electric & Mfg Co Electrical fuse for high or low voltage
DE662877C (en) * 1937-02-07 1938-07-23 Aeg High-voltage, high-performance fuse
US2223958A (en) * 1937-07-23 1940-12-03 Laursen Bruno Lauris Folding furniture
US2960589A (en) * 1959-01-30 1960-11-15 Chase Shawmut Co Electric fuses
US3222479A (en) * 1961-01-05 1965-12-07 Overseas Finance And Trading C High voltage current limiting fuse
US3227844A (en) * 1962-11-13 1966-01-04 Mc Graw Edison Co Fuse with hydrated arc extinguishing material
US3529270A (en) * 1968-05-13 1970-09-15 Chase Shawmut Co Electric high interrupting capacity fuse for low current ratings

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1856701A (en) * 1925-10-16 1932-05-03 Westinghouse Electric & Mfg Co Electrical fuse for high or low voltage
DE662877C (en) * 1937-02-07 1938-07-23 Aeg High-voltage, high-performance fuse
US2223958A (en) * 1937-07-23 1940-12-03 Laursen Bruno Lauris Folding furniture
US2960589A (en) * 1959-01-30 1960-11-15 Chase Shawmut Co Electric fuses
US3222479A (en) * 1961-01-05 1965-12-07 Overseas Finance And Trading C High voltage current limiting fuse
US3227844A (en) * 1962-11-13 1966-01-04 Mc Graw Edison Co Fuse with hydrated arc extinguishing material
US3529270A (en) * 1968-05-13 1970-09-15 Chase Shawmut Co Electric high interrupting capacity fuse for low current ratings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940728A (en) * 1972-08-08 1976-02-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Alloy for a high temperature fuse
WO1982002795A1 (en) * 1981-02-05 1982-08-19 Norholm Olav Electric fuses
GB2166010A (en) * 1984-10-16 1986-04-23 Brush Fusegear Ltd Electrical fuse

Also Published As

Publication number Publication date
DE2121303A1 (en) 1971-11-25
CA942803A (en) 1974-02-26
SE380671B (en) 1975-11-10
FR2088316B1 (en) 1976-07-23
FR2088316A1 (en) 1972-01-07
GB1345789A (en) 1974-02-06
DE2121303B2 (en) 1980-11-13

Similar Documents

Publication Publication Date Title
US3705373A (en) Current limiting fuse
US2988620A (en) Time-lag fuses
US3243552A (en) Current limiting fuse
US4057774A (en) Miniature time-delay fuse
US2302820A (en) Safety fuse for electric circuits
US4374371A (en) Cadmium electric fuse
US3287524A (en) Sand-teflon means to improve low current interruption performance of high voltage current limiting type fuses
US4388603A (en) Current limiting fuse
US2111749A (en) Electric protective device
US3287525A (en) Terminal means for fusible element of current limiting fuse
US2293953A (en) Thermal protective device for electric circuits
US2833890A (en) Fillerless one time fuses
US3766509A (en) High voltage current limiting fuse
US4123738A (en) High voltage current limiting fuse
US3662310A (en) Sand-filled electric fuses
US4114128A (en) Composite sectionalized protective indicating-type fuse
US3374328A (en) Cartridge-type fuse with explosion pots
GB702582A (en) Improvements in current-limiting electric cartridge fuses
US2964604A (en) Current-limiting fuses having compound arc-voltage generating means
US2688061A (en) Time lag fuse
US3840836A (en) Current limiting sand fuse
US3012121A (en) Electric fuses
JPH0457056B2 (en)
US4283700A (en) Double tubular time-lag fuse having improved breaking capacity
US4227167A (en) High-interrupting capacity fuse

Legal Events

Date Code Title Description
AS Assignment

Owner name: MCGRAW-EDISON COMPANY, ROLLING MEADOWS, ILL A DE C

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:A/S LAUR. KNUDSEN NORDISK ELEKRICITETS SELSKAB;REEL/FRAME:004293/0076

Effective date: 19840703

AS Assignment

Owner name: COOPER INDUSTRIES, INC., 1001 FANNIN, HOUSTON, TEX

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MCGRAW-EDISON COMPANY;REEL/FRAME:004510/0810

Effective date: 19860130