US3645667A - Nonaqueous cross linking of cellulose with a methylolated urea in the absence of an acidic catalyst - Google Patents

Nonaqueous cross linking of cellulose with a methylolated urea in the absence of an acidic catalyst Download PDF

Info

Publication number
US3645667A
US3645667A US39922A US3645667DA US3645667A US 3645667 A US3645667 A US 3645667A US 39922 A US39922 A US 39922A US 3645667D A US3645667D A US 3645667DA US 3645667 A US3645667 A US 3645667A
Authority
US
United States
Prior art keywords
percent
water
vol
nonaqueous
absence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US39922A
Inventor
Elwood J Gonzales
Ralph J Berni
Ruth R Benerito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Agriculture USDA
Original Assignee
US Department of Agriculture USDA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Agriculture USDA filed Critical US Department of Agriculture USDA
Application granted granted Critical
Publication of US3645667A publication Critical patent/US3645667A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins

Definitions

  • ABSTRACT This invention comprises the treatment of cellulosic textiles in the absence of an acidic catalyst with dimethylolethyleneurea (DMEU) dissolved in nonaqueous or predominantly nonaqueous solvent systems, such as neat dimethylformamide, neat dimethylacetamide, 90 percent (vol.) ethanol in water, 90 percent (vol.) dioxane in water, 90 percent (vol.) tetrahydrofuran in water, and 50 percent (vol.) dimethylformamide in dioxane.
  • DMEU dimethylolethyleneurea
  • the cellulosic products thus modified have high dry and wet wrinkle recovery when compared to cellulosic textiles treated with DMEU dissolved in water only.
  • This invention relates to the treatment of cellulosic textiles with dimethylolethyleneurea (DMEU) dissolved in nonaqueous or essentially nonaqueous solvents without added external catalyst to impart wash-wear properties to cellulosic materials.
  • DMEU dimethylolethyleneurea
  • This type of system should find use in decreasing water pollution since the organic or nonaqueous component may be reclaimed or used over again in the textile treating process. From the standpoint of economics, such as reclamation of the organic portion of the solvent system should ultimately decrease the cost of the process.
  • the main object of the instant invention is to provide a process wherein enhanced dry and wet creases recovery may be imparted to cellulosic textiles in which no external added catalyst is needed.
  • a second object of the instant invention is to apply the process to cellulosic textile from nonaqueous to predominantly nonaqueous solvent systems.
  • a third object of the instant invention is to react the DMEU with the cellulosic textiles at an elevated temperatureabout 160 C.on1y without prior drying at lower temperature about 60 C.
  • aqueous solutions of DMEU and other nitrogeneous resins must be reacted with cellulosic textiles in the presence of added Lewis-type catalysts, such as acids and metal salts, to impart desirablej wash-wear properties to the finished fabric or garment.
  • Lewis-type catalysts such as acids and metal salts
  • Ziifle, et al. (Textile Research Journal 31, No. 4, pp. 349-365, 1962), have applied DMEU to cotton cellulose in the presence of metal salt catalysts, such as MgCl Mg(NO ZnC1 and Zn(NO to obtain enhanced dry and wet crease recovery properties.
  • the impregnation of the cellulosic material is generally carmethod.
  • the materials to which our invention can be applied include cotton, rayon, ramie, jute, flax, and the like, and in the case of cotton we have specifically applied our invention to the textile in the form of woven fabrics with satisfactory results.
  • cotton rayon, ramie, jute, flax, and the like
  • our invention to the textile in the form of woven fabrics with satisfactory results.
  • Those skilled in the art can readily visualize the extension of this application to other forms of textiles in the realm of cellulosic materials.
  • the treated fabric had a 6.8 percent weight gain, 2.04 percent nitrogen, 2.2 percent formaldehyde, 77 percent retention of breaking strength (warp), 276 cycles flex abrasion (bar 575). The dry crease recovery (W+F) was ried out in this manner.
  • the material is immersed in neat 270; the wet crease recovery (WXF) was 252.
  • WXF wet crease recovery
  • Another piece of 80 X80 cotton printcloth similarly treated with 0.55 molar solution of DMEU in water gave the following properties: 3.1 percent weight gain, 0.88 percent nitrogen, 1.64 percent formaldehyde, 92 percent retention of breaking strength (warp), 308 cycles flex abrasion (bar 575) and only 198 degrees (W+F) dry and 206 degrees (W+F) wet crease recovery.
  • the treating bath is also about 0.55 molar concentration in DMEU. Once the material has been impregnated from the treating bath, it is teen liter of solution wherein the solvent is a member selected three minutes at about 160 C. from the group consisting of 90 percent by volume of 2.
  • the process of claim 1 wherein the solvent is 90 percent ethanol in water, 90 percent, by volume of dioxane in by volume f h l i waten Water, 90 Percent y Volume f tetrahydmfurn water, 3.
  • the process of claim 1 wherein the solvent is 90 percent and 50 percent by volume of dimethylformamide in dlOX- 5 by volume of dioxane in water 4.
  • the process of claim 1 wherein the solvent is 90 percent b. removing excess solution from the impregnated cellulosic textile of step (21) until a wet-pickup of about 90 percent by weight, based on the weight of the textile is obtained; and
  • step (b) curing the impregnated textile from step (b) for about by volume of tetrahydrofuran in water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

This invention comprises the treatment of cellulosic textiles in the absence of an acidic catalyst with dimethylolethyleneurea (DMEU) dissolved in nonaqueous or predominantly nonaqueous solvent systems, such as neat dimethylformamide, neat dimethylacetamide, 90 percent (vol.) ethanol in water, 90 percent (vol.) dioxane in water, 90 percent (vol.) tetrahydrofuran in water, and 50 percent (vol.) dimethylformamide in dioxane. The cellulosic products thus modified have high dry and wet wrinkle recovery when compared to cellulosic textiles treated with DMEU dissolved in water only.

Description

United States Patent Gonzales et al.
[ 1 Feb.29, 1972 [54] NONAQUEOUS CROSS LINKING OF CELLULOSE WITH A METHYLOLATED UREA IN THE ABSENCE OF AN ACIDIC CATALYST [72] Inventors: Elwood J. Gonzales, Gretna; Ralph J. Berni, Metairie; Ruth R. Benerito, New Orleans, all of La.
[73] Assignee: The United States of America as represented by the Secretary of Agriculture [22] Filed: May22, 1970 [21] Appl.No.: 39,922
2,588,640 3/1952 Lehmann et a1 ..8/116.3
3,043,719 7/1962 Burr et a1 ...8/116.3
3,090,665 5/1963 Parsons et al.... .8/l 16.3
3,183,054 5/1965 Fischer et al. ..8/l16.4
OTHER PUBLICATIONS Chanceet al., American Dyestuff Reporter, V01. 51, N0. 16, pp. 28- 32, August 6, 1962.
Porter et al., Textile Research Journal, 35, pp. 159- 167 (1965).
Primary ExaminerGeorge F. Lesmes Assistant Examiner-J. Cannon Attorney-R. Hoffman and W. Bier [57] ABSTRACT This invention comprises the treatment of cellulosic textiles in the absence of an acidic catalyst with dimethylolethyleneurea (DMEU) dissolved in nonaqueous or predominantly nonaqueous solvent systems, such as neat dimethylformamide, neat dimethylacetamide, 90 percent (vol.) ethanol in water, 90 percent (vol.) dioxane in water, 90 percent (vol.) tetrahydrofuran in water, and 50 percent (vol.) dimethylformamide in dioxane. The cellulosic products thus modified have high dry and wet wrinkle recovery when compared to cellulosic textiles treated with DMEU dissolved in water only.
5 Claims, No Drawings NONAQUEOUS CROSS LINKING OF CELLULOSE WITH A METHYLOLATED UREA IN THE ABSENCE OF AN ACIDIC CATALYST I A nonexclusive, irrevocable, royalty-free license in the invention herein described, throughout the world for all purposes of the United States Government, with the power to grant sublicenses for such purposes, is hereby granted to the Government of the United States of America.
This invention relates to the treatment of cellulosic textiles with dimethylolethyleneurea (DMEU) dissolved in nonaqueous or essentially nonaqueous solvents without added external catalyst to impart wash-wear properties to cellulosic materials. This type of system should find use in decreasing water pollution since the organic or nonaqueous component may be reclaimed or used over again in the textile treating process. From the standpoint of economics, such as reclamation of the organic portion of the solvent system should ultimately decrease the cost of the process.
The main object of the instant invention is to provide a process wherein enhanced dry and wet creases recovery may be imparted to cellulosic textiles in which no external added catalyst is needed.
A second object of the instant invention is to apply the process to cellulosic textile from nonaqueous to predominantly nonaqueous solvent systems.
A third object of the instant invention is to react the DMEU with the cellulosic textiles at an elevated temperatureabout 160 C.on1y without prior drying at lower temperature about 60 C.
To those skilled in the art it is well known that aqueous solutions of DMEU and other nitrogeneous resins must be reacted with cellulosic textiles in the presence of added Lewis-type catalysts, such as acids and metal salts, to impart desirablej wash-wear properties to the finished fabric or garment. Ziifle, et al., (Textile Research Journal 31, No. 4, pp. 349-365, 1962), have applied DMEU to cotton cellulose in the presence of metal salt catalysts, such as MgCl Mg(NO ZnC1 and Zn(NO to obtain enhanced dry and wet crease recovery properties. In accordance with the main object of the instant invention described above, we require no added Lewistype catalyst to effect reaction with the cellulosic materials to obtain the desirable wash-wear properties. Ziifle, et al., also applied DMEU to cotton cellulose from all-aqueous solutions. In accordance with the second object of the instant invention described above, one invention requires nonaqueous or predominately nonaqueous solvents. 1n accordance with the third object of the instant invention described above, we reacted DMEU with the cellulosic textiles at an elevated temperature with one heating, whereas the prior art required a preliminary drying step at about 60 C. prior to curing at an elevated temperature, in order to achieve the desirable washwear properties. I g
The impregnation of the cellulosic material is generally carmethod.
then submitted to a cure at about 160 C. for about three minutes. For the process of this invention, it is not necessary to add a catalyst for the purpose of obtaining wrinkle recovery properties on the textile.
The materials to which our invention can be applied include cotton, rayon, ramie, jute, flax, and the like, and in the case of cotton we have specifically applied our invention to the textile in the form of woven fabrics with satisfactory results. Those skilled in the art can readily visualize the extension of this application to other forms of textiles in the realm of cellulosic materials.
The following examples are presented to illustrate the invention, and since procedure and conditions can be varied by those skilled in the art, the examples are not set forth to establish any particular limits.
' The treated cotton fabrics were submitted to selected standard tests as well as the other tests indicated here. Breaking strength determinations were done by by the ASTM Method D39-49; dry wrinkle recovery determinations were done by the ASTM Method D1295--T; flex abrasion (bar 575) values were obtained by the ASTM Method D1 175-64T; and wet wrinkle recovery determinations were done by the Lawrence and Phillips method described in American Dyestuff Reporter, v01. 45, P. 548-550, 561 (1956). Nitrogen values were obtained by the Kjeldahl Method; and formaldehyde values were obtained by the chromotropic acid EXAMELEJ washed 15 minutes in hot running tap water (pH 910) and allowed to equilibrate in the laboratory under ambient conditions. The treated sample was then submitted to select evaluation, as described earlier in the specification, and the desired and notable properties together with the results of chemical analyses were recorded. The treated fabric had a 6.8 percent weight gain, 2.04 percent nitrogen, 2.2 percent formaldehyde, 77 percent retention of breaking strength (warp), 276 cycles flex abrasion (bar 575). The dry crease recovery (W+F) was ried out in this manner. The material is immersed in neat 270; the wet crease recovery (WXF) was 252. Another piece of 80 X80 cotton printcloth similarly treated with 0.55 molar solution of DMEU in water gave the following properties: 3.1 percent weight gain, 0.88 percent nitrogen, 1.64 percent formaldehyde, 92 percent retention of breaking strength (warp), 308 cycles flex abrasion (bar 575) and only 198 degrees (W+F) dry and 206 degrees (W+F) wet crease recovery.
Other examples are given in Table 1 with their properties.
TABLE 1.-PROPERTIES OF COTTON PRINTCLOTH TREATED WITH 0.55 MOLAR DIMETHYLOLETHYL- ENEUREA (DMEU) IN VARIOUS SOLVENT SYSTEMS Wrinkle recovery Weight Ret. brk. (W +F) ga N, HCHO, str. (w.) Flex abras. Example Solvent system percent percen percent percent cycles Dry Wet 6. 8 2. 04 2. 20 77 276 270 252 MAC 3. 4 1. 44 1. 68 86 362 232 185 (VOL) ethanol-10% (VOL) wate 6.1 1. 2.19 73 373 255 211 (voL) di0xane-10% (voL) water 7. 1 1. 63 2. 51 81 302 271 245 5 90% (VOL) 'IHF10% (VOL) water 7.1 1.81 0.98 68 252 249 234 6 50% (VOL) DMF50% (VOL) 0111086119--. 4. l 1. 08 1. 69 78 207 233 205 Water 3. 1 0. 88 1. 64 92 208 198 206 Untreated control 900 176 138 *50 pounds.
drmethylformamrde (DMF), 90 percent (vol.) ethanol in! What is claimed is:
water, 90 percent (vol.) dioxane in water, 90 percent (vol.) tetrahydrofuran (THF) in water, neat dimethylacetamide (D- MAC), or 50 percent (vol.) DMF in dioxane. The treating bath is also about 0.55 molar concentration in DMEU. Once the material has been impregnated from the treating bath, it is teen liter of solution wherein the solvent is a member selected three minutes at about 160 C. from the group consisting of 90 percent by volume of 2. The process of claim 1 wherein the solvent is 90 percent ethanol in water, 90 percent, by volume of dioxane in by volume f h l i waten Water, 90 Percent y Volume f tetrahydmfurn water, 3. The process of claim 1 wherein the solvent is 90 percent and 50 percent by volume of dimethylformamide in dlOX- 5 by volume of dioxane in water 4. The process of claim 1 wherein the solvent is 90 percent b. removing excess solution from the impregnated cellulosic textile of step (21) until a wet-pickup of about 90 percent by weight, based on the weight of the textile is obtained; and
c. curing the impregnated textile from step (b) for about by volume of tetrahydrofuran in water.
5. The process of claim 1 wherein the solvent is 50 percent by volume of dimethylformamide in dioxane.

Claims (4)

  1. 2. The process of claim 1 wherein the solvent is 90 percent by volume of ethanol in water.
  2. 3. The process of claim 1 wherein the solvent is 90 percent by volume of dioxane in water.
  3. 4. The process of claim 1 wherein the solvent is 90 percent by volume of tetrahydrofuran in water.
  4. 5. The process of claim 1 wherein the solvent is 50 percent by volume of dimethylformamide in dioxane.
US39922A 1970-05-22 1970-05-22 Nonaqueous cross linking of cellulose with a methylolated urea in the absence of an acidic catalyst Expired - Lifetime US3645667A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3992270A 1970-05-22 1970-05-22

Publications (1)

Publication Number Publication Date
US3645667A true US3645667A (en) 1972-02-29

Family

ID=21908075

Family Applications (1)

Application Number Title Priority Date Filing Date
US39922A Expired - Lifetime US3645667A (en) 1970-05-22 1970-05-22 Nonaqueous cross linking of cellulose with a methylolated urea in the absence of an acidic catalyst

Country Status (1)

Country Link
US (1) US3645667A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884631A (en) * 1973-02-26 1975-05-20 Us Agriculture Preparation of cellulose n,n-dimethylformimidate chloride in textile form, and conversion to halogenodeoxycelluloses and cellulose formate
US3910760A (en) * 1973-05-14 1975-10-07 Us Agriculture Azeotropic solvents for permanent press treatments of cotton and cotton blend fabrics

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2208632A (en) * 1935-04-04 1940-07-23 Dreyfus Henry Textile yarn and process for producing it
US2588640A (en) * 1948-04-26 1952-03-11 Bozel Maletra Prod Chimiques Hydrofugation of textile materials
US3043719A (en) * 1960-08-19 1962-07-10 United Merchants & Mfg Process for applying crease resistant finishes to cellulosic fabrics and products thereof
US3046079A (en) * 1960-05-24 1962-07-24 Wilson A Reeves Process of reacting partially swollen cotton textiles with aqueous solutions of specific aldehydes containing acid catalysts to produce wet and dry crease resistance
US3090665A (en) * 1959-07-07 1963-05-21 Olin Mathieson Reaction mixture of formaldehyde-hydrazide-triazone for treating cellulosic textiles
US3183054A (en) * 1959-07-24 1965-05-11 Shell Oil Co Aldehyde condensation products and their use in treating fibrous materials
US3434794A (en) * 1965-11-18 1969-03-25 Cotton Producers Inst Delayed cure of cellulosic articles
US3533728A (en) * 1963-12-23 1970-10-13 Gagliardi Research Corp Inorganic and/or organic cellulose swelling agents used in conjunction with cross-linking agents in fabric modification process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2208632A (en) * 1935-04-04 1940-07-23 Dreyfus Henry Textile yarn and process for producing it
US2588640A (en) * 1948-04-26 1952-03-11 Bozel Maletra Prod Chimiques Hydrofugation of textile materials
US3090665A (en) * 1959-07-07 1963-05-21 Olin Mathieson Reaction mixture of formaldehyde-hydrazide-triazone for treating cellulosic textiles
US3183054A (en) * 1959-07-24 1965-05-11 Shell Oil Co Aldehyde condensation products and their use in treating fibrous materials
US3046079A (en) * 1960-05-24 1962-07-24 Wilson A Reeves Process of reacting partially swollen cotton textiles with aqueous solutions of specific aldehydes containing acid catalysts to produce wet and dry crease resistance
US3043719A (en) * 1960-08-19 1962-07-10 United Merchants & Mfg Process for applying crease resistant finishes to cellulosic fabrics and products thereof
US3533728A (en) * 1963-12-23 1970-10-13 Gagliardi Research Corp Inorganic and/or organic cellulose swelling agents used in conjunction with cross-linking agents in fabric modification process
US3434794A (en) * 1965-11-18 1969-03-25 Cotton Producers Inst Delayed cure of cellulosic articles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chance et al., American Dyestuff Reporter, Vol. 51, No. 16, pp. 28 32, August 6, 1962. *
Porter et al., Textile Research Journal, 35, pp. 159 167 (1965). *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884631A (en) * 1973-02-26 1975-05-20 Us Agriculture Preparation of cellulose n,n-dimethylformimidate chloride in textile form, and conversion to halogenodeoxycelluloses and cellulose formate
US3910760A (en) * 1973-05-14 1975-10-07 Us Agriculture Azeotropic solvents for permanent press treatments of cotton and cotton blend fabrics

Similar Documents

Publication Publication Date Title
US3854866A (en) Recurable crosslinked cellulose fabrics from methylol reagents and polycarboxylic acids and method of making
US2898238A (en) Process for treating textiles with ethylene urea-formaldehyde reaction products
US3645667A (en) Nonaqueous cross linking of cellulose with a methylolated urea in the absence of an acidic catalyst
US4295847A (en) Finishing process for textiles
US2988417A (en) Process for crease-proofing cellulosic fabrics
Lewin et al. The role of liquid ammonia in functional textile finishes
US3933426A (en) Process for making textiles containing cellulose crease-resistant
US3015584A (en) Wrinkle resistance treatment for cellulosic textile fabrics
US3043719A (en) Process for applying crease resistant finishes to cellulosic fabrics and products thereof
GB897757A (en) 1, 3-di-methylol-4, 5-bis(alkoxy)-2-imidazolidinones and use of the same
US3708261A (en) Compounds having methylol groups and unsaturated groups are used with selected catalysts to produce a durable press product
US3617197A (en) Improving the wrinkle resistance of cellulosic textiles
US3185539A (en) Process of treating cellulose textiles with certain alkylenebis(n-carboxamides) and products produced therefrom
US2661342A (en) Phosphorous oxychloride-anhydrous ammonia reaction products and water-soluble resin compositions for rendering cellulosic materials fire resistant
US3427121A (en) Wrinkle-resistant cotton fabrics with improved moisture absorption
US3311496A (en) Process for producing rot and wrinkle resistant cellulose containing textile and textile obtained therewith
US3041199A (en) Wrinkle resistant cellulose fabric and method of production
US3230030A (en) Process of producing wrinkle resistant cellulose fabrics of relatively high moistureregain
Som et al. Wrinkle Resistance and Tensile Strength of Jute-based Fabrics Modified by Treatment with N-Methylol System: Part I-Effect of Treatment in Presence of Inorganic Salt Catalysts
US3323939A (en) Process for imparting rot and wrinkle resistant finish to a cellulosic textile material and the resulting textile
US3177093A (en) Method of treating cellulose textile material and the treated material
US3625753A (en) Flame retardant for textiles
US3198660A (en) Treatment of cellulosic textile fabrics with bisformamide-formaldehyde adducts
US3301631A (en) Process of modifying cellulosic textiles with epihalohydrin-triazone reaction products
US3535073A (en) Crosslinking cotton with haloalkyl phosphine oxides