US3661532A - Process and agent for the detection of silver ions - Google Patents

Process and agent for the detection of silver ions Download PDF

Info

Publication number
US3661532A
US3661532A US96665A US3661532DA US3661532A US 3661532 A US3661532 A US 3661532A US 96665 A US96665 A US 96665A US 3661532D A US3661532D A US 3661532DA US 3661532 A US3661532 A US 3661532A
Authority
US
United States
Prior art keywords
composition according
cadmium
selenium
sulfide
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US96665A
Other languages
English (en)
Inventor
Dieter Schmitt
Alfred Stein
Wilhelm Baumer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Application granted granted Critical
Publication of US3661532A publication Critical patent/US3661532A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Definitions

  • Schmitt et al. 51 May 9, 1972 54 PROCESS AND AGENT FOR THE 58 Field of Search ..252/408; 23/253 TP DETECTION OF SILVER IONS 56 R i C'ted 721 Inventors: Dieter Schmitt; Alfred Stein; Wilhelm I 1 e Baumer, all of Darmstadt, Germany UNITED STATES PATENTS 1 Assignee Merck Pate"! Gesellschafl 3,510,263 5/1970 l-lach ..23/253 TP be excterwitz, Darmstadt, Germany Primary Examiner-John T. Goolkasian ⁇ 22] Filed: Dec. 9, 1970 Assistant Examiner-Lorraine T.
  • Foreign Application Priority Data An lndlcator for the colorlmetrlc detectlon of silver lons ls Aug. 4 l970 Germany 20 33 1 formed by impregnating an absorbent carrier with an intimate mixture of cadmium sulfide and selenium.
  • U.S. Cl. ..23/253 TP, 23/230 [51 Int.
  • test paper which can be employed for these purposes.
  • this paper still exhibits a number of drawbacks.
  • yellow test paper containing cadium sulfide attains a darker shade only gradually after immersion into a used fixing bath.
  • a definite final color does not occur within a practicable period of time.
  • this conventional semiquantitative silver determination is conducted preferably in the presence of the light of an incandescent lamp.
  • Another disadvantage is that when a conventional test paper is immersed into a fixing bath containing a low silver concentration, e.g., about l-200 mg./l. of Ag(I), the presence of the silver ions is indicated by the darkening ofthe test paper several minutes after immersion therein.
  • a low silver concentration e.g., about l-200 mg./l. of Ag(I)
  • the novel detection reaction of this invention exhibits particular advantages for the qualitative and semiquantitative determination of silver ions present in solutions, including fixing baths.
  • a quick and reliable determination can be made in photo and X-ray laboratories in order to determine whether the fixing bath has sufficient residual fixing power or must be replaced by a new bath.
  • the capacity of normal fixing baths containing sodium thiosulfate requires the following concentration: 2 g. of Ag(l) per liter for papers, 3 g. of Ag(l) per liter for films, and 4 g. of Ag(l) per liter for X-ray films.
  • the capacity of rapid fixing baths containing ammonium thiosulfate is, for papers, films and X-ray films, approximately g. of Ag(l) per liter.
  • novel detection test of this invention is also more sensitive than the conventional processes known heretofore.
  • This invention relates to a process, composition and agent for the colorimetric detection of silver ions in a solution comprising an admixture of cadmium sulfide and finely dispersed selenium.
  • compositions of this invention comprise an admixture of cadmium sulfide and finely divided selenium.
  • the selenium and cadmium sulfide are present in the novel compositions of this invention in a weight ratio of less than one, e.g., about 1:3 to about 1:75, preferably about 1:8 to about 1:40.
  • the compositions are applied to an absorbent carrier, thus facilitating the easy use thereof.
  • the cadmium sulfide and selenium particles are in intimate admixture, i.e., each particle of selenium is preferably in physical contact with one or more particles of cadmium sulfide.
  • a particularly suitable agent for detecting the presence of Ag-lions is obtained when cadmium sulfide is produced in the presence of finely dispersed, particulate, selenium.
  • the selenium is preferably obtained from selenious acid (H SeO or a salt thereof by reduction.
  • Sodium selenite (Na SeO is preferred.
  • the reduction can be easily carried out by employing sodium sulfide as the preferred reducing agent.
  • sodium sulfide employed, the sulfide ions can also be used for producing the cadmium sulfide.
  • other reducing agents which are capable of converting selenites into selenium can also be utilized, e.g., hydroxylamin hydrochloride, hydrazine sulphate.
  • a particularly suitable reducing agent is ascorbic acid.
  • the finely dispersed selenium can be formed simultaneously with the CdS; it can be mixed in finely divided form with the CdS during the preparation of the CdS; or mixed with the CdS after the formation thereof.
  • the selenium is admixed with the CdS in a very finely divided form, more preferably in combination with a protective colloid, for example, celluloses, colloids, e.g., hydroxypropylcellulose, polyvinylpyrrolidone or polyvinyl alcohols, being added thereto. It is essential that the selenium and cadmium sulfide be intimately and uniformly intermixed.
  • a water-soluble cadmium salt can be reacted with sodium sulfide in the presence of very finely dispersed selenium so that the cadmium sulfide intermixes with the selenium as it is formed.
  • the particle size of the selenium can range from about 1 ,u. 60 ,u, preferably about 5 p. 20 pt. While the exact particle size of the CdS and Se is not critical, the finer their particle size, the more sensitive is the resulting admixture as a colorimetric reagent.
  • the cadmium sulfide is suitably produced by reacting a water-soluble cadmium salt with a water-soluble sulfide, e.g., Na S, K 8, Li S, H 8, preferably sodium sulfide, (preferably Na s 9H O).
  • a water-soluble sulfide e.g., Na S, K 8, Li S, H 8
  • sodium sulfide preferably Na s 9H O
  • suitable water-soluble cadmium salts include cadmium bromide, chloride, acetate, nitrate and/0r sulfate. It is only necessary to add an equivalent amount of sulfide ions, calculated on the cadmium ions present.
  • a test paper can be prepared from the composition of this invention by impregnating an absorbent paper with an aqueous solution of a water-soluble cadmium salt, e.g. cadmium chloride, and selenious acid or a salt thereof, e.g., sodium selenite, in an amount at least sufficient to provide the desired amount of selenium in the final composition.
  • the impregnated paper is dried and then impregnated with an aqueous solution of sodium sulfide in an amount sufficient to reduce the selenuous acid of salts thereof already present to the desired selenium and convert the water-soluble cadmium salt to CdS.
  • the sodium sulfide can also be dissolved in methanol, a watermethanol mixture or other aqueous organic solvent mixture.
  • Preferred impregnating solutions contain, for example, in ml. of water about 0.3 5 g. CdCl or molar equivalent amount of another soluble cadmium salt and 0.01 0.5 g.
  • the second impregnating solution preferably contains 0.3 6.0 g. of Na s 91-1 in 100 ml. of water, methanol or a mixture thereof.
  • a test paper can also be obtained by whipping pure paper linters or cellulose fibers by vigorous agitation in an aqueous solution comprising a water soluble cadmium salt, e.g., CdCl and H,Se0;, or a salt thereof, e.g., Na SeO
  • a solution of a water-soluble sulfide e.g. Na s 91-1 0 in water or methanol is then added dropwise thereto resulting in the formation of a yellow CdS-Se co-precipitate.
  • This precipitate is deposited in a very finely particulate form on the fibers.
  • the latter can thereafter be processed into a paper according to conventional methods.
  • a highly suitable indicator paper is formed from absorbent filter paper having a weight per unit area of 100-140 g./m which contains, for example, the following reagents per square meter: 0.35 7 g. Cd (equivalent to 0.45 9 g. C(15) and 0.01 0.8 g. Se.
  • the ratio of Se to Cd is preferably about 1:10 to 1:50 and more preferably 1:20 to 1:25.
  • suspensions or pastes of the novel CdS-Se compositions can be used for the detection of silver ions in the same manner.
  • impregnated papers When impregnated papers are employed, they can either be cut into convenient strips or preferably into square pieces which can be glued onto any convenient supporting substitute, e.g., plastic films, paper or metallic strips or they can be sealed onto or into such films or strips.
  • any convenient supporting substitute e.g., plastic films, paper or metallic strips or they can be sealed onto or into such films or strips.
  • Ag(l) can be detected with certainty at a concentration of from 10 to 100 mg./l. with the conversion of the light yellow composition to a dark yellow color. At higher silver ion concentrations, the color becomes brown to black. The color change occurs within seconds after the novel composition is contacted with the Ag(l) solution and remains constant for a long period thereafter. Even when there are present very small amounts of silver, e.g., as low as 10 p.p.m., a perceptible color change can clearly be observed within 1-2 minutes after initiating the detection reaction.
  • test solution contains a very low quantity of silver, e.g., below 500 ppm
  • the detection reaction can also advantageously be conducted in the presence of UV radiation of fluorescent bulb irradiation.
  • the detection reaction can be carried out at a mildly acid to neutral pH, i.e., about 3-7.
  • EXAMPLE 1 Filter paper (Schleicher and Schiill No. 1451 or No. 2316, weight per unit area 120 g./m is impregnated with a Solution 1 (CdCl H SO set forth in the table below, dried, then impregnated with a Solution 2 (Na s) set forth in the table below and once again dried.
  • the amounts disclosed are, in each case, dissolved in, respectively, 100 ml. of water.
  • the thus-obtained yellow colored impregnated papers are either cut into strips (preferably about 6X60 mm.) or divided into small squares (about 5X5 mm.) The latter are, in turn, glued onto plastic strips of the above-mentioned dimension.
  • the reaction zones are cemented at a spacing of about 1-5 mm. from the lower rim of the plastic strips so that the test rods can be conveniently handled at their upper end.
  • the test rods are dipped for about 1 second into the solution to betested, in such a manner that the yellow indicator zone is completely wetted.
  • the silver content of the solu tion to be examined is determined by comparison with a color scale.
  • the color scale below gives the corresponding color shades obtained with the test reagent at various Ag(l) concentrations, (from yellow to brownish yellow to yellowish brown to brown).
  • EXAMPLE 2 Analogously to Example 1(d), the filter paper is impregnated with a solution 1 and 2, wherein solution 1 contains, as a substitute for H SeO an equivalent amount (0.107 g.) of Na SeO After immersion into a solution containing a brown concentration of silver ions 6g/l), a brown discoloration occurs.
  • EXAMPLE 3 20 g. of pure paper linters is whipped up in a solution of 1.5 g. of CdCl in l 1. of H 0. With vigorous agitation, a solution of 1.8 g. of Na s QH O in 50 mi. of water is added dropwise thereto.
  • the yellow-orange colored pulp processed into paper on a paper machine having, after drying, a yellow color and a weight per unit area of about g./m".
  • EXAMPLE 4 A solution of 0.16 g. of Na S in 2.5 ml. of water is combined, with shaking, with 0.12 g. of Na SeO in 3 ml. of H 0.
  • the thus-obtained selenium suspension is mixed with 1 g. of cadmium chloride (CdCl H O) in 5 ml. of H and mixed with 80 ml. of an aqueous 0.5 percent hydroxypropylcellulose solution.
  • cadmium chloride CdCl H O
  • aqueous 0.5 percent hydroxypropylcellulose solution By the addition of 1.1 g..of Na s 91-1 0 in ml. of H 0 under agitation, cadmium sulfide is precipitated in a very finely dispersed form on the selenium which is finely and uniformly distributed in the water by the protective colloid.
  • the resulting CdS/Se suspension is highly suitable for the detection of silver ions in concentrations as low as p.p.m., e.g., fixing baths.
  • the suspension can also be diluted up to eight-fold, preferably with a 0.5 percent aqueons hydroxypropylcellulose solution. Even after such dilution, accurate determination of Ag ions is possible.
  • EXAMPLE 5 0.12 g. of Na SeO in 5 ml. of water is mixed dropwise with 0.1 g. of ascorbic acid in 2 ml. of water. The thus-obtained selenium suspension is then reacted with CdS analogously to Example 4. When a solution containing 1 g. of Ag /l. plus iron ions is added thereto a marked color change toward yellowish brown can be detected.
  • Test strips are prepared according to Example 1, except, instead of using CdCl another water-soluble cadmium salt set forth in the table below is employed to form the CdS suspen sion.
  • Example Cd-Salt Amount Analogous to (g.) Example (:1) CdBr 0.88 1(b) (b) Cd(0OCCH 1.7 1(n) (c) Cd(NO )2 5.9 1(f) (d) CdSO 1.66 HQ)
  • the preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.
  • a composition for the colorimetric detection of silver ions in afluid comprising an intimate, substantially homogeneous physical mixture of cadmium sulfide and particulate selenium.
  • composition according to claim 1 wherein said cadmium sulfide is formed in the presence of finely dispersed seleni- 5.
  • a composition according to claim 4 wherein the physical mixture is produced by reacting a water-soluble cadmium salt with a water-soluble sulfide in the presence of a suspension of finely divided selenium.
  • composition according to claim 5 wherein the watersoluble cadmium salt is cadmium chloride.
  • composition according to claim 5 wherein the physical mixture is formed by adding a solution of the sulfide to a solution of a mixture of the water soluble cadmium salt and selenious acid or a water soluble salt thereof.
  • composition according to claim 7 wherein the cadmium salt is cadmium chloride and the sulfide is sodiumsulfide.
  • An agent for the colorimetric detection of silver ions comprising an absorbent carrier impregnated with a composition according to claim 1.
  • An agent for the colorimetric detection of silver ions comprising an absorbent carrier impregnated with a composition according to claim 2.
  • An agent for the colorimetric detection of silver ions comprising an absorbent carrier impregnated with a composition according to claim 3.
  • An agent according to claim 12 wherein the paper has a weight per unit area of -140 g./m" and contains absorbed thereon about 0.45-9 grams of CdS and about 0.01-0.8 grams of selenium per m

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
US96665A 1970-08-04 1970-12-09 Process and agent for the detection of silver ions Expired - Lifetime US3661532A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2038651A DE2038651C3 (de) 1970-08-04 1970-08-04 Verfahren und Mittel zum Nachweis von Silberionen

Publications (1)

Publication Number Publication Date
US3661532A true US3661532A (en) 1972-05-09

Family

ID=5778818

Family Applications (1)

Application Number Title Priority Date Filing Date
US96665A Expired - Lifetime US3661532A (en) 1970-08-04 1970-12-09 Process and agent for the detection of silver ions

Country Status (13)

Country Link
US (1) US3661532A (de)
JP (1) JPS4935716B1 (de)
BE (1) BE760098A (de)
CH (1) CH549802A (de)
CS (1) CS153401B2 (de)
DE (1) DE2038651C3 (de)
FR (1) FR2101326A5 (de)
GB (1) GB1281817A (de)
IL (1) IL35626A (de)
IT (1) IT957045B (de)
NL (1) NL7016070A (de)
SE (1) SE367706B (de)
ZA (1) ZA707578B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309186A (en) * 1980-06-30 1982-01-05 Eastman Kodak Company Hydrophilic film for detection of heavy metals
EP0536059A2 (de) * 1991-09-30 1993-04-07 Eastman Kodak Company Testsatz und Verfahren zum Nachweis der Konzentrationen von metallischen Ionen in einer Lösung
US6145468A (en) * 1998-10-19 2000-11-14 Woog; Manfred J. Silver indicator methods and test kit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510263A (en) * 1968-01-05 1970-05-05 Hach Chemical Co Test papers,methods for carrying out chemical analyses and methods for making the test papers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510263A (en) * 1968-01-05 1970-05-05 Hach Chemical Co Test papers,methods for carrying out chemical analyses and methods for making the test papers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309186A (en) * 1980-06-30 1982-01-05 Eastman Kodak Company Hydrophilic film for detection of heavy metals
EP0536059A2 (de) * 1991-09-30 1993-04-07 Eastman Kodak Company Testsatz und Verfahren zum Nachweis der Konzentrationen von metallischen Ionen in einer Lösung
EP0536059A3 (de) * 1991-09-30 1993-06-09 Eastman Kodak Company Testsatz und Verfahren zum Nachweis der Konzentrationen von metallischen Ionen in einer Lösung
US6145468A (en) * 1998-10-19 2000-11-14 Woog; Manfred J. Silver indicator methods and test kit

Also Published As

Publication number Publication date
FR2101326A5 (de) 1972-03-31
JPS4935716B1 (de) 1974-09-25
DE2038651B2 (de) 1978-09-07
NL7016070A (de) 1972-02-08
DE2038651C3 (de) 1979-05-10
CS153401B2 (de) 1974-02-25
DE2038651A1 (de) 1972-02-10
CH549802A (de) 1974-05-31
IT957045B (it) 1973-10-10
BE760098A (fr) 1971-06-09
IL35626A0 (en) 1971-01-28
GB1281817A (en) 1972-07-19
SE367706B (de) 1974-06-04
IL35626A (en) 1974-01-14
ZA707578B (en) 1971-07-28

Similar Documents

Publication Publication Date Title
Peterson et al. Spectrophotometric determination of serum copper with biscyclohexanoneoxalyldihydrazone
Portmann et al. Determination of arsenic in sea water, marine plants and silicate and carbonate sediments
Dorough et al. Spectra of the Metallo-derivatives of α, β, γ, δ-Tetraphenylporphine
Wallach et al. Fluorescence Techniques in the Microdetermination of Metals in Biological Materials. Utility of 2, 4-Bis-[N, N´-di-(carboxymethyl) aminomethyl] Fluorescein in the Fluorometric Estimation of Al+ 3, Alkaline Earths, Co+ 2, Cu+ 2, Ni+ 2, and Zn+ 2 in Micromolar Concentrations.
Hamm et al. The electron microscopy of photographic grains. Specimen preparation techniques and applications
CN111474167A (zh) 一种Cu-MOF-鲁米诺-H2O2化学发光体系检测Pb2+的方法
US3661532A (en) Process and agent for the detection of silver ions
US2038486A (en) Electrochemical recording of electric currents
Cerbulis Paper Cheomatography of Sugar Alcohols and Their Glycosides
Laird et al. Determination of Mercury with s-Diphenylcarbazide
Tai et al. Photolysts of rhodamine-WT dye
Connors Advances in chemical and colorimetric methods
Feldman Spectrochemical Determination of Hafnium-Zirconium Ratios
Kolthoff et al. Studies on Aging and Formation of Precipitates. XXX. The Determination of the Specific Surface of Silver Bromide by the Radioactive and Dye Methods
White et al. Characteristics of boron-benzoin complex
Phansalkar et al. A tracer method for determination of deposition of carbon on cotton
US4101780A (en) Method of obtaining intensified image from developed photographic films and plates
CN113109558A (zh) 一种定量检测cyfra21-1的磁微粒化学发光试剂盒及其制作方法
Rogers et al. New Selective Reagent for Lithium-Application to the Rapid Volumetric Estimation of Lithium in the Presence of Potassium and Sodium
Jagner The determination of sulphate in sea water by means of photometric titration with hydrochloric acid in dimethyl sulphoxide
US2440315A (en) Sensitized pyrogallol reagent and method for its preparation
Thornton et al. Fluorometric determination of pyruvaldehyde
US3420669A (en) Photodevelopable,direct-print compositions containing cuprous salts
Crabtree et al. The quantitative determination of hypo in photographic prints with silver nitrate
US3615563A (en) Dye cyanides photoactivated by inorganic salts