US3648675A - Ignition arrangements for internal combustion engines - Google Patents
Ignition arrangements for internal combustion engines Download PDFInfo
- Publication number
- US3648675A US3648675A US55080A US3648675DA US3648675A US 3648675 A US3648675 A US 3648675A US 55080 A US55080 A US 55080A US 3648675D A US3648675D A US 3648675DA US 3648675 A US3648675 A US 3648675A
- Authority
- US
- United States
- Prior art keywords
- ignition
- capacitor
- pulse
- engine
- thyristor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 15
- 239000003990 capacitor Substances 0.000 claims abstract description 52
- 238000004804 winding Methods 0.000 claims abstract description 37
- 238000007599 discharging Methods 0.000 claims abstract description 7
- 230000005294 ferromagnetic effect Effects 0.000 claims description 8
- 230000006698 induction Effects 0.000 claims description 7
- 230000002401 inhibitory effect Effects 0.000 abstract description 3
- 230000005291 magnetic effect Effects 0.000 description 15
- 230000004907 flux Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 244000292411 Excoecaria agallocha Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P11/00—Safety means for electric spark ignition, not otherwise provided for
- F02P11/02—Preventing damage to engines or engine-driven gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P1/00—Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
- F02P1/08—Layout of circuits
- F02P1/086—Layout of circuits for generating sparks by discharging a capacitor into a coil circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P7/00—Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
- F02P7/02—Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors
- F02P7/03—Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors with electrical means
Definitions
- No.: 55,080 An arrangement for providing ignition pulses for an internal combustion engine while at the same time inhibiting ignition pulses from being applied when said engine is operated in the [30] Forelgn Apphcauon Emmy Dam improper direction. Ignition pulses are produced through an July 16, 1969 Germany ..P 19 36 105.8 ignition coil which has its primary winding connected to a capacitor charged through a magneto generator.
- the present invention resides in an ignition arrangement for internal combustion engines in which a capacitor becomes charged from a magneto generator, and then becomes discharged at the instant of ignition through the primary winding of an ignition coil, upon actuation of an electronic circuit.
- the secondary winding of the ignition coil is connected to the spark plug of the engine.
- the negative pulses are blocked through a diode, and thereby remain ineffective.
- Such ignition arrangements have, however, the disadvantage that when operating in reverse as, for example, at the start, the previous negative pulse derived from the pulse generator, becomes a positive pulse due to the changed direction of motion.
- the resulting positive pulse causes the thyristor to be switched to the conducting state, and accordingly the capacitor becomes discharged through the ignition coil and a spark is thereby applied at the spark plug. With such operation of the spark plug, the engine is aided in running in the wrong direction.
- an object of the present invention for providing, in an ignition combustion engine, means for inhibiting the generation of sparks or sparking of the plugs within the engine, when the latter operates in the reverse direction. It is particularly an object of the present invention to provide such an arrangement for engines having one or more cylinders.
- the objects of the present invention are achieved by providing for switching the thyristor to the conducting state, as soon as the half wave of a voltage is produced during the wrong direction of motion of the magneto generator. Such halfwave would, otherwise, cause charging of the capacitor which is connected to the magneto generator, should the electronic switching element in the form of the thyristor be turned off.
- the switching of the thyristor thereby, takes place in the simplest manner when the engine operates in the wrong direction, and such switching of the thyristor is accomplished by the voltage pulse of a magnetic generator or pulse emitter which switches the thyristor to the conducting state.
- the pulse emitter provides the pulse for switching the thyristor to the conducting state at the instant of ignition.
- An ignition arrangement for internal combustion engines in which a capacitor charged by a magneto generator discharges through the primary winding of an ignition coil upon firing of a thyristor.
- the anode-cathode path of the thyristor is connected in series with the primary winding of the ignition coil.
- the gate of the thyristor has a voltage pulse applied to it through a pulse emitter.
- the thyristor is switched to the conducting state upon generation of a voltage pulse which would charge the capacitor through the magneto generator, at the instunt of ignition, and when the thyristor is in the non-conducting state.
- the thyristor is switched to the conducting state and inhibits, thereby, the charging of the capacitor.
- FIG. 1 is a functional schematic diagram of an internal combustion engine with two cylinders and a magneto generator for charging an ignition capacitor, in accordance with the present invention
- FIG. 2 is a circuit diagram of the arrangement of FIG. 1;
- FIGS. 3a, 3b and 3c are voltage waveforms of the armature winding induced pulses of the ignition generator arrangement when operated in the proper direction of motion;
- FIGS. 4a, 4b and 4c are voltage waveforms prevailing in the ignition arrangement when the engine is operated in the improper direction.
- an internal combustion engine with two cylinders and of two cycle design is provided with a magneto generator ltll.
- This generator consists of a pole wheel 131 provided with four symmetrically arranged permanent magnets 12. These permanent magnets 12 are arranged so that they are situated with alternating polarity.
- the generator furthermore, has an armature plate 13 upon which are mounted a charging armature M for producing the ignition energy, and ignition capacitor I5 for storing the ignition energy, a well as two oppositely lying magnetic pulse emitters l6 and 17.
- the elements mounted upon the armature 13, are connected to a circuit 22 situated outside of the generator 10, through interconnecting lines 18,19,20 and 21.
- Two ignition coils 23 and 24, are, furthermore, connected to the ignition circuit 22.
- the high voltage portions of these ignition coils have terminal lines 25 and 26 connected to both spark plugs 27 and 28 which are arranged in the combustion chamber of the engine.
- FIG. 2 shows precisely the circuit construction of the ignition arrangement shown in FIG. 1.
- an alternating voltage U is generated within the charging armature M of the generator 10, through the rotating pole: wheel II. This voltage U is shown in FIG. 3a.
- the next positive halfwave which appears as a result of the electrical energy produced in the magnetic generator 10, is applied to the ignition capacitor 15, through a diode 30.
- the ignition capacitor 15 becomes charged. Since the diode 3t] prevents discharging of the ignition capacitor 15 through the charging armature 14, the capacitor voltage U appears as shown in FIG. 3c. In this latter diagram, the capacitor voltage has a maximum value for the positive voltage halfwave of substantially volts.
- the element 29 which is connected to the motor shaft and which serves to pass the flux lines, is moved beneath the magnetic generator 16 at the instant at which the negative halfwave within the charging armature M has attained its maximum value.
- variation in the magnetic flux takes place within the generator 16.
- a positive and then a negatively following voltage pulse U of approximately 1.8 volts is induced.
- the positive voltage pulse is applied to the control gate of a thyristor 32, through a diode 31. With the application of this positive voltage pulse to this thyristor, the latter is switched to the conducting state.
- the ignition capacitor 15 becomes thereby suddenly discharged, as shown in FIG.
- the second positive halfwave voltage is induced within the charging armature or charging coil 14, and this voltage halfwave serves to charge again the ignition capacitor through the diode 30. Since the two magnetic generators l6 and 17 lie opposite to each other as shown in FIG. 1, the element 29 is moved beneath the second generator 17 with further rotation of l80. As a result, a positive and subsequently following negative voltage pulse are also here generated.
- the positive voltage pulse is applied to the control gate of a second thyristor 34 through a further diode 33, and switches the thyristor, thereby, to the conducting state. In this manner, the ignition capacitor 15 becomes discharged through the primary winding 24a of the second ignition coil 24, and through the thyristor 34.
- the primary winding 24a of the ignition coil 24 has 'a relatively low resistance value, the actual voltage at the charging armature or charging coil 14 is very small, and consequently the voltage at the ignition capacitor 15 is also small. This may be seen from the extended line in FIGS. 4a and 4c. Through such action, therefore, no spark appears at the spark plug 28.
- the thyristor 34 Since the thyristor 34 remains in the conducting state as long as current flows in the circuit, the thyristor becomes turned off first after the end of the positive halfwave from the charging armature or coil 14. With further rotation of the pole wheel 11, a negative halfwave becomes now induced within the charging armature or coil 14, and this negative halfwave remains ineffective for the ignition arrangement, because the diode 30 remains in the non-conducting state. First after the positive halfwave at the charging armature or coil 14, can the ignition capacitor 15 become charged through the diode 30. Since, however, at that instant of time the element 29 becomes moved beneath the other generator 16, and a positive and negative voltage pulse becomes generated therein, the thyristor 32 becomes switched to the conducting state through the diode 31.
- the cooperative arrangement of the generator 16 and 17 with the element 29 is essential for assurance of proper resetting of the ignition arrangement. It is necessary to arrange the element 29 so that its rear end produces a positive pulse for the thyristors 32 and 34 at the instant of time when it is moved beneath the magnetic generator 16 and 17, when the engine is rotated in the wrong direction. Through such conditions, a positive halfwave begins within the charging armature or coil 14, and charging of the ignition capacitor 15 is thereby avoided with safety.
- the present invention is not limited for these particular embodiments illustrated.
- the present invention is, instead, applicable to single cylinder as well as multicylinder engines.
- the ignition arrangement is provided with a plurality of poles in the magneto generator, and a magnetic generator, furthermore, is provided for each thyristor control and cooperates with the rotating element 29, for example.
- An ignition arrangement for internal combustion engines comprising, in combination, ignition coil means with primary and secondary windings for producing an ignition pulse in said secondary winding; charging capacitor means connected to said primary winding means for storing the ignition energy; connection means between said charging capacitor means and said primary winding means for discharging said ignition energy through said primary winding means; magneto generator means connected to said capacitor means for charging said capacitor means, said capacitor means discharging through said connection means and through said primary winding for producing said ignition pulse in said secondary winding; electronic switching means connected in series with said primary winding; means for connecting the series combination of said switching means and said primary winding in parallel with said capacitor means, said switching means and said primary winding being a conductive path across said capacitor means when said switching means is in the conducting state; pulse emitting means coupled to said engine and emitting pulses at spaced intervals; means for connecting said pulse emitting means to said switching means for controlling the state of said switching means, said switching means being switched to the conducting state by said pulse emitting means during a first operating direction of said engine whereby said capacitor means is inhibite
- said switching means being switched to the non-conducting state when said engine is operating in a second direction whereby said capacitor means is charged by said generator means to produce said ignition pulse only when said engine is operating in said second direction.
- the ignition arrangement as defined in claim 1 including spark plug means connected to said secondary winding of said ignition coil means.
- the ignition arrangement as defined in claim 1 including diode means connected to said capacitor means for charging said capacitor means with positive voltage from said magneto generator means, said electronic switching means being a thyristor switched to the conducting state through positive voltage pulses from said pulse emitting means.
- said pulse emitting means comprises induction coil means; ferromagnetic means movable in proximity of said induction coil means so that a voltage is induced within said induction coil means for switching said electronic switching means to conducting state within substantially the maximum negative region of the voltage from said magneto generator means during said operating direction of said engine.
- said ferromagnetic means comprises a substantially elongated ferromagnetic element extending over an arc of 0.21 radians.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19691936105 DE1936105C3 (de) | 1969-07-16 | Zündvorrichtung für Brennkraftmaschinen |
Publications (1)
Publication Number | Publication Date |
---|---|
US3648675A true US3648675A (en) | 1972-03-14 |
Family
ID=5739943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US55080A Expired - Lifetime US3648675A (en) | 1969-07-16 | 1970-07-15 | Ignition arrangements for internal combustion engines |
Country Status (7)
Country | Link |
---|---|
US (1) | US3648675A (enrdf_load_stackoverflow) |
JP (1) | JPS4826683B1 (enrdf_load_stackoverflow) |
AT (1) | AT305702B (enrdf_load_stackoverflow) |
ES (1) | ES381813A1 (enrdf_load_stackoverflow) |
FR (1) | FR2052681A5 (enrdf_load_stackoverflow) |
SE (1) | SE355213B (enrdf_load_stackoverflow) |
YU (1) | YU33675B (enrdf_load_stackoverflow) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3739759A (en) * | 1972-02-04 | 1973-06-19 | Brunswick Corp | Rotation sensing pulse control generator for triggered ignition systems and the like |
US3795235A (en) * | 1971-12-16 | 1974-03-05 | Outboard Marine Corp | Breakless ignition system with means for preventing reverse engine operation |
US3824976A (en) * | 1972-08-30 | 1974-07-23 | Kokusan Denki Co | Capacitor charge-discharge type ignition system for use in a two-cycle internal combustion engine |
JPS49113034U (enrdf_load_stackoverflow) * | 1973-01-30 | 1974-09-26 | ||
US3850155A (en) * | 1972-06-06 | 1974-11-26 | Outboard Marine Corp | Engine rotational direction control |
US3884207A (en) * | 1973-09-06 | 1975-05-20 | Systematics Inc | Magneto-generator ignition system |
US3894524A (en) * | 1973-06-15 | 1975-07-15 | Mcculloch Corp | Capacitor discharge ignition system |
US3903862A (en) * | 1972-06-29 | 1975-09-09 | Nippon Denso Co | Capacitor discharge type contactless ignition system for internal combustion engines |
US3960129A (en) * | 1972-03-10 | 1976-06-01 | Robert Bosch G.M.B.H. | Compensated semiconductor ignition system for internal combustion engines |
US4024844A (en) * | 1973-04-28 | 1977-05-24 | Nippondenso Co., Ltd. | Ignition device for an internal combustion engine with cam design for preventing undesired firings |
FR2357902A1 (fr) * | 1976-07-06 | 1978-02-03 | Motorola Inc | Detecteur de sens de rotation pour la commande de l'allumage d'un moteur |
US4203403A (en) * | 1973-04-28 | 1980-05-20 | Nippondenso Co., Ltd. | Ignition device for an internal combustion engine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202009014204U1 (de) | 2009-10-09 | 2010-04-29 | Fischer, Armin | Verstellbare Zündanlage für Brennkraftmaschinen |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3435264A (en) * | 1965-08-13 | 1969-03-25 | Bosch Gmbh Robert | Magneto flywheel ignition |
US3554179A (en) * | 1969-06-19 | 1971-01-12 | Phelon Co Inc | Antireverse trigger for an ignition system |
US3566188A (en) * | 1968-10-31 | 1971-02-23 | Brunswick Corp | Triggered ignition system |
-
1970
- 1970-06-16 FR FR7022163A patent/FR2052681A5/fr not_active Expired
- 1970-06-24 YU YU1597/70A patent/YU33675B/xx unknown
- 1970-06-25 AT AT573770A patent/AT305702B/de not_active IP Right Cessation
- 1970-07-15 SE SE09814/70A patent/SE355213B/xx unknown
- 1970-07-15 JP JP45061445A patent/JPS4826683B1/ja active Pending
- 1970-07-15 ES ES381813A patent/ES381813A1/es not_active Expired
- 1970-07-15 US US55080A patent/US3648675A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3435264A (en) * | 1965-08-13 | 1969-03-25 | Bosch Gmbh Robert | Magneto flywheel ignition |
US3566188A (en) * | 1968-10-31 | 1971-02-23 | Brunswick Corp | Triggered ignition system |
US3554179A (en) * | 1969-06-19 | 1971-01-12 | Phelon Co Inc | Antireverse trigger for an ignition system |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3795235A (en) * | 1971-12-16 | 1974-03-05 | Outboard Marine Corp | Breakless ignition system with means for preventing reverse engine operation |
US3739759A (en) * | 1972-02-04 | 1973-06-19 | Brunswick Corp | Rotation sensing pulse control generator for triggered ignition systems and the like |
US3960129A (en) * | 1972-03-10 | 1976-06-01 | Robert Bosch G.M.B.H. | Compensated semiconductor ignition system for internal combustion engines |
US3850155A (en) * | 1972-06-06 | 1974-11-26 | Outboard Marine Corp | Engine rotational direction control |
US3903862A (en) * | 1972-06-29 | 1975-09-09 | Nippon Denso Co | Capacitor discharge type contactless ignition system for internal combustion engines |
US3824976A (en) * | 1972-08-30 | 1974-07-23 | Kokusan Denki Co | Capacitor charge-discharge type ignition system for use in a two-cycle internal combustion engine |
JPS49113034U (enrdf_load_stackoverflow) * | 1973-01-30 | 1974-09-26 | ||
US4024844A (en) * | 1973-04-28 | 1977-05-24 | Nippondenso Co., Ltd. | Ignition device for an internal combustion engine with cam design for preventing undesired firings |
US4203403A (en) * | 1973-04-28 | 1980-05-20 | Nippondenso Co., Ltd. | Ignition device for an internal combustion engine |
US3894524A (en) * | 1973-06-15 | 1975-07-15 | Mcculloch Corp | Capacitor discharge ignition system |
US3884207A (en) * | 1973-09-06 | 1975-05-20 | Systematics Inc | Magneto-generator ignition system |
FR2357902A1 (fr) * | 1976-07-06 | 1978-02-03 | Motorola Inc | Detecteur de sens de rotation pour la commande de l'allumage d'un moteur |
Also Published As
Publication number | Publication date |
---|---|
YU33675B (en) | 1977-12-31 |
FR2052681A5 (enrdf_load_stackoverflow) | 1971-04-09 |
DE1936105B2 (de) | 1976-09-09 |
JPS4826683B1 (enrdf_load_stackoverflow) | 1973-08-14 |
ES381813A1 (es) | 1972-11-16 |
YU159770A (en) | 1977-06-30 |
SE355213B (enrdf_load_stackoverflow) | 1973-04-09 |
AT305702B (de) | 1973-03-12 |
DE1936105A1 (de) | 1971-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3500809A (en) | Ignition arrangement for internal combustion engines | |
CA1038027A (en) | Capacitor discharge ignition system with controlled spark duration | |
US3280809A (en) | Ignition arrangement for internal combustion engines | |
US3892219A (en) | Internal combustion engine ignition system | |
US3648675A (en) | Ignition arrangements for internal combustion engines | |
US3678913A (en) | Current generator and electronic ignition circuit | |
US3598098A (en) | Ignition arrangment for internal combustion engines | |
US3703889A (en) | Ignition arrangement for internal combustion engines | |
US3630185A (en) | Ignition-timing apparatus | |
US3398353A (en) | Magneto systems | |
US3186397A (en) | Electrical apparatus | |
US3407795A (en) | Ignition system for internal combustion engines | |
US3866589A (en) | Semiconductor controlled magneto ignition system for internal combustion engines | |
US3669086A (en) | Solid state ignition system | |
US3835830A (en) | Spark ignition systems | |
US3426740A (en) | Distributor | |
US3723809A (en) | Magneto-dynamo-operated ingition device for multi-cylinder engines | |
US3941111A (en) | Ignition system | |
US3993031A (en) | Electronic magneto ignition system with engine speed limiting | |
US3842817A (en) | Capacitive discharge ignition system | |
US3864621A (en) | Transistorized control circuit for magneto motor ignition systems | |
US4176643A (en) | Pulse generating and distributing circuits for internal combustion engines or the like | |
US3692009A (en) | Ignition arrangements for internal combustion engines | |
US3704700A (en) | Ignition arrangement for internal combustion engines having an alternating current generator | |
US3893439A (en) | Magneto ignition system for internal combustion engines |