US3651365A - Xenon slash lamp with sodium starting band and method of making same - Google Patents
Xenon slash lamp with sodium starting band and method of making same Download PDFInfo
- Publication number
- US3651365A US3651365A US766162A US3651365DA US3651365A US 3651365 A US3651365 A US 3651365A US 766162 A US766162 A US 766162A US 3651365D A US3651365D A US 3651365DA US 3651365 A US3651365 A US 3651365A
- Authority
- US
- United States
- Prior art keywords
- lamp
- envelope
- sodium
- band
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/54—Igniting arrangements, e.g. promoting ionisation for starting
- H01J61/547—Igniting arrangements, e.g. promoting ionisation for starting using an auxiliary electrode outside the vessel
Definitions
- a band of sodium metal is electrolyzed onto the inner surface 1 e erences I e of a xenon flash lamp glass envelope.
- the sodium band UNITED STATES PATENTS reduces the ignition voltage required to flash the lamp throughout its useful life. 1,925,648 9/1933 Spanner et a1.
- Xenon flash lamps generally comprise two spaced apart electrodes within a sealed glass envelope having a fill including xenon. Such lamps are connected across a large capacitor charged to a substantial potential, which is, however, insufficient to ionize the xenon fill gas. Upon the application of an additional pulse of sufficient voltage, the xenon is ionized, and an electric arc is formed between the two electrodes, discharging the large capacitor through the lamp, which emits a burst of intense light, usually of short duration. In some cases, the pulse voltage is applied between an external trigger wire wrapped around the envelope and the electrodes. However, in other cases an external trigger wire is not feasible since it may result in undesirable arcing between the trigger wire and a proximate lamp reflector or else the high potential applied to the external trigger wire might be hazardous to operating personnel.
- the lamp may be internally triggered by applying the pulse voltage directly across the lamp electrodes.
- the voltage required is about 30 to 50 percent higher than that required to trigger the same lamp with an external trigger wire. This poses no particular problem in itself, since the circuit can be designed to supply sufficient pulse voltage to the lamp.
- the internal triggering voltage of the lamp is lower and more uniform than that of the same lamp without the band.
- the band extends to points on the envelope that are near the electrodes at each end of the lamp.
- the preferred method of forming the sodium band is electrolyzing the sodium normally present in the glass to the inner surface of the glass envelope.
- the outer surface of the envelope is subjected to a DC potential, positive with respect to the inner surface, while the lamp is lighted at a low current and while the lamp is heated. Under these conditions, a small DC current is drawn through the glass wall of the envelope. This conduction current is principally due to the motion of sodium ions through the glass to the inner surface of the envelope. At the inner surface they capture electrons from the arc plasma to become neutral sodium, existing as a fine deposit on the inner surface.
- this deposit say, as a fine spiral band, a suitable wire is spirally wrapped around the outside of the envelope and the aforementioned positive DC potential is applied to this wire.
- the transportation of sodium through the glass takes place along the wire spiral, resulting in a similar spiral of sodium on the inner surface of the envelope.
- the width of the sodium band is about double the wall thickness of the glass envelope and is faintly discernible as a grayish-brown deposit.
- the sodium band aids lamp ignition by providing a low resistivity path from one end of the lamp to the other and thereby concentrating the pulse voltage across a fraction of the total gaseous path and promoting more vigorous ionization thereat.
- the band is not of such low resistivity as to effectively short out the main body of the envelope, which would prevent the buildup of high electric fields therein and the subsequent propagation of ionization down the envelope.
- the sodium band may also furnish electrons by secondary processes, such as photoelectricemission and ion bombardment emission, to aid in the propagation of the ionization, once initiated, down the envelope to the other end. It may, in addition, serve as a getter, absorbing contaminant gases evolved during the life of the lamp.
- the single drawing is an illustration of electrolyzing apparatus and shows a method of depositing a spiral band of sodium on the inner surface of a xenon flash lamp envelope.
- the xenon flash lamp shown in the drawing comprised a hard glass tubular envelope 1 having tungsten electrodes 2 at the ends thereof. The ends were hermetically sealed and capped with terminals 3 which were electrically connected to electrodes 2.
- Envelope 1 was 1 1 inches long by one quarter inch diameter and the arc length, that is, the distance between electrodes 2, was 9 inches.
- a length of 10 mil copper wire 4 was tightly s irally wrapped around the outside of envelope 1 at a spacing of two turns per inch and extended about the same distance as the arc length. The ends of the spiral were securely fastened to the glass with adhesive tape.
- the secondary winding of a neon sign transformer 5 was connected to terminals 3 and a DC power supply 6 was connected to wire 4 and to the midpoint of the transformer secondary, the polarity at wire 4 being positive.
- the flash lamp was heated in an oven to 200 C. A discharge was then struck between electrodes 2 by the neon sign transformer, and while a discharge current of a few milliamperes was maintained, a DC voltage of 750 volts was applied to wire 4 about 8 minutes.
- the lamp Before electrolyzing, the lamp had an ignition voltage of 900 volts. After electrolyzing, in which it was calculated that 30 micrograms of sodium was transported to the inner surface of envelope 1, the ignition had been reduced to 480 volts.
- a xenon flash lamp having an elongated sodium-containing glass envelope
- the step which comprises electrolyzing a band of said sodium to the inner surface of said envelope, said band extending about the same distance as the arc length of said lamp.
Landscapes
- Discharge Lamp (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76616268A | 1968-10-09 | 1968-10-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3651365A true US3651365A (en) | 1972-03-21 |
Family
ID=25075591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US766162A Expired - Lifetime US3651365A (en) | 1968-10-09 | 1968-10-09 | Xenon slash lamp with sodium starting band and method of making same |
Country Status (3)
Country | Link |
---|---|
US (1) | US3651365A (enrdf_load_stackoverflow) |
JP (1) | JPS4811638B1 (enrdf_load_stackoverflow) |
GB (1) | GB1210049A (enrdf_load_stackoverflow) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4009408A (en) * | 1974-12-16 | 1977-02-22 | Itt Industries, Inc. | High-pressure sodium-vapor discharge lamp |
EP0033653A1 (en) * | 1980-02-04 | 1981-08-12 | Xerox Corporation | Trigger device for electric-discharge lamp |
US4310773A (en) * | 1979-05-16 | 1982-01-12 | General Electric Company | Glass flash tube |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52151553U (enrdf_load_stackoverflow) * | 1976-05-12 | 1977-11-17 | ||
JPS5639564U (enrdf_load_stackoverflow) * | 1979-09-05 | 1981-04-13 | ||
JPH03101772U (enrdf_load_stackoverflow) * | 1990-02-03 | 1991-10-23 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1925648A (en) * | 1928-09-21 | 1933-09-05 | Hans J Spanner | Lighting device |
US1961618A (en) * | 1931-01-07 | 1934-06-05 | Rainbow Light Inc | Low voltage electric discharge tube |
US2491854A (en) * | 1946-04-06 | 1949-12-20 | Gen Electric | Starting strip for electric discharge devices |
US2829295A (en) * | 1949-07-02 | 1958-04-01 | Philips Corp | Internally conductively coated lamp and method of manufacture |
US2897126A (en) * | 1955-03-05 | 1959-07-28 | Quartz & Silice S A | Vitreous silica and its manufacture |
GB836551A (en) * | 1955-08-09 | 1960-06-01 | Gen Electric Co Ltd | Improvements in or relating to electric discharge lamps |
US3174919A (en) * | 1962-10-31 | 1965-03-23 | Corning Glass Works | Methods for electrolyzing glass |
US3349274A (en) * | 1964-03-06 | 1967-10-24 | Philips Corp | Low-pressure mercury vapor discharge lamp |
US3449615A (en) * | 1965-03-25 | 1969-06-10 | Us Navy | Xenon flash lamp for laser pumping in liquid nitrogen |
-
1968
- 1968-10-09 US US766162A patent/US3651365A/en not_active Expired - Lifetime
-
1969
- 1969-10-09 JP JP44080440A patent/JPS4811638B1/ja active Pending
- 1969-10-09 GB GB49706/69A patent/GB1210049A/en not_active Expired
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1925648A (en) * | 1928-09-21 | 1933-09-05 | Hans J Spanner | Lighting device |
US1961618A (en) * | 1931-01-07 | 1934-06-05 | Rainbow Light Inc | Low voltage electric discharge tube |
US2491854A (en) * | 1946-04-06 | 1949-12-20 | Gen Electric | Starting strip for electric discharge devices |
US2829295A (en) * | 1949-07-02 | 1958-04-01 | Philips Corp | Internally conductively coated lamp and method of manufacture |
US2897126A (en) * | 1955-03-05 | 1959-07-28 | Quartz & Silice S A | Vitreous silica and its manufacture |
GB836551A (en) * | 1955-08-09 | 1960-06-01 | Gen Electric Co Ltd | Improvements in or relating to electric discharge lamps |
US3174919A (en) * | 1962-10-31 | 1965-03-23 | Corning Glass Works | Methods for electrolyzing glass |
US3349274A (en) * | 1964-03-06 | 1967-10-24 | Philips Corp | Low-pressure mercury vapor discharge lamp |
US3449615A (en) * | 1965-03-25 | 1969-06-10 | Us Navy | Xenon flash lamp for laser pumping in liquid nitrogen |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4009408A (en) * | 1974-12-16 | 1977-02-22 | Itt Industries, Inc. | High-pressure sodium-vapor discharge lamp |
US4310773A (en) * | 1979-05-16 | 1982-01-12 | General Electric Company | Glass flash tube |
EP0033653A1 (en) * | 1980-02-04 | 1981-08-12 | Xerox Corporation | Trigger device for electric-discharge lamp |
US4342940A (en) * | 1980-02-04 | 1982-08-03 | Xerox Corporation | Triggering device for a flash lamp |
Also Published As
Publication number | Publication date |
---|---|
JPS4811638B1 (enrdf_load_stackoverflow) | 1973-04-14 |
GB1210049A (en) | 1970-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3900753A (en) | High pressure sodium vapor lamp having low starting voltage | |
US4491766A (en) | High pressure electric discharge lamp employing a metal spiral with positive potential | |
US4004189A (en) | Three-electrode short duration flash tube | |
JPH04303549A (ja) | 高周波点灯式放電ランプ | |
US3651365A (en) | Xenon slash lamp with sodium starting band and method of making same | |
US2856532A (en) | Pulsed ion source | |
US4001624A (en) | Soft glass flashtube | |
CA1092642A (en) | Multiflash system | |
US3504218A (en) | Dual cathode for fluorescent lamps | |
US3727089A (en) | Small sized stroboscopic tube for photographic use | |
JP2003517710A (ja) | 高圧放電ランプ | |
KR20100002115A (ko) | 고강도 방전 램프용 점등 보조기 | |
US3993922A (en) | Arc discharge lamp with integral trigger electrode | |
US3328622A (en) | Electric discharge device having primary and secondary electrodes | |
US3742281A (en) | Controlled spectrum flash lamp | |
FI72835B (fi) | Anod- och katodsystem i fluorescerande lampa. | |
US3634718A (en) | High-pressure gaseous discharge lamp including a starting electrode | |
US9105461B2 (en) | Flash lamp with gas fill for suppressing self-starting | |
US4075537A (en) | Ignition electrode arrangement for gas discharge lamps, particularly for flash tubes | |
JPH07122241A (ja) | 反射板付メタルハライドランプおよびその点灯装置 | |
US3849699A (en) | Single base, self-igniting fluorescent lamp | |
GB1594918A (en) | Method and apparatus for on-switching in a crossed-field switch device against high voltage | |
US1872567A (en) | Discharge tube | |
US2056660A (en) | Self starting gaseous electric discharge device | |
US3298769A (en) | Method and apparatus for making electron discharge devices |