US3660177A - Processing of nickel-base alloys for improved fatigue properties - Google Patents
Processing of nickel-base alloys for improved fatigue properties Download PDFInfo
- Publication number
- US3660177A US3660177A US38227A US3660177DA US3660177A US 3660177 A US3660177 A US 3660177A US 38227 A US38227 A US 38227A US 3660177D A US3660177D A US 3660177DA US 3660177 A US3660177 A US 3660177A
- Authority
- US
- United States
- Prior art keywords
- alloy
- eta
- precipitate
- temperature
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 103
- 239000000956 alloy Substances 0.000 title claims abstract description 103
- 238000001953 recrystallisation Methods 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 31
- 230000000930 thermomechanical effect Effects 0.000 claims abstract description 10
- 229910001293 incoloy Inorganic materials 0.000 claims abstract description 4
- 229910000816 inconels 718 Inorganic materials 0.000 claims abstract description 4
- 239000002244 precipitate Substances 0.000 claims description 35
- 238000001556 precipitation Methods 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 23
- 230000009467 reduction Effects 0.000 claims description 14
- 238000005242 forging Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 5
- 238000000265 homogenisation Methods 0.000 claims description 3
- 238000005482 strain hardening Methods 0.000 claims description 2
- 229910001247 waspaloy Inorganic materials 0.000 abstract description 6
- 239000000463 material Substances 0.000 description 13
- 239000006185 dispersion Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 230000032683 aging Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 231100000001 growth retardation Toxicity 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 235000012771 pancakes Nutrition 0.000 description 1
- 238000009497 press forging Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
Definitions
- the fatigue p base alloys such as lnconel 718, lncoloy 901 and Waspaloy, are significantly improved by a thermomechanical processing .143 L5 R, 48/115 F 43/123 technique involving the generation of an intermetallic pinning 22 1/10 phase, such as a spheriodal eta phase or an overaged gamma 148/115 R H 5 F 12 7 prime phase, with subsequent recrystallization to provide a uniform microstructure having a grain size of ASTM 10-1 3 or finer.
- the present invention relates in general to the nickel-base alloys and, more particularly, to a novel fabrication process therefor to provide improved physical properties including increased fatigue resistance.
- nickel-base alloys of the type typified by lnconel 718, lncoloy 901 and Waspaloy representative chemistries for these alloys being as follows:
- This invention contemplates the processing of certain precipitation hardened nickel-base alloys to provide improved fatigue resistance thereto. It is applicable to those nickel-base alloys precipitating intermetallic compounds, such as an eta (Ni cb, Ni Til or overaged gamma prime (Ni Al, Ti), which are stable above the alloy recrystallization temperature and which may be produced in the microstructure below the alloy recrystallization temperature. These are hereinafter collectively referred to as pinning phases.
- the alloys are thermodynamically processed to provide a uniform dispersion of a fine pinning phase and subsequently recrystallized.
- the uniform dispersion of the pinning phase may be provided in a number of ways including: cold or warm working the alloy and subsequently heat treating the as-worked structure to precipitate a spheroidal eta or overaged gamma prime phase; warm working at a temperature sufficient to induce precipitation of the pinning phase during deformation; or establishment of a conventional needle-like eta phase and subsequent thermomechanical processing to effect a conversion to the desired pinning phase such as the line spheroidal eta.
- the alloy is first subjected to heat treatments to minimize alloy heterogeneity and to precipitate the conventional needle-like eta; then warm worked to effect a conversion of the eta to a uniform fine dispersion of the desired spheroidal eta; and subsequently recrystallized to form a microstructure having a grain size of ASTM 10-13 or finer.
- the conventional aging heat treatments are thereafter applied for strengthening purposes.
- FIG. 1 is a photomicrograph of conventionally processed 1nconel 718 bar stock revealing a comparatively coarse grain size (ASTM 4-5) with the absence of any significant amount of the eta phase. l50 before reduction).
- FIG. 2 is a photomicrograph of an lnconel 718 pancake processed according to the present invention and illustrating a fine grain size (ASTM 12). (250Xbefore reduction).
- FIG. 3 is a photomicrograph, at greater magnification, of the sample of FIG. 2 showing a uniform distribution of spherical eta particles refining grain size. 1 ,000Xbefore reduction).
- FIG. 4 is a graph plotting the fatigue resistance of lncoloy 901 as a function of grain size.
- grain size refinement can be achieved through precipitation of an eta phase prior to recrystallization.
- Eta in this alloy is an orthorhombic Ni Cb phase which is typically precipitated in this alloy in the l,600"-l ,700" F. temperature range and which is stable above the alloy recrystallization temperature.
- eta is allowed to precipitate in fully annealed alloy, it nucleates at grain boundaries and grows preferentially along (111) crystallographic planes, forming long straight needles traversing each grain. Inasmuch as in this form it does not contribute significantly to the strength of the alloy and in fact competes for the elements forming the hardening gamma prime precipitate, most of the literature has concluded that the eta phase should be avoided.
- the eta precipitate is forced to precipitate in a material which has been deformed below the alloy recrystallization temperature or otherwise properly processed, it may be provided in a uniform dispersion throughout the matrix, appearing metallographically as generally spheroidal particles 1-3 microns in size. This may be seen in FIG. 3. If the alloy is then recrystallized with the uniform dispersion of fine spheroidal eta present, the newly formed grain boundaries incorporate the eta, effectively inhibiting grain growth. The result is a much finer, more uniform grain size than that achieved by conventional processing, which may readily be observed by a comparison of the microstructures of FIGS. 1 and 2.
- Recrystallization is a process whereby cold-worked material i l di lo e omm] f th forging or other def ation reverts to a strain-free structure by the nucleation and growth variables. IQ of new grains. In the precipitation; hardened, nickel-base al- Experience has demonstrated that a number of criteria must loys recrystallization is conducted above the solvus tempera be satisfied for effective results.
- the pinning precipitate must t re of the hardening phase or phases.
- the pinning precipitate must ture above the gamma prime solvus but below that of the precipitate profusely at temperatures below the recrystalliza- P l P can of wl'paioy as conventionally temperature d i n b digpefnd nif ly mulated, the pinning precipitate and the hardening phase are throughout the microstructure. And recrystallisation must 20 essentially identical chemically and metallurgicslly, the prints occur subsequent to the formation and dispersion of the ry difference residing in the size of the precipitate. However, pinning precipitate.
- Retardation of grain growth by a eta andthe gamma prime hardening phases in the lnconel 718 uniform dispersion of spheroidal eta has also been accomand lncoloy 90l alloys.
- the fine grain structures processed according to the present invention exhibiting grainsizes of ASTM l0 0.0002 inch diameter) or finer display superior fatigue and tensile strength properties. Tensile and yield strengths are increased by a factor of about 10-20 percent, and the smooth high cycle fatigue (HCF) life is increased by a factor of 40 percent.
- lncoloy 90l does present somewhat of a practical processing problem. Whereas lnconel 7 I 8 exhibits a 50-75 F. temperature differential between the eta solvus and the recrystallization temperature, the differential for lncoloy 901 is only about l5'-25 F. Due to this very narrow differential, processing difficulties are increased with these alloys. it is, of course, possible to resolve this problem by certain modifications in alloy composition. Eta solvus temperatures were detennined for several such modifications as detailed in Table I.
- eta precipitates in the lnconel 7 l 8 and lncoloy 901 alloys at the nominal chemistry in the l,500-l,700 F. range. If fully annealed material is exposed to heat treatment in this temperature range, eta precipitation will occur as a needle-like phase whereas the desired grain size refinement is dependent upon the presence of eta as a uniform distribution of spheroidal particles.
- Spheroidal eta precipitation may be caused to occur under either of two processing conditions: l heat treatment of cold worked alloys of this type in the l,600- l ,700' F. temperature range, or (2) warm working below the recrystallization temperature )l,7$0 F.). in addition, spheroidal eta may be provided by warm working the alloys containing the needle-like eta below the alloy recrystallization temperature.
- 8 and Hunts 0114 lncoloy 901 alloys is as follows: (a) homogenization, and eta precipitation heat treatment at l,650-1,700' F. for 4-8 hours, (b) forging at a 50-65 percent reduction at or below the eta solvus temperature (1,825 P. and 1,750 E, respectively, for the above alloys) and (c) solution heat treatment with recrystallization 2$-50 F. below the eta solvus. The latter heat treatment for 1 hour is sufficient to induce recrystallization without substantial grain growth. Short time reheats in excess of those described are tolerable provided that the eta structure is not adversely affected and no substantial grain growth occurs.
- the alloys prior to use are subjected to the usual aging heat treatment for strengthening through precipitation of the hardening gamma prime phase.
- this comprises holding at 1,325 F. for 8 hours, and 1.150 F. for 8 hours.
- the aging comprises heat treatment at 1,325 F. for 6 hours and 1,200 F. for 12 hours. Cooling rates are generally equivalent to air cool or faster.
- the preferred processing involves: (a) an initial heat treatment at l,800-i,825 F. for 24-48 hours to form the overaged gamma prime precipitate; forging to the desired configuration using a preheat temperature of 1,800-l ,850' F. and reductions of 30 percent or more; and heat treatment at 1,800-1,850 F. for 2-4 hours for recrystallization, providing a grain size of ASTM 10 or finer.
- a sustained temperature of 1,850 F. cannot be exceeded during any stage of the process subsequent to the formation of the overaged gamma prime pinning precipitate because of its instability above this temperature.
- a final stabilization heat treatment at about l,550 F. for 4 hours and aging at about 1,400 F. for 16 hours will provide a full hardness response.
- Stross rupture data for line gruln lncoloy U01 harstock material By providing a fine uniform dispersion of a pinning precipitate, such as the spheroidal eta phase or the overaged gamma prime, prior to recrystallization, and effecting recrystallization in the presence of the pinning phase to control the grain size, it is possible to provide dramatic improvements in the fatigue resistance of nickel-base alloys of the type typified by lnconel 718, lncoloy 901 and Waspaloy.
- a pinning precipitate such as the spheroidal eta phase or the overaged gamma prime
- the method of improving the fatigue resistance of the precipitation hardenable, nickel-base alloys capable of precipitating inter-metallic compounds which are stable above the alloy recrystallization temperature which comprises:
- the intermetallic pinning precipitate is a spheroidal eta phase or an overaged gamma prime phase.
- the intermetallic pinning precipitate has an average particle size of about 0.1-1 micron.
- thermomechanical processing comprises cold working of the alloy followed by heat treatment near but below the alloy recrystallization temperature to precipitate the spheroidal eta phase.
- thermomechanical processing comprises warm working the alloy near but below the alloy recrystallization temperature to precipitate the spheroidal eta phase.
- thermomechanical processing comprises homogenization of the alloy and precipitation of a needle-like eta phase followed by warm working near but below the alloy recrystallization temperature to convert the needle-like eta phase to the spheroidal eta phase.
- the method of improving the fatigue resistance of the below the eta phase solvus to a grain size of ASTM [D or lncoloy 90l alloy which comprises:
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Forging (AREA)
- Heat Treatment Of Steel (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3822770A | 1970-05-18 | 1970-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3660177A true US3660177A (en) | 1972-05-02 |
Family
ID=21898743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US38227A Expired - Lifetime US3660177A (en) | 1970-05-18 | 1970-05-18 | Processing of nickel-base alloys for improved fatigue properties |
Country Status (10)
Country | Link |
---|---|
US (1) | US3660177A (fr) |
JP (1) | JPS572143B1 (fr) |
BE (1) | BE767327A (fr) |
CA (1) | CA941717A (fr) |
CH (1) | CH538545A (fr) |
DE (1) | DE2124580C2 (fr) |
FR (1) | FR2089069A5 (fr) |
GB (1) | GB1320442A (fr) |
IL (1) | IL36403A (fr) |
SE (1) | SE379557B (fr) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4362578A (en) * | 1980-10-16 | 1982-12-07 | Teledyne Industries, Inc. | Method of hot working metal with induction reheating |
US4375375A (en) * | 1981-10-30 | 1983-03-01 | United Technologies Corporation | Constant energy rate forming |
US5415712A (en) * | 1993-12-03 | 1995-05-16 | General Electric Company | Method of forging in 706 components |
FR2722510A1 (fr) * | 1994-07-13 | 1996-01-19 | Societe Nationale D Etude Et De Construction De Mo | Procede d'elaboration de toles en alliage 718 et de formage superplastique de ces toles |
FR2755040A1 (fr) * | 1996-10-31 | 1998-04-30 | Aerospatiale | Procede de fabrication par fluotournage a froid d'une piece en alliage inconel 718 |
CN1058757C (zh) * | 1996-05-09 | 2000-11-22 | 沈阳黎明发动机制造公司 | 一种镍基高温合金锻件和棒材获得均匀超细晶粒的方法 |
US6193823B1 (en) | 1999-03-17 | 2001-02-27 | Wyman Gordon Company | Delta-phase grain refinement of nickel-iron-base alloy ingots |
US6334912B1 (en) * | 1998-12-31 | 2002-01-01 | General Electric Company | Thermomechanical method for producing superalloys with increased strength and thermal stability |
US6447624B2 (en) * | 2000-04-11 | 2002-09-10 | Hitachi Metals, Ltd. | Manufacturing process of nickel-based alloy having improved hot sulfidation-corrosion resistance |
US20020159911A1 (en) * | 2001-04-25 | 2002-10-31 | Koenigsmann Holger J. | Nickel-titanium sputter target alloy |
EP1293583A1 (fr) * | 2001-09-18 | 2003-03-19 | Honda Giken Kogyo Kabushiki Kaisha | Alliage à base de nickel, son procédé de production et matrice de forgeage |
EP1325965A1 (fr) * | 2001-12-21 | 2003-07-09 | Hitachi Metals, Ltd. | Alliage à base de Ni amelioree en resistence a l'oxydation, haute résistance thermique et deformation a chaud |
US6605164B2 (en) | 1994-06-24 | 2003-08-12 | Ati Properties, Inc. | Nickel-based alloy having high stress rupture life |
US20040084118A1 (en) * | 2002-10-31 | 2004-05-06 | Raymond Edward Lee | Quasi-isothermal forging of a nickel-base superalloy |
US20040221927A1 (en) * | 2002-07-19 | 2004-11-11 | Raymond Edward Lee | Isothermal forging of nickel-base superalloys in air |
US20060000715A1 (en) * | 2000-01-25 | 2006-01-05 | Whitcher Forrest D | Manufacturing medical devices by vapor deposition |
CN100467156C (zh) * | 2007-03-05 | 2009-03-11 | 贵州安大航空锻造有限责任公司 | Gh4169合金盘形锻件在空气中的近等温锻造方法 |
US20090104040A1 (en) * | 2007-10-19 | 2009-04-23 | Shinya Imano | Nickel Based Alloy for Forging |
CN100500881C (zh) * | 2007-03-05 | 2009-06-17 | 贵州安大航空锻造有限责任公司 | Gh4169合金近等温锻造用细晶环坯的制坯方法 |
CN102652179A (zh) * | 2009-12-10 | 2012-08-29 | 斯奈克玛 | 一种制造铬镍铁耐热蚀合金718型镍超级合金的方法 |
CN101412066B (zh) * | 2007-10-17 | 2012-10-03 | 沈阳黎明航空发动机(集团)有限责任公司 | 一种gh4169合金盘的锤锻工艺 |
US8608877B2 (en) | 2010-07-27 | 2013-12-17 | General Electric Company | Nickel alloy and articles |
US20140090753A1 (en) * | 2012-09-28 | 2014-04-03 | United Technologies Corporation | Method for solution heat treated alloy components |
US8910409B1 (en) | 2010-02-09 | 2014-12-16 | Ati Properties, Inc. | System and method of producing autofrettage in tubular components using a flowforming process |
US9217619B2 (en) | 2011-03-02 | 2015-12-22 | Ati Properties, Inc. | Composite gun barrel with outer sleeve made from shape memory alloy to dampen firing vibrations |
US9551053B2 (en) | 2011-06-23 | 2017-01-24 | United Technologies Corporation | Method for limiting surface recrystallization |
US9662740B2 (en) | 2004-08-02 | 2017-05-30 | Ati Properties Llc | Method for making corrosion resistant fluid conducting parts |
US10118259B1 (en) | 2012-12-11 | 2018-11-06 | Ati Properties Llc | Corrosion resistant bimetallic tube manufactured by a two-step process |
CN114226620A (zh) * | 2021-10-20 | 2022-03-25 | 中国航发沈阳黎明航空发动机有限责任公司 | 一种细化gh2907合金环形锻件晶粒度的方法 |
US11441217B2 (en) | 2017-12-14 | 2022-09-13 | Vdm Metals International Gmbh | Method for producing semi-finished products from a nickel-based alloy |
US11951528B2 (en) | 2020-08-20 | 2024-04-09 | Rolls-Royce Corporation | Controlled microstructure for superalloy components |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58174538A (ja) * | 1982-04-02 | 1983-10-13 | Hitachi Ltd | 原子炉用隙間構造部材に用いられる耐応力腐食割れ性に優れたNi基合金製部材 |
US4957567A (en) * | 1988-12-13 | 1990-09-18 | General Electric Company | Fatigue crack growth resistant nickel-base article and alloy and method for making |
FR2691983B1 (fr) * | 1992-06-03 | 1994-07-22 | Snecma | Procede de traitement thermique d'un superalliage a base de nickel. |
FR2941962B1 (fr) | 2009-02-06 | 2013-05-31 | Aubert & Duval Sa | Procede de fabrication d'une piece en superalliage a base de nickel, et piece ainsi obtenue. |
CN111575620B (zh) * | 2020-07-01 | 2021-11-16 | 中南大学 | 一种获得gh4169合金超细晶锻件的方法 |
CN112410618B (zh) * | 2020-11-19 | 2021-10-22 | 中国第二重型机械集团德阳万航模锻有限责任公司 | Gh4698高温合金模具制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3420716A (en) * | 1965-11-04 | 1969-01-07 | Curtiss Wright Corp | Method of fabricating and heat-treating precipitation-hardenable nickel-base alloy |
US3519503A (en) * | 1967-12-22 | 1970-07-07 | United Aircraft Corp | Fabrication method for the high temperature alloys |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511823B2 (fr) * | 1972-06-06 | 1980-03-27 |
-
1970
- 1970-05-18 US US38227A patent/US3660177A/en not_active Expired - Lifetime
-
1971
- 1971-02-09 CA CA104,940A patent/CA941717A/en not_active Expired
- 1971-03-11 IL IL36403A patent/IL36403A/xx unknown
- 1971-03-26 FR FR7111625A patent/FR2089069A5/fr not_active Expired
- 1971-03-31 SE SE7104169A patent/SE379557B/xx unknown
- 1971-04-19 GB GB2630971*A patent/GB1320442A/en not_active Expired
- 1971-04-23 JP JP2666871A patent/JPS572143B1/ja active Pending
- 1971-04-26 CH CH610971A patent/CH538545A/fr not_active IP Right Cessation
- 1971-05-18 BE BE767327A patent/BE767327A/fr not_active IP Right Cessation
- 1971-05-18 DE DE2124580A patent/DE2124580C2/de not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3420716A (en) * | 1965-11-04 | 1969-01-07 | Curtiss Wright Corp | Method of fabricating and heat-treating precipitation-hardenable nickel-base alloy |
US3519503A (en) * | 1967-12-22 | 1970-07-07 | United Aircraft Corp | Fabrication method for the high temperature alloys |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4362578A (en) * | 1980-10-16 | 1982-12-07 | Teledyne Industries, Inc. | Method of hot working metal with induction reheating |
US4375375A (en) * | 1981-10-30 | 1983-03-01 | United Technologies Corporation | Constant energy rate forming |
US5415712A (en) * | 1993-12-03 | 1995-05-16 | General Electric Company | Method of forging in 706 components |
US6605164B2 (en) | 1994-06-24 | 2003-08-12 | Ati Properties, Inc. | Nickel-based alloy having high stress rupture life |
US6328827B1 (en) | 1994-07-13 | 2001-12-11 | Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” | Method of manufacturing sheets made of alloy 718 for the superplastic forming of parts therefrom |
FR2722510A1 (fr) * | 1994-07-13 | 1996-01-19 | Societe Nationale D Etude Et De Construction De Mo | Procede d'elaboration de toles en alliage 718 et de formage superplastique de ces toles |
CN1058757C (zh) * | 1996-05-09 | 2000-11-22 | 沈阳黎明发动机制造公司 | 一种镍基高温合金锻件和棒材获得均匀超细晶粒的方法 |
EP0841107A1 (fr) * | 1996-10-31 | 1998-05-13 | AEROSPATIALE Société Nationale Industrielle | Procédé de fabrication par fluotournage à froid d'une pièce en alliage inconel 718 |
FR2755040A1 (fr) * | 1996-10-31 | 1998-04-30 | Aerospatiale | Procede de fabrication par fluotournage a froid d'une piece en alliage inconel 718 |
US6334912B1 (en) * | 1998-12-31 | 2002-01-01 | General Electric Company | Thermomechanical method for producing superalloys with increased strength and thermal stability |
EP1177324A1 (fr) * | 1999-03-17 | 2002-02-06 | Wyman Gordon Company | Recuit d'affinage des grains de phase delta de lingots en alliage a base de nickel et de fer |
US6193823B1 (en) | 1999-03-17 | 2001-02-27 | Wyman Gordon Company | Delta-phase grain refinement of nickel-iron-base alloy ingots |
EP1177324A4 (fr) * | 1999-03-17 | 2002-09-18 | Wyman Gordon Co | Recuit d'affinage des grains de phase delta de lingots en alliage a base de nickel et de fer |
US20060000715A1 (en) * | 2000-01-25 | 2006-01-05 | Whitcher Forrest D | Manufacturing medical devices by vapor deposition |
US8460361B2 (en) * | 2000-01-25 | 2013-06-11 | Boston Scientific Scimed, Inc. | Manufacturing medical devices by vapor deposition |
US6447624B2 (en) * | 2000-04-11 | 2002-09-10 | Hitachi Metals, Ltd. | Manufacturing process of nickel-based alloy having improved hot sulfidation-corrosion resistance |
US6478895B1 (en) * | 2001-04-25 | 2002-11-12 | Praxair S.T. Technology, Inc. | Nickel-titanium sputter target alloy |
WO2002088408A1 (fr) * | 2001-04-25 | 2002-11-07 | Praxair S.T. Technology, Inc. | Alliage cible de pulverisation cathodique a base de nickel et de titane |
US20020159911A1 (en) * | 2001-04-25 | 2002-10-31 | Koenigsmann Holger J. | Nickel-titanium sputter target alloy |
EP1293583A1 (fr) * | 2001-09-18 | 2003-03-19 | Honda Giken Kogyo Kabushiki Kaisha | Alliage à base de nickel, son procédé de production et matrice de forgeage |
US20060081315A1 (en) * | 2001-09-18 | 2006-04-20 | Honda Giken Kogyo Kabushiki Kaisha | Method for producing Ni based alloy and forging die |
US6997994B2 (en) | 2001-09-18 | 2006-02-14 | Honda Giken Kogyo Kabushiki Kaisha | Ni based alloy, method for producing the same, and forging die |
EP1325965A1 (fr) * | 2001-12-21 | 2003-07-09 | Hitachi Metals, Ltd. | Alliage à base de Ni amelioree en resistence a l'oxydation, haute résistance thermique et deformation a chaud |
US6852177B2 (en) | 2001-12-21 | 2005-02-08 | Hitachi Metals Ltd. | Ni-based alloy improved in oxidation-resistance, high temperature strength and hot workability |
US6908519B2 (en) * | 2002-07-19 | 2005-06-21 | General Electric Company | Isothermal forging of nickel-base superalloys in air |
US20040221927A1 (en) * | 2002-07-19 | 2004-11-11 | Raymond Edward Lee | Isothermal forging of nickel-base superalloys in air |
US20040084118A1 (en) * | 2002-10-31 | 2004-05-06 | Raymond Edward Lee | Quasi-isothermal forging of a nickel-base superalloy |
US6932877B2 (en) * | 2002-10-31 | 2005-08-23 | General Electric Company | Quasi-isothermal forging of a nickel-base superalloy |
US9662740B2 (en) | 2004-08-02 | 2017-05-30 | Ati Properties Llc | Method for making corrosion resistant fluid conducting parts |
CN100467156C (zh) * | 2007-03-05 | 2009-03-11 | 贵州安大航空锻造有限责任公司 | Gh4169合金盘形锻件在空气中的近等温锻造方法 |
CN100500881C (zh) * | 2007-03-05 | 2009-06-17 | 贵州安大航空锻造有限责任公司 | Gh4169合金近等温锻造用细晶环坯的制坯方法 |
CN101412066B (zh) * | 2007-10-17 | 2012-10-03 | 沈阳黎明航空发动机(集团)有限责任公司 | 一种gh4169合金盘的锤锻工艺 |
US20090104040A1 (en) * | 2007-10-19 | 2009-04-23 | Shinya Imano | Nickel Based Alloy for Forging |
US9567656B2 (en) | 2007-10-19 | 2017-02-14 | Mitsubishi Hitachi Power Systems, Ltd. | Nickel based alloy for forging |
US8956471B2 (en) * | 2007-10-19 | 2015-02-17 | Mitsubishi Hitachi Power Systems, Ltd. | Nickel based alloy for forging |
CN102652179B (zh) * | 2009-12-10 | 2015-11-25 | 斯奈克玛 | 一种制造铬镍铁耐热蚀合金718型镍超级合金的方法 |
CN102652179A (zh) * | 2009-12-10 | 2012-08-29 | 斯奈克玛 | 一种制造铬镍铁耐热蚀合金718型镍超级合金的方法 |
US8910409B1 (en) | 2010-02-09 | 2014-12-16 | Ati Properties, Inc. | System and method of producing autofrettage in tubular components using a flowforming process |
US9562276B2 (en) | 2010-07-27 | 2017-02-07 | General Electric Company | Nickel alloy and articles |
US8608877B2 (en) | 2010-07-27 | 2013-12-17 | General Electric Company | Nickel alloy and articles |
US9217619B2 (en) | 2011-03-02 | 2015-12-22 | Ati Properties, Inc. | Composite gun barrel with outer sleeve made from shape memory alloy to dampen firing vibrations |
US9551053B2 (en) | 2011-06-23 | 2017-01-24 | United Technologies Corporation | Method for limiting surface recrystallization |
US20140090753A1 (en) * | 2012-09-28 | 2014-04-03 | United Technologies Corporation | Method for solution heat treated alloy components |
US10118259B1 (en) | 2012-12-11 | 2018-11-06 | Ati Properties Llc | Corrosion resistant bimetallic tube manufactured by a two-step process |
US11441217B2 (en) | 2017-12-14 | 2022-09-13 | Vdm Metals International Gmbh | Method for producing semi-finished products from a nickel-based alloy |
US11951528B2 (en) | 2020-08-20 | 2024-04-09 | Rolls-Royce Corporation | Controlled microstructure for superalloy components |
CN114226620A (zh) * | 2021-10-20 | 2022-03-25 | 中国航发沈阳黎明航空发动机有限责任公司 | 一种细化gh2907合金环形锻件晶粒度的方法 |
Also Published As
Publication number | Publication date |
---|---|
GB1320442A (en) | 1973-06-13 |
CA941717A (en) | 1974-02-12 |
SE379557B (fr) | 1975-10-13 |
IL36403A0 (en) | 1971-05-26 |
FR2089069A5 (fr) | 1972-01-07 |
IL36403A (en) | 1974-01-14 |
DE2124580A1 (de) | 1971-12-02 |
JPS572143B1 (fr) | 1982-01-14 |
CH538545A (fr) | 1973-06-30 |
BE767327A (fr) | 1971-10-18 |
DE2124580C2 (de) | 1982-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3660177A (en) | Processing of nickel-base alloys for improved fatigue properties | |
US3676225A (en) | Thermomechanical processing of intermediate service temperature nickel-base superalloys | |
Danh et al. | A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum | |
US4092181A (en) | Method of imparting a fine grain structure to aluminum alloys having precipitating constituents | |
US3901743A (en) | Processing for the high strength alpha-beta titanium alloys | |
US3642543A (en) | Thermomechanical strengthening of the superalloys | |
NO851267L (no) | Aluminiumbasert knalegeringsprodukt og fremgangsmaate til fremstilling derav | |
US3232796A (en) | Treatment of aluminum-magnesium alloy | |
US4512817A (en) | Method for producing corrosion resistant high strength superalloy articles | |
US3677830A (en) | Processing of the precipitation hardening nickel-base superalloys | |
US3748194A (en) | Processing for the high strength alpha beta titanium alloys | |
US5302217A (en) | Cyclic heat treatment for controlling grain size of superalloy castings | |
McCarley et al. | Influence of the starting microstructure on the hot deformation behavior of a low stacking fault energy Ni-based superalloy | |
JPH0474856A (ja) | 高強度・高延性β型Ti合金材の製法 | |
US3741824A (en) | Method to improve the weldability and formability of nickel-base superalloys | |
US4295901A (en) | Method of imparting a fine grain structure to aluminum alloys having precipitating constituents | |
US4222797A (en) | Method of imparting a fine grain structure to aluminum alloys having precipitating constituents | |
US3133839A (en) | Process for improving stress-corrosion resistance of age-hardenable alloys | |
US3390023A (en) | Method of heat treating age-hardenable alloys | |
US3649379A (en) | Co-precipitation-strengthened nickel base alloys and method for producing same | |
US5534085A (en) | Low temperature forging process for Fe-Ni-Co low expansion alloys and product thereof | |
US4358324A (en) | Method of imparting a fine grain structure to aluminum alloys having precipitating constituents | |
US3171760A (en) | Thermal treatment of aluminum base alloy products | |
US3420716A (en) | Method of fabricating and heat-treating precipitation-hardenable nickel-base alloy | |
US3615906A (en) | Process for fabricating threaded elements from the age-hardenable alloys |