US3647570A - Oxygen trap scarfing method and apparatus - Google Patents

Oxygen trap scarfing method and apparatus Download PDF

Info

Publication number
US3647570A
US3647570A US836233A US3647570DA US3647570A US 3647570 A US3647570 A US 3647570A US 836233 A US836233 A US 836233A US 3647570D A US3647570D A US 3647570DA US 3647570 A US3647570 A US 3647570A
Authority
US
United States
Prior art keywords
oxygen
scarfing
preheat
streams
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US836233A
Inventor
Thomas James Lytle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L-Tec Co
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Application granted granted Critical
Publication of US3647570A publication Critical patent/US3647570A/en
Assigned to L-TEC COMPANY reassignment L-TEC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: UNION CARBIDE CORPORATION
Assigned to SECURITY PACIFIC BUSINESS CREDIT INC., A DE CORP. reassignment SECURITY PACIFIC BUSINESS CREDIT INC., A DE CORP. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: L-TEC COMPANY A NY LIMITED PARTNERSHIP
Assigned to L-TEC COMPANY reassignment L-TEC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: UNION CARBIDE CORPORATION, A CORP OF NY.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/06Machines, apparatus, or equipment specially designed for scarfing or desurfacing

Definitions

  • OXYGEN TRAP SCARFING METHOD AND APPARATUS Filed June 25, 1969 IO 20 3O INVENTOR PREHEAT TIME SECS THOMAS J'LYTLE ATTORNEY United States Patent 3,647,570 OXYGEN TRAP SCARFIN G METHOD AND APPARATUS Thomas James Lytle, West Orange, N..l., assignor to Union Carbide Corporation, New York, NY. Filed June 25, 1969, Ser. No. 836,233 Int. Cl. B23k 7/00 US. Cl. 148-9.5 4 Claims ABSTRACT OF THE DTSCLOSURE form a wedge shaped pocket to confine the burning preheating gases. This results in faster puddle formation and causes the puddle to be formed at a location just ahead of the projected converging point of the fuel and oxygen gas streams, rather than in back of the converging point where it would be formed by prior art methods.
  • This invention relates to the thermochemical conditioning of ferrous metal bodies, commonly referred to as scarfing; and more particularly to method and apparatus capable of decreasing the time required for a complete scarfing cycle with post-mixed, fuel-oxygen preheat gas scarfing units by decreasing the time required for preheating the metal workpiece to be scarfed.
  • the present invention is applicable to scarfing of hot as well as cold metal workpieces.
  • a scarfing reaction is caused to take place by first raising the temperature of the metal surface to be scarfed to the ignition temperature of the metal in an oxygen atmosphere. This temperature, which may be lower than the melting point of the metal in air, is referred to as the reaction temperature. When the reaction temperature is reached, a puddle of molten metal is formed. The metal is removedthat is, the thermochemical scarfing reaction is caused to take placeby impinging a stream of oxygen on the puddle. In other words, in order to initiate a scarfing reaction a puddle must be formed before the scarfing oxygen stream can be turned on for the thermochemical scarfing reaction to begin.
  • a complete scarfing cycle consists of four steps. First, the workpiece is positioned in register with the scarfing machine. Second, the scarfing units are closed, either automatically or manually, around all the sides of the workpiece which are to be scarfed. Third, preheating of the workpiece is caused to take pace by means of fueloxygen preheat flames so that a puddle of molten metal is formed; and fourth, the scarfing reaction is carried out by initiating the flow of scarfing oxygen. For example, when scarfing a 30 foot slab at 2000 F., positioning takes about 3 seconds, closing about 5 seconds, preheating about seconds, and scarfing the length of the slab about seconds. Thus, the total scarfing cycle for the 30 foot slab requires approximately 38 seconds.
  • the time required for a complete scarfing cycle results in a scarfing rate or speed that is in some cases slower than the rate at which steel is rolled in a conventional mill. It is therefore desirable to decrease the time required to complete a scarfing cycle in order that the scarfing operation keep up with the production of the mill.
  • Reduction in scarfing time may obviously be accomplished by reducing the time required for any of the above mentioned four steps which take place during a complete scarfing cycle. Since positioning and closing require a total of only about 8 seconds, the amount of improvement possible in these two steps is relatively small. Consequenty, the logical steps to shorten in order to improve the speed of a scarfing cycle are the preheating and/or scarfing steps.
  • preheating time fails to improve. For example, if more fuel gas than conventionally used is provided, it tends to pinch off the supply of oxygen to the workpiece with a consequent decrease in heating capacity, thereby slowing down the preheating reaction.
  • increasing the preheating oxygen splits apart the composite eifect of the upper and lower preheating fuel gas flames, and decreases the heating potential of the upper preheat flames by placing an intervening layer of cold oxygen between the upper preheat flames and the workpiece. Additionally, the increased oxygen acts as a cooling medium which draws heat from the workpiece.
  • FIG. 1 is a side elevation of a scarfing unit according to the present invention which is provided with a row of trap oxygen orifice ports located in the upper preheat block above the row of preheat fuel gas ports.
  • FIG. 2 is a front elevation of the scarfing unit shown in FIG. 1.
  • FIG. 3 is a graph comparing the preheat times obtained by the use of the trap oxygen stream in accordance with the present invention as compared to a scarfing unit without such trap oxygen streams.
  • thermochemically scarfing a metal body by directing a sheet-like stream of oxidizing gas at a reaction zone extending across the surface of said metal body at an acute angle of impingement to said surface, and by directing a plurality of parallel fuel gas streams so as to converge with at least the upper side of said sheetlike stream of oxidizing gas, wherein the improvement comprises: shortening the preheating time by directing a plurality of parallel streams of oxygen from above (relative to the surface of said metal body) said fuel gas streams at an acute angle to the surface of said metal body and so as to converge with the streams of oxygen and fuel gas, whereby the plane formed by said plurality of oxygen streams forms with the surface of said metal body a wedge shaped pocket to confine the preheating fuel gas and oxygen, thereby resulting in faster puddle formation and causing said puddle to be formed at
  • the second aspect of the present invention comprises a continuous slot, post-mixed scarfing unit wherein said slot is formed between an upper preheat block and a lower preheat block which are in spaced relation to one another, wherein means are provided for discharging a sheet-like stream of oxygen through said slot for reacting with a metal surface to be scarfed as well as for burning preheat fuel gas, said scarfing unit being provided With a row of ports communicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas from at least the upper preheat block, wherein the improvement comprises: a row of ports in said upper preheat block communicating with supply passages and located above said row of fuel gas ports for discharging a plurality of parallel streams of oxygen gas, said oxygen ports being directed at an acute angle to the metal surface to be scarfed so as to cause the oxygen streams emanating therefrom to form a wedge shaped pocket between the plane formed by said plurality of oxygen streams and the surface of said metal body to confine the fuel and oxygen gases discharged from their respective
  • the oxygen curtain or plane above the preheat fuel gas streams formed by the trap oxygen streams causes a wedge shaped pocket to be formed between itself and the'surface of the metal being scarfed.
  • the oxygen curtain is formed by a parallel row of oxygen ports 23 located above the row of upper preheat block fuel gas ports 15.
  • High velocity fuel gas from both upper and lower preheat blocks 1 and 2 is directed into the pocket, becoming trapped in the pocket and consequently forced to mix intimately with the oxygen 9 emanating from the continuous slot 8. This permits considerable improvement to be made in preheat time by increasing the flows of fuel and oxygen that can be adequately mixed for combustion while precisely fixing the location of the puddle at the point where it is desired.
  • the oxygen curtain provides a two-fold effect; first, it acts as a physical barrier to contain or trap the fuel and oxygen preheat gases causing them to burn in place; and second it permits an increase in the total amount of oxygen, thereby causing a hotter flame to be produced.
  • the combination of these two effects improves heat transfer to the workpiece and concentrates the heat at a particular spot.
  • the scarfing unit is comprised of an upper preheat block 1, a lower preheat block 2, a head 3 and a shoe 4 which rides on skids 5.
  • the lower surface 6 of upper preheat block 1 and the upper surface 7 of lower preheat block 2 forms a continuous slot passage 8 for the oxygen stream 9.
  • the rear end 10 of oxygen passage 8 communicates with a supply of oxygen (not shown).
  • passage 8 is used to provide oxygen for combustion of the upper and lower preheat fuel gas streams 11 and 12. After the puddle 13 has been formed, the oxygen flow in stream 9 is increased to provide sufficient oxygen for the scarfing reaction.
  • Upper preheat block 1 is provided with a plurality of preheat fuel gas passages 14 which terminate at the front face of the preheat block 1 in a row of fuel gas ports 15.
  • Gas passages 14 communicate with a fuel gas header 24 located in head 3 from which they receive their supply of fuel gas.
  • Natural gas is the preferred fuel gas; however, other fuel gases may also be employed such as, for example, methane, propane or coke oven gas.
  • Lower preheat block 2 contains a plurality of fuel gas passages 17 which communicate with and receive a supply of fuel gas from header 18 located in head 3. Passages 17 terminate at the front face of the lower preheat block 2 in a row of lower preheat fuel gas ports 19.
  • Both the upper preheat fuel gas ports 15 and the lower preheat fuel gas ports 19 are directed so that the straight line projections of the gas streams 11 and 12 emanating therefrom will converge with the straight line projection of the sheet-like stream of oxygen 9 at the converging point A on the surface of the metal workpiece W. Due to the aerodynamic effect of the hot gas streams as previously explained, the puddle 20 is formed upon the surface of the workpiece W at point B by prior art methods, i.e. without the use of the trap oxygen stream 21.
  • the oxygen stream 9 is simply increased to the flow rate required for scarfing, and the workpiece W is then set in motion toward the right as indicated by the direction of the arrow, without the need for backing up the workpiece or scarfing unit. This would have been necessary had the puddle been formed at point B, in order that the scarfing reaction might begin by having the scarfing oxygen stream 9 impinge upon the puddle.
  • the trap oxygen flow may be kept on, shut off completely, or lowered just to bleed slightly in order to prevent ports 23 from becoming plugged by the splatter of molten metal and slag. Keeping the trap oxygen on at full flow rates during the scarfing step has not been found to produce any beneficial results.
  • FIG. 3 is a graph comparing preheating time using a post-mixed fuel-oxygen scarfing unit of the prior art with a unit in accordance with the present invention containing a row of trap oxygen ports above the upper preheat fuel gas ports to provide the oxygen curtain of the present invention.
  • the flow rates of preheat fuel gas (natural gas) were approximately 3500 c.f.h. in both cases.
  • the total amount of oxygen was likewise the same in both cases, i.e. about 7500 c.f.h.
  • the distribution of the oxygen was different.
  • the significance of the faster preheat time obtained in accordance with this invention is that it improves the preheating time at 2000 F., for example, by about 7 seconds, thereby cutting the scarfing cycle described preously from 38 seconds to about 30 seconds. This is an improvement of over in the scarfing cycle and is sufficient to enable the scarfing machine to keep up with a higher production rate than was formerly possible. It should be noted that the present invention provides a saving in preheating time by elimination of the need for backing up the workpiece or scarfing unit prior to initiation of the scarfing oxygen reaction, in addition to the shortening of the preheating time shown in FIG. 3.
  • thermochemically scarfing a metal body by directing: (1) a sheet-like stream of oxidizing gas at a reaction zone extending across the surface of said metal body at an acute angle of impingement to said surface, and (2) a plurality of parallel fuel gas streams so as to converge with at least the upper side of said sheet-like stream of oxidizing gas, the improvement comprising: shortening the preheated time by directing a plurality of parallel streams consisting essentially of oxygen, 'which form a sheet-like oxygen gas curtain, from above said fuel gas streams at an acute angle to the surface of said metal body so as to converge with said streams of oxidizing gas and fuel gas at the converging point of the straight line projections of said oxidizing gas and fuel gas streams, whereby said oxygen gas curtain and the surface of said metal body form a Wedge-shaped pocket to confine the preheating fuel gas and oxidizing gas, thereby resulting in faster puddle formation and causing said puddle to be formed at a location ahead of the converging
  • a continuous slot, post-mixed fuel-oxygen scarfing apparatus wherein said slot is formed between an upper preheat block and a lower preheat block which are in spaced relation to one another, wherein means are provided for discharging a sheet-like stream of oxidizing gas through said slot for reacting with a metal surface to be scarfed as Well as for burning preheat fuel gas, said scarfing apparatus being provided With a row of ports communicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas from at least the upper preheat block to converge with said stream of oxidizing gas, the improvement comprising: a row of oxygen ports located in said upper preheat block above said row of fuel gas ports, communicating with supply passages, and capable of discharging a plurality of parallel streams of oxygen gas which form a sheet-like oxygen gas curtain, said oxygen ports being directed at the converging point of the straight line projections of the oxidizing gas and fuel gas streams so as to cause the oxygen curtain stream emanating therefrom to form a

Abstract

THE TIME REQUIRED FOR SCARFING THE SURFACE OF A METAL BODY IS DECREASED BY SHORTENING THE PREHEATING TIME. THIS IS ACCOMPLISHED BY DIRECTING A ROW OF "TRAP" OXYGEN STREAMS FROM PORTS LOCATED ABOVE THE UPPER PREHEAT FUEL GAS PORTS SO THAT THE OXYGEN STREAMS FROM A PLANE WHICH INTERSECTS THE SURFACE OF THE METAL BODY IN SUCH WAY AS TO FORM A WEDGE SHAPED POCKET TO CONFINE THE BURNING PREHEATING GASES. THE RESULST IN FASTER PUDDLE FORMATION AND CAUSES THE PUDDLE TO BE FORMED AT A LOCATION JUST AHEAD OF THE PROJECTED COVERGING POINT OF THE FUEL AND OXYGEN GAS STREAMS, RATHER THAN IN BACK OF THE CONVERGING POINT WHERE IT WOULD BE FORMED BY PRIOR ART METHODS.

Description

March 7, 1972 LYTLE 3,617,570
OXYGEN TRAP SCARFING METHOD AND APPARATUS Filed June 25, 1969 IO 20 3O INVENTOR PREHEAT TIME SECS THOMAS J'LYTLE ATTORNEY United States Patent 3,647,570 OXYGEN TRAP SCARFIN G METHOD AND APPARATUS Thomas James Lytle, West Orange, N..l., assignor to Union Carbide Corporation, New York, NY. Filed June 25, 1969, Ser. No. 836,233 Int. Cl. B23k 7/00 US. Cl. 148-9.5 4 Claims ABSTRACT OF THE DTSCLOSURE form a wedge shaped pocket to confine the burning preheating gases. This results in faster puddle formation and causes the puddle to be formed at a location just ahead of the projected converging point of the fuel and oxygen gas streams, rather than in back of the converging point where it would be formed by prior art methods.
BACKGROUND This invention relates to the thermochemical conditioning of ferrous metal bodies, commonly referred to as scarfing; and more particularly to method and apparatus capable of decreasing the time required for a complete scarfing cycle with post-mixed, fuel-oxygen preheat gas scarfing units by decreasing the time required for preheating the metal workpiece to be scarfed. The present invention is applicable to scarfing of hot as well as cold metal workpieces.
According to present post-mixed scarfing practice, as exemplified by U.S. Pat. No. 3,231,431, a scarfing reaction is caused to take place by first raising the temperature of the metal surface to be scarfed to the ignition temperature of the metal in an oxygen atmosphere. This temperature, which may be lower than the melting point of the metal in air, is referred to as the reaction temperature. When the reaction temperature is reached, a puddle of molten metal is formed. The metal is removedthat is, the thermochemical scarfing reaction is caused to take placeby impinging a stream of oxygen on the puddle. In other words, in order to initiate a scarfing reaction a puddle must be formed before the scarfing oxygen stream can be turned on for the thermochemical scarfing reaction to begin.
A complete scarfing cycle consists of four steps. First, the workpiece is positioned in register with the scarfing machine. Second, the scarfing units are closed, either automatically or manually, around all the sides of the workpiece which are to be scarfed. Third, preheating of the workpiece is caused to take pace by means of fueloxygen preheat flames so that a puddle of molten metal is formed; and fourth, the scarfing reaction is carried out by initiating the flow of scarfing oxygen. For example, when scarfing a 30 foot slab at 2000 F., positioning takes about 3 seconds, closing about 5 seconds, preheating about seconds, and scarfing the length of the slab about seconds. Thus, the total scarfing cycle for the 30 foot slab requires approximately 38 seconds.
The time required for a complete scarfing cycle results in a scarfing rate or speed that is in some cases slower than the rate at which steel is rolled in a conventional mill. It is therefore desirable to decrease the time required to complete a scarfing cycle in order that the scarfing operation keep up with the production of the mill.
Reduction in scarfing time may obviously be accomplished by reducing the time required for any of the above mentioned four steps which take place during a complete scarfing cycle. Since positioning and closing require a total of only about 8 seconds, the amount of improvement possible in these two steps is relatively small. Consequenty, the logical steps to shorten in order to improve the speed of a scarfing cycle are the preheating and/or scarfing steps.
The seemingly simple expedient of increasing the flows of fuel and oxygen, to decrease preheating time and increase scaifing speed, does not work. If greater than normal quantities of either fuel or oxygen gas are supplied, preheating time fails to improve. For example, if more fuel gas than conventionally used is provided, it tends to pinch off the supply of oxygen to the workpiece with a consequent decrease in heating capacity, thereby slowing down the preheating reaction. Similarly, increasing the preheating oxygen splits apart the composite eifect of the upper and lower preheating fuel gas flames, and decreases the heating potential of the upper preheat flames by placing an intervening layer of cold oxygen between the upper preheat flames and the workpiece. Additionally, the increased oxygen acts as a cooling medium which draws heat from the workpiece. The simultaneous and proportional increase in both preheat fuel gas and oxygen offers little improvement, since the excess amounts of oxygen and fuel cannot be mixed and burned efficiently in a post-mixed system.
THE DRAWINGS In the drawings:
FIG. 1 is a side elevation of a scarfing unit according to the present invention which is provided with a row of trap oxygen orifice ports located in the upper preheat block above the row of preheat fuel gas ports.
FIG. 2 is a front elevation of the scarfing unit shown in FIG. 1.
FIG. 3 is a graph comparing the preheat times obtained by the use of the trap oxygen stream in accordance with the present invention as compared to a scarfing unit without such trap oxygen streams.
In accordance with the prior art, in order to maximize heat input into the workpiece at the reaction zone, the upper and lower preheat fuel gas streams 11 and 12 in FIG. 1, as well as the scarfing oxygen stream 9 emanating from the central slot 8, are all directed so that their straight line projections converge at point A on the surface of the workpiece W. However, due to the aerodynamics of the system, caused by the flow of hot reacting gases and cooling from the surrounding area, as well as the pressure drop caused by the flow of high velocity gases, the puddle 20 forms not at the point A, but rather in back of it by several inches at point B. Consequently, it has been necessary, in accordance with prior art practice, as shown for example in US. Pat. No. 3,322,578, to back up the scarfing unit or the workpeice (in a direction opposite to the arrow) by several inches before the scarfing oxygen stream was turned on, so that when it was turned on, the scarfing oxygen stream would impinge upon the puddle rather than ahead of it. This backing up of either the scarfing unit or workpiece between preheating and starting of the scarfing reaction has been responsible in part for the excessive time required for preheating.
OBJECTS It is the primary object of this invention to decrease the time required for a complete scarfing cycle.
It is another object of this invention to decrease the time required to preheat the workpiece prior to initiation of the scarfing reaction.
. It is still another object to avoid the necessity for backmg up the scarfing unit or workpiece before scarfing oxygen is turned on.
SUMMARY OF THE INVENTION These and other objects, which will become apparent from the detailed disclosure and claims to follow are achieved by the present invention, one aspect of which comprises a process for thermochemically scarfing a metal body by directing a sheet-like stream of oxidizing gas at a reaction zone extending across the surface of said metal body at an acute angle of impingement to said surface, and by directing a plurality of parallel fuel gas streams so as to converge with at least the upper side of said sheetlike stream of oxidizing gas, wherein the improvement comprises: shortening the preheating time by directing a plurality of parallel streams of oxygen from above (relative to the surface of said metal body) said fuel gas streams at an acute angle to the surface of said metal body and so as to converge with the streams of oxygen and fuel gas, whereby the plane formed by said plurality of oxygen streams forms with the surface of said metal body a wedge shaped pocket to confine the preheating fuel gas and oxygen, thereby resulting in faster puddle formation and causing said puddle to be formed at a location just ahead of the converging point of the straight line projections of said oxygen and fuel gas streams.
The second aspect of the present invention comprises a continuous slot, post-mixed scarfing unit wherein said slot is formed between an upper preheat block and a lower preheat block which are in spaced relation to one another, wherein means are provided for discharging a sheet-like stream of oxygen through said slot for reacting with a metal surface to be scarfed as well as for burning preheat fuel gas, said scarfing unit being provided With a row of ports communicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas from at least the upper preheat block, wherein the improvement comprises: a row of ports in said upper preheat block communicating with supply passages and located above said row of fuel gas ports for discharging a plurality of parallel streams of oxygen gas, said oxygen ports being directed at an acute angle to the metal surface to be scarfed so as to cause the oxygen streams emanating therefrom to form a wedge shaped pocket between the plane formed by said plurality of oxygen streams and the surface of said metal body to confine the fuel and oxygen gases discharged from their respective ports.
DETAILED DESCRIPTION OF THE INVENTION The oxygen curtain or plane above the preheat fuel gas streams formed by the trap oxygen streams causes a wedge shaped pocket to be formed between itself and the'surface of the metal being scarfed. The oxygen curtain is formed by a parallel row of oxygen ports 23 located above the row of upper preheat block fuel gas ports 15. High velocity fuel gas from both upper and lower preheat blocks 1 and 2 is directed into the pocket, becoming trapped in the pocket and consequently forced to mix intimately with the oxygen 9 emanating from the continuous slot 8. This permits considerable improvement to be made in preheat time by increasing the flows of fuel and oxygen that can be adequately mixed for combustion while precisely fixing the location of the puddle at the point where it is desired.
The oxygen curtain provides a two-fold effect; first, it acts as a physical barrier to contain or trap the fuel and oxygen preheat gases causing them to burn in place; and second it permits an increase in the total amount of oxygen, thereby causing a hotter flame to be produced. The combination of these two effects improves heat transfer to the workpiece and concentrates the heat at a particular spot.
An unexpected but very beneficial result of this invention is that the molten puddle is formed not at point B 4. behind point A, but rather at point C forward of point A. As a result of the fact that point C is just ahead of the projection of the scarfing oxygen stream 9, backing up of the workpiece or scarfing unit prior to starting of the cutting oxygen flow is eliminated. This, in turn, provides additional beneficial results in the speed of preheating.
Reference to FIGS. 1 and 2 will show that the scarfing unit is comprised of an upper preheat block 1, a lower preheat block 2, a head 3 and a shoe 4 which rides on skids 5. The lower surface 6 of upper preheat block 1 and the upper surface 7 of lower preheat block 2 forms a continuous slot passage 8 for the oxygen stream 9. The rear end 10 of oxygen passage 8 communicates with a supply of oxygen (not shown). During preheating, passage 8 is used to provide oxygen for combustion of the upper and lower preheat fuel gas streams 11 and 12. After the puddle 13 has been formed, the oxygen flow in stream 9 is increased to provide sufficient oxygen for the scarfing reaction. Upper preheat block 1 is provided with a plurality of preheat fuel gas passages 14 which terminate at the front face of the preheat block 1 in a row of fuel gas ports 15. Gas passages 14 communicate with a fuel gas header 24 located in head 3 from which they receive their supply of fuel gas. Natural gas is the preferred fuel gas; however, other fuel gases may also be employed such as, for example, methane, propane or coke oven gas. Lower preheat block 2 contains a plurality of fuel gas passages 17 which communicate with and receive a supply of fuel gas from header 18 located in head 3. Passages 17 terminate at the front face of the lower preheat block 2 in a row of lower preheat fuel gas ports 19. Both the upper preheat fuel gas ports 15 and the lower preheat fuel gas ports 19 are directed so that the straight line projections of the gas streams 11 and 12 emanating therefrom will converge with the straight line projection of the sheet-like stream of oxygen 9 at the converging point A on the surface of the metal workpiece W. Due to the aerodynamic effect of the hot gas streams as previously explained, the puddle 20 is formed upon the surface of the workpiece W at point B by prior art methods, i.e. without the use of the trap oxygen stream 21.
In accordance with the present invention, the upper preheat block 1 is provided with a plurality of oxygen passages 22 which terminate at the front face of said preheat block in a row of trap oxygen ports 23'. Oxygen is supplied to passages 22 from an oxygen header 16 located in head 3-. The trap oxygen streams 21 emanating from ports 23 are also directed to converge with the fuel gas stream projections 11 and 12 and oxygen stream projection 9 at point A. The plane formed by the plurality of trap oxygen streams 21 forms a wedge shaped pocket between itself and the surface of the workpiece W to confine the preheating gas streams 11 and 12 and the oxygen stream 9 thereby improving heat transfer to workpiece W and concentration of the heat within the wedge shaped pocket formed thereby. It has been found that when the trap oxygen stream 21 is used, the puddle 13 is formed at point C just ahead of converging point A, rather than at point B where it would have been formed without the use of the trap oxygen streams. This is apparently caused by the change in the flow dynamics of the system resulting from use of the trap oxygen streams. In other words, due to the aerodynamics of the system, the streams of fuel gas and oxygen do not follow the straight lined projections 9, 11, 12 and 21, but rather follow a path indicated generally by flow lines F. Consequently, when the scarfing reaction is to begin, after puddle 13 has been formed at point C, the oxygen stream 9 is simply increased to the flow rate required for scarfing, and the workpiece W is then set in motion toward the right as indicated by the direction of the arrow, without the need for backing up the workpiece or scarfing unit. This would have been necessary had the puddle been formed at point B, in order that the scarfing reaction might begin by having the scarfing oxygen stream 9 impinge upon the puddle. After the preheat step has been completed, and the scarfing reaction started, the trap oxygen flow may be kept on, shut off completely, or lowered just to bleed slightly in order to prevent ports 23 from becoming plugged by the splatter of molten metal and slag. Keeping the trap oxygen on at full flow rates during the scarfing step has not been found to produce any beneficial results.
FIG. 3 is a graph comparing preheating time using a post-mixed fuel-oxygen scarfing unit of the prior art with a unit in accordance with the present invention containing a row of trap oxygen ports above the upper preheat fuel gas ports to provide the oxygen curtain of the present invention. The flow rates of preheat fuel gas (natural gas) were approximately 3500 c.f.h. in both cases. The total amount of oxygen was likewise the same in both cases, i.e. about 7500 c.f.h. However, the distribution of the oxygen was different. In the case of the prior art scarfing unit, all of the oxygen was discharged through the center slot, while in the case of the scarfing unit of the present invention, approximately half of the oxygen was discharged through the center slot and the other half through the trap oxygen ports. It can be seen from the graph that preheating time depends upon the temperature of the steel Work surface and that the hotter the work surface, the shorter the preheating time. Curve X shows the results obtained in using a scarfing unit of the present invention, while curve Y shows the results obtained using a standard post-mixed scarfing unit of the prior art. Comparison of curves X and Y shows that at a steel temperature of 2000 F., it required only about 3 seconds to preheat the workpiece in accordance with the present invention, whereas it required seconds to preheat the workpiece with the prior art unit. This constitutes a reduction of about 7 seconds, or better than a 3-fold improvement. A similar result can be observed at 1500" P. where it required about 5 seconds to preheat in accordance with the present invention, whereas it required about 27 seconds with the prior art unit.
The significance of the faster preheat time obtained in accordance with this invention is that it improves the preheating time at 2000 F., for example, by about 7 seconds, thereby cutting the scarfing cycle described preously from 38 seconds to about 30 seconds. This is an improvement of over in the scarfing cycle and is sufficient to enable the scarfing machine to keep up with a higher production rate than was formerly possible. It should be noted that the present invention provides a saving in preheating time by elimination of the need for backing up the workpiece or scarfing unit prior to initiation of the scarfing oxygen reaction, in addition to the shortening of the preheating time shown in FIG. 3.
What is claimed is:
1. In a process for thermochemically scarfing a metal body by directing: (1) a sheet-like stream of oxidizing gas at a reaction zone extending across the surface of said metal body at an acute angle of impingement to said surface, and (2) a plurality of parallel fuel gas streams so as to converge with at least the upper side of said sheet-like stream of oxidizing gas, the improvement comprising: shortening the preheated time by directing a plurality of parallel streams consisting essentially of oxygen, 'which form a sheet-like oxygen gas curtain, from above said fuel gas streams at an acute angle to the surface of said metal body so as to converge with said streams of oxidizing gas and fuel gas at the converging point of the straight line projections of said oxidizing gas and fuel gas streams, whereby said oxygen gas curtain and the surface of said metal body form a Wedge-shaped pocket to confine the preheating fuel gas and oxidizing gas, thereby resulting in faster puddle formation and causing said puddle to be formed at a location ahead of the converging point of the straight line projections of said oxidizing gas and fuel gas streams.
2. The process of claim 1 wherein the fuel gas streams converge with said sheet-like stream oxidizing gas from both the upper and lower side thereof.
3. In a continuous slot, post-mixed fuel-oxygen scarfing apparatus wherein said slot is formed between an upper preheat block and a lower preheat block which are in spaced relation to one another, wherein means are provided for discharging a sheet-like stream of oxidizing gas through said slot for reacting with a metal surface to be scarfed as Well as for burning preheat fuel gas, said scarfing apparatus being provided With a row of ports communicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas from at least the upper preheat block to converge with said stream of oxidizing gas, the improvement comprising: a row of oxygen ports located in said upper preheat block above said row of fuel gas ports, communicating with supply passages, and capable of discharging a plurality of parallel streams of oxygen gas which form a sheet-like oxygen gas curtain, said oxygen ports being directed at the converging point of the straight line projections of the oxidizing gas and fuel gas streams so as to cause the oxygen curtain stream emanating therefrom to form a wedge shaped pocket between the planes formed by said curtain oxygen stream and the surface of said metal body, thereby confirming the fuel and oxidizing gases discharged from their respective ports.
4. The scarfing apparatus of claim 3 wherein said lower preheat block also is provided with a row of ports communicating with supply passages for discharging a plurality of parallel streams of preheat fuel gas.
References Cited UNITED STATES PATENTS 2,409,654 10/1946 Anderson 148-95 2,622,048 12/ 1952 Moesinger, Jr. 148-95 2,754,234 7/1956 Holubet al. 148-9.5 3,488,230 1/1970 Wernicke 148-95 DELBERT E. GANTZ, Primary Examiner US. Cl. X.R. 266-43 H Disclaimer 3,647,57O.-Th0mas James Lg tle, West Orange, NJ. OXYGEN TRAP SCARFING METHOD AND APPARATUS. Patent dated Mar. 7,
1972. Disclaimer filed June 6, 1973, by the assignee, Um'on Oarbz'de Uorpomtion.
Hereby enters this disclaimer to claims 3 and 4 of said patent.
[Ofiioial Gazette Nowember 6, 1973.]
US836233A 1969-06-25 1969-06-25 Oxygen trap scarfing method and apparatus Expired - Lifetime US3647570A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83623369A 1969-06-25 1969-06-25

Publications (1)

Publication Number Publication Date
US3647570A true US3647570A (en) 1972-03-07

Family

ID=25271495

Family Applications (1)

Application Number Title Priority Date Filing Date
US836233A Expired - Lifetime US3647570A (en) 1969-06-25 1969-06-25 Oxygen trap scarfing method and apparatus

Country Status (18)

Country Link
US (1) US3647570A (en)
AT (1) AT295967B (en)
BE (1) BE748249A (en)
BG (1) BG22066A3 (en)
CA (1) CA954022A (en)
DE (1) DE2018044C3 (en)
ES (1) ES381098A1 (en)
FR (1) FR2051280A5 (en)
GB (1) GB1290759A (en)
LU (1) LU61190A1 (en)
NL (1) NL145786B (en)
NO (1) NO126118B (en)
RO (1) RO58464A (en)
SE (1) SE371950B (en)
SU (1) SU496709A3 (en)
TR (1) TR16576A (en)
YU (2) YU159370A (en)
ZA (1) ZA704327B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850704A (en) * 1972-02-15 1974-11-26 Hilti Ag Scarfing
US3966504A (en) * 1973-05-21 1976-06-29 Centro-Maskin I Goteborg Ab Method and apparatus for thermochemical gas scarfing
FR2400985A1 (en) * 1977-08-26 1979-03-23 Union Carbide Corp THERMOCHEMICAL SCREENING PROCESS AND APPARATUS
US5304256A (en) * 1991-12-09 1994-04-19 Esab Welding Products, Inc. Scarfing method
US5358221A (en) * 1991-12-09 1994-10-25 The Esab Group, Inc. Block assembly for use in metal scarfing apparatus
CN112207404A (en) * 2020-09-09 2021-01-12 浙江德宝通讯科技股份有限公司 Wet-type dust removal cutting platform

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1079181A (en) * 1977-09-26 1980-06-10 Union Carbide Corporation Method and apparatus for producing a post-mixed, stabilized scarfing preheating flame
ES8102873A1 (en) * 1979-03-28 1981-02-16 Union Carbide Corp Method and apparatus for instantaneous scarfing of a workpiece surface
GB2120772B (en) * 1982-05-18 1985-09-18 Exxon Research Engineering Co Fuel burner device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850704A (en) * 1972-02-15 1974-11-26 Hilti Ag Scarfing
US3966504A (en) * 1973-05-21 1976-06-29 Centro-Maskin I Goteborg Ab Method and apparatus for thermochemical gas scarfing
FR2400985A1 (en) * 1977-08-26 1979-03-23 Union Carbide Corp THERMOCHEMICAL SCREENING PROCESS AND APPARATUS
US5304256A (en) * 1991-12-09 1994-04-19 Esab Welding Products, Inc. Scarfing method
US5333841A (en) * 1991-12-09 1994-08-02 The Esab Group, Inc. Nozzle insert for use in metal scarfing apparatus
US5358221A (en) * 1991-12-09 1994-10-25 The Esab Group, Inc. Block assembly for use in metal scarfing apparatus
US5472175A (en) * 1991-12-09 1995-12-05 The Esab Group, Inc. Block assembly for use in metal scarfing apparatus
CN112207404A (en) * 2020-09-09 2021-01-12 浙江德宝通讯科技股份有限公司 Wet-type dust removal cutting platform

Also Published As

Publication number Publication date
NO126118B (en) 1972-12-27
ZA704327B (en) 1971-03-31
SE371950B (en) 1974-12-09
RO58464A (en) 1975-09-15
DE2018044B2 (en) 1973-06-14
TR16576A (en) 1973-01-01
DE2018044A1 (en) 1971-01-07
LU61190A1 (en) 1971-07-06
YU33650B (en) 1977-12-31
GB1290759A (en) 1972-09-27
AT295967B (en) 1972-01-25
CA954022A (en) 1974-09-03
NL7009288A (en) 1970-12-29
DE2018044C3 (en) 1974-01-03
NL145786B (en) 1975-05-15
BG22066A3 (en) 1976-11-25
YU159370A (en) 1977-06-30
FR2051280A5 (en) 1971-04-02
ES381098A1 (en) 1973-07-01
BE748249A (en) 1970-09-30
SU496709A3 (en) 1975-12-25

Similar Documents

Publication Publication Date Title
US2451422A (en) Thermochemical removal of metal with a flux-forming powder in the oxygen cutting stream
US3647570A (en) Oxygen trap scarfing method and apparatus
US2210402A (en) Method of removing metal from metallic bodies
US2470999A (en) Thermochemical metal removal
US3752460A (en) Oxygen trap scarfing apparatus
US2301763A (en) Method and apparatus for applying metal coatings
JPH0653305B2 (en) Fusing method and device
US2622048A (en) External powder scarfing process and apparatus
US2356197A (en) Blowpipe device
US2288027A (en) Method of and apparatus for initiating desurfacing operations
US3455747A (en) Thermochemical scarfing method and apparatus
US2184561A (en) Method of and apparatus for cutting metals
US2040240A (en) Process of butt-welding
US2196902A (en) Method of heat treating metal bodies
US2536201A (en) Thermochemical metal removal method and apparatus
US2184560A (en) Method of and apparatus for forming shaped edge on metal members
US2277472A (en) Scarfing torch
US2071808A (en) Method and apparatus for fusion welding
US2302734A (en) Blowpipe nozzle
US2362536A (en) Apparatus for conditioning the surfaces of metal bodies
US2130261A (en) Apparatus for welding
US3322578A (en) Thermochemical desurfacing method
US2125179A (en) Method of and apparatus for removing metal from the surfaces of metallic bodies
US3605255A (en) Method for brazing
US2346718A (en) Method of scarfing

Legal Events

Date Code Title Description
AS Assignment

Owner name: L-TEC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004436/0460

Effective date: 19850712

Owner name: L-TEC COMPANY, 666 THIRD AVENUE, NEW YORK, NY 100

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004436/0460

Effective date: 19850712

AS Assignment

Owner name: SECURITY PACIFIC BUSINESS CREDIT INC., A DE CORP.

Free format text: SECURITY INTEREST;ASSIGNOR:L-TEC COMPANY A NY LIMITED PARTNERSHIP;REEL/FRAME:004445/0860

Effective date: 19850716

AS Assignment

Owner name: L-TEC COMPANY, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNION CARBIDE CORPORATION, A CORP OF NY.;REEL/FRAME:004610/0384

Effective date: 19860828

Owner name: L-TEC COMPANY, EBENEEZER ROAD, POST OFFICE BOX F-6

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION, A CORP OF NY.;REEL/FRAME:004610/0384

Effective date: 19860828